JPH06274926A - Optical member, polarization separating element, optical head and manufacture thereof - Google Patents

Optical member, polarization separating element, optical head and manufacture thereof

Info

Publication number
JPH06274926A
JPH06274926A JP5064348A JP6434893A JPH06274926A JP H06274926 A JPH06274926 A JP H06274926A JP 5064348 A JP5064348 A JP 5064348A JP 6434893 A JP6434893 A JP 6434893A JP H06274926 A JPH06274926 A JP H06274926A
Authority
JP
Japan
Prior art keywords
optical
light
optical member
light flux
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5064348A
Other languages
Japanese (ja)
Other versions
JP3261794B2 (en
Inventor
Taro Takekoshi
太郎 竹腰
Masatoshi Yonekubo
政敏 米窪
Takashi Takeda
高司 武田
Toshio Arimura
敏男 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP06434893A priority Critical patent/JP3261794B2/en
Priority to PCT/JP1993/000964 priority patent/WO1994001794A1/en
Priority to EP93914992A priority patent/EP0608432B1/en
Priority to DE69329945T priority patent/DE69329945T2/en
Priority to EP99203376A priority patent/EP0981063A3/en
Publication of JPH06274926A publication Critical patent/JPH06274926A/en
Priority to US08/637,033 priority patent/US5825022A/en
Application granted granted Critical
Publication of JP3261794B2 publication Critical patent/JP3261794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-reliable optical head capable of simplifying its assembly process and eliminating its adjustment process, and small in a secular change or a temperature change, and to attain miniaturization by drastically combining functions. CONSTITUTION:An optical path length adjusting function which makes the optical path length of a going luminous flux 101f different from the optical path length of a returning luminous flux 101r, polarization separating function which detects an magneto-optical signal, or luminous flux reflecting function which guides one part of a luminous flux to a second light receiving element 170 for detecting an emitting power are set on an integrated optical member 120. The optical member is used as the cover of a package 80 of an optical head 1, and the light receiving element 170 or a light emitting element 10 are integrally housed. Thus, the initial offset of a focusing error signal can be removed, and the adjustment can be eliminated. Also, the detection of the magneto-optical signal or the emitting power can be attained by the integrated optical head.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ディスク装置等に用い
られる光ヘッド、とりわけ光ヘッドの構成部材である光
学部材または偏光分離素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head used in an optical disk device or the like, and more particularly to an optical member or a polarization separation element which is a constituent member of the optical head.

【0002】[0002]

【従来の技術】従来のこの種の光ヘッドは、例えばUS
P−No.4764912に開示されるように、光学ガ
ラスの削り出し及び研磨加工によるバルク(方形)型の
光学部品を多用しており、特に光磁気信号も検出する形
式の光ヘッドでは、偏光プリズム等も必要であった。
2. Description of the Related Art A conventional optical head of this type is disclosed in US Pat.
P-No. As disclosed in US Pat. No. 4,764,912, bulk (square) type optical parts made by shaving and polishing optical glass are often used, and in particular, an optical head of a type that also detects a magneto-optical signal does not require a polarizing prism or the like. there were.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前述の光
ヘッドではバルク型の光学部品の占める体積が大きく、
加工自体が高コストであり、更に組立時の位置出し箇所
が多岐に渡るため、装置の小型化、低コスト化、軽量化
を図る事が難しかった。ゆえにアクセス速度面での性能
が犠牲になり、市場での普及を妨げていた。また、光学
系のレイアウトも、発光素子と受光素子とが分離され、
発光素子を始点とする往路の光学系と受光素子を終点と
する復路の光学系のそれぞれに、専用の光学部品を使っ
ており、非常に部品点数やスペース効率の面で無駄があ
った。更に位置精度が累積されるため、光学系の位置精
度を確保する事が困難であり、検出信号特に焦点誤差信
号の初期オフセットを除去するために、手間の掛かる調
整作業が必要となっていた。
However, in the above-mentioned optical head, the bulk type optical component occupies a large volume,
Since the processing itself is expensive, and there are various positioning points during assembly, it has been difficult to reduce the size, cost, and weight of the device. Therefore, the performance in terms of access speed is sacrificed, which hinders its spread in the market. Also, the layout of the optical system is such that the light emitting element and the light receiving element are separated,
Dedicated optical parts are used for the forward optical system starting from the light emitting element and the returning optical system starting from the light receiving element, which is very wasteful in terms of the number of parts and space efficiency. Further, since the position accuracy is accumulated, it is difficult to ensure the position accuracy of the optical system, and a laborious adjustment work is required to remove the initial offset of the detection signal, especially the focus error signal.

【0004】本発明は、かかる課題を解決するためのも
のであり、その主目的は、光学部品の抜本的削減と小型
軽量化と調整工程の簡略化にある。
The present invention is intended to solve such a problem, and its main purpose is to drastically reduce the number of optical components, reduce the size and weight, and simplify the adjustment process.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明の光学部材及びその製造方法は、(1)発散性ないし
収束性の往路光束及び復路光束が透過する一体の部材で
あって、往路光束の光路長と復路光束の光路長とが異な
るように構成された事、(2)上記(1)に関し、光学
部材が一体で成形され表面に段差を有する事、(3)上
記(1)に関し、光学部材が少なくとも二体の別体部品
の貼り合わせから成り、別体部品を貼り合わせた状態で
表面に段差が形成される事、(4)上記(1)の製造方
法として、光学部材を透明樹脂で一体で射出成形し、表
面に段差を形成する事、(5)上記(1)の製造方法と
して、光学部材をガラスで一体にプレス成形し、表面に
段差を形成する事、を特徴とする。
An optical member and a method of manufacturing the same according to the present invention for solving the above-mentioned problems include (1) an integral member through which a divergent or convergent outward light flux and a backward light flux are transmitted. The optical path length of the light flux and the optical path length of the return light flux are different, (2) Regarding (1) above, the optical member is integrally molded and has a step on the surface, (3) Above (1) With regard to the above, the optical member is formed by bonding at least two separate components, and a step is formed on the surface in the state where the separate components are bonded together. (4) The optical member as the manufacturing method according to (1) above. Injection molding with transparent resin to form a step on the surface. (5) As a manufacturing method of the above (1), the optical member is integrally press-molded with glass to form a step on the surface. Characterize.

【0006】また本発明の他の光学部材の構成は、
(6)少なくとも二値の屈折率を局部的に有し、往路光
束と復路光束とがそれぞれ異なる屈折率の領域を透過
し、往路光束の光路長と復路光束の光路長とが異なるよ
う構成された事、(7)一体化された部材に往路光束と
復路光束が透過し、往路光束の透過する領域の屈折パワ
ーと、復路光束の透過する領域の屈折パワーとが、異な
るよう構成された事、(8)上記(7)に関し、表面に
局部的に凸または凹の曲面を形成した事、を特徴とす
る。
The structure of another optical member of the present invention is as follows.
(6) It is configured such that it has at least a binary refractive index locally, the forward light flux and the backward light flux pass through regions of different refractive indexes, and the forward light flux and the backward light flux have different optical path lengths. (7) The integrated member transmits the outward light flux and the backward light flux, and the refraction power of the area through which the outward light flux passes is different from the refractive power of the area through which the backward light flux passes. (8) The above (7) is characterized in that a convex or concave curved surface is locally formed on the surface.

【0007】また、本発明の光ヘッドは、(9)前記
(1)、(6)または(7)記載の光学部材と、これら
光学部材に略対向して背後に配置された受光素子と、受
光素子の受光面から若干高くまたは若干低く配置された
発光素子とから構成され、発光素子から出射する往路光
束と、光記録媒体で反射されて受光素子に向かう復路光
束とが、共に上記光学部材を透過するよう構成された
事、(10)上記(9)に関し、復路光束の受光素子上
でのスポット形状の変化を検出して、少なくとも焦点誤
差信号を生成するよう構成された事、(11)上記
(9)に関し、光学部材は透明樹脂で形成され外周にフ
ランジを有し、フランジ部に射出成形用のゲートを設置
した事、(12)上記(9)に関し、光学部材は透明樹
脂で形成され、光学部材の表面または裏面と受光素子の
表面に、位置合わせ用のアライメントマークを形成また
は印刷した事、(13)上記(9)に関し、光学部材の
表面または裏面に、回折格子もしくはホログラムを形成
した事、(14)上記(13)に関し、ホログラムが、
回折溝ピッチ単位に三角歯状にブレーズ化された、ブレ
ーズ化ホログラムである事、を特徴とする。
Further, an optical head of the present invention comprises (9) the optical member described in (1), (6) or (7) above, and a light receiving element arranged behind the optical member so as to face the optical members. The optical flux is composed of a light emitting element which is arranged slightly higher or slightly lower than the light receiving surface of the light receiving element, and the forward light flux emitted from the light emitting element and the backward light flux reflected by the optical recording medium toward the light receiving element are both included in the optical member. (10) Regarding (9) above, it is configured to detect a change in the spot shape of the returning light flux on the light receiving element and generate at least a focus error signal. ) Regarding the above (9), the optical member is formed of a transparent resin and has a flange on the outer periphery, and a gate for injection molding is installed on the flange portion. (12) Regarding the above (9), the optical member is made of a transparent resin. Formed of optical components Forming or printing alignment marks for alignment on the surface or the back surface and the surface of the light receiving element, (13) Regarding the above (9), forming a diffraction grating or hologram on the surface or the back surface of the optical member, ( 14) Regarding (13) above, the hologram is
It is a blazed hologram which is blazed in a triangular tooth shape in units of diffraction groove pitch.

【0008】また本発明の他の光ヘッドは、(15)前
記(1)、(6)または(7)記載の光学部材と、これ
ら光学部材に略対向して背後に配置された受光素子と、
受光素子の受光面から若干高くまたは若干低く配置され
た発光素子と、受光素子及び発光素子を保持するパッケ
ージとを備え、光学部材とパッケージとの協同により、
受光素子及び発光素子を封止する事、(16)上記(1
5)に関し、光学部材とパッケージとが、互いに接着材
を介して固着され、接着材が光学部材及びパッケージの
材質に対し、硬化後の硬度が低い事、を特徴とする。
Another optical head according to the present invention comprises (15) the optical member described in (1), (6) or (7) above, and a light receiving element arranged behind the optical member so as to face the optical members. ,
A light emitting element arranged slightly higher or slightly lower than the light receiving surface of the light receiving element, and a package for holding the light receiving element and the light emitting element are provided, and by cooperation of the optical member and the package,
Sealing the light receiving element and the light emitting element, (16) above (1)
Regarding 5), the optical member and the package are fixed to each other via an adhesive, and the adhesive has a lower hardness after curing than the materials of the optical member and the package.

【0009】また本発明の偏光分離素子及びその製造方
法は、(17)第1の光学部材と、第1の光学部材に貼
り合わされる第2の光学部材を有し、第1または第2の
光学部材に斜面を含む窪みを形成し、斜面に誘電体の多
層薄膜をコーティングして偏光分離機能を持たせ、窪み
を透明樹脂または液体で埋め、第1及び第2の光学部材
を貼り合わせて形成された事、(18)上記(17)に
関し、第1の光学部材と、第2の光学部材と、窪みを埋
める透明樹脂または液体の各々の屈折率が、概ね同一で
ある事、(19)上記(17)に関し、斜面に入射する
光束を、媒質中換算のNA(開口数)で0.15以下の
収束光束または発散光束とした事、(20)上記(1
7)に関し、斜面及び窪みは、一体の光学部材内に複数
箇所形成され、複数の斜面に共通の誘電体の多層薄膜を
コーティングした事、(21)上記(17)の製造方法
として、記載の斜面に誘電体の多層薄膜をコーティング
して偏光分離機能を持たせ、窪みを透明樹脂で埋め、第
1及び第2の光学部材を貼り合わせた後に、アニーリン
グ処理を施す事、(22)光学部材の表面または内部
に、偏光板または偏光フィルムを固着または保持して形
成された事、(23)上記(22)の製造方法として、
光学部材の表面または内部に、偏光板または偏光フィル
ムを固着または保持した後に、アニーリング処理を施す
事、を特徴とする。
The polarization splitting element and the manufacturing method thereof according to the present invention have (17) a first optical member and a second optical member bonded to the first optical member. The optical member is formed with a recess including a slope, the slope is coated with a dielectric multi-layered thin film to provide a polarization separation function, the recess is filled with a transparent resin or liquid, and the first and second optical members are bonded together. (18) Regarding the above (17), the refractive index of each of the first optical member, the second optical member, and the transparent resin or liquid that fills the recess is approximately the same. Regarding the above item (17), the light beam incident on the slope is a convergent light beam or a divergent light beam having an NA (numerical aperture) equivalent to 0.15 or less in the medium, (20) The above (1)
Regarding 7), the slopes and the depressions are formed at a plurality of locations in the integrated optical member, and the plurality of slopes are coated with a common multi-layered thin film of a dielectric. (21) As the manufacturing method of (17) above, A dielectric multilayer function is provided on the slope to provide a polarization separation function, the recess is filled with a transparent resin, and the first and second optical members are bonded together, and then an annealing treatment is performed. (22) Optical member Formed by fixing or holding a polarizing plate or a polarizing film on the surface or inside thereof, (23) As the manufacturing method of (22) above,
An annealing treatment is performed after a polarizing plate or a polarizing film is fixed or held on the surface or inside of the optical member.

【0010】また本発明の光ヘッドの他の構成は、(2
4)前記(17)または(22)記載の偏光分離素子を
用い、偏光分離素子を透過した復路光束を受光素子で受
光して、光磁気信号を検出するよう構成した事、(2
5)上記(17)記載の偏光分離素子を用い、往路光束
と復路光束をそれぞれ偏光分離機能を有する第1及び第
2の斜面に透過させ、偏光分離素子の第2の斜面を透過
した復路光束を受光素子で受光して、光磁気信号を検出
するよう構成した事、(26)上記(25)に関し、往
路光束の偏光面を第1の斜面の偏光透過方向と一致さ
せ、復路光束の偏光面に対し第2の斜面の偏光分離方向
を略45度回転して設定した事、また更に、(27)鏡
面仕上げされた領域と、微細な凸凹を有する乱反射領域
とに分離された光学部材を用い、鏡面仕上げ領域に往路
光束及び復路光束を透過させるよう構成した事、(2
8)反射防止コーティングを蒸着した領域と、反射防止
コーティングを蒸着しない非コーティング領域とに分離
された光学部材を用い、反射防止コーティング領域に発
光素子から出射する発散光束の中央部を透過させ、非コ
ーティング領域で発散光束の一部を反射し、反射光を受
光する発光パワー検出用の第2の受光素子を備えた事、
(29)上記(28)に関し、発光パワー検出用の第2
の受光素子と、光記録媒体の反射光である復路光束を受
光する第1の受光素子とを有し、第1及び第2の受光素
子が一体の基板上に形成された事、(30)往路光束及
び復路光束が透過しない領域に反射面を形成した光学部
材を用い、反射面で往路光束の一部を反射し、反射光を
受光する発光パワー検出用の第2の受光素子を備えた
事、(31)上記(30)に関し、反射面は斜面または
曲面であり、斜面または曲面の表面反射光束または全反
射光束を、第2の受光素子で受光するよう構成された
事、を特徴とする。
Another configuration of the optical head of the present invention is (2
(4) The polarization separating element according to (17) or (22) is used, and the return light flux transmitted through the polarization separating element is received by a light receiving element to detect a magneto-optical signal.
5) Using the polarization beam splitting element described in (17) above, the forward beam flux and the backward beam are transmitted to the first and second slopes having the polarization separating function, respectively, and the return beam is transmitted through the second slope of the polarization beam splitting element. (26) With respect to (25) above, the polarization plane of the outgoing light flux is made to coincide with the polarization transmission direction of the first inclined surface, and the return light flux is polarized. The polarization separation direction of the second inclined surface is set to be rotated by about 45 degrees with respect to the surface, and further, (27) an optical member separated into a mirror-finished area and an irregular reflection area having fine unevenness is provided. It is configured to transmit the outward light flux and the backward light flux to the mirror finish area, (2
8) Using an optical member separated into an area where the antireflection coating is deposited and an uncoated area where the antireflection coating is not deposited, the central portion of the divergent light flux emitted from the light emitting element is transmitted to the antireflection coating area, Having a second light receiving element for detecting the emission power, which reflects a part of the divergent light flux in the coating area and receives the reflected light,
(29) Regarding the above (28), the second for detecting the emission power
And a first light receiving element for receiving a return light flux that is reflected light of the optical recording medium, and the first and second light receiving elements are formed on an integrated substrate, (30) An optical member having a reflecting surface formed in a region where the outward light flux and the backward light flux are not transmitted is used, and a second light receiving element for detecting the emission power is provided, which reflects a part of the outward light flux by the reflecting surface and receives the reflected light. (31) Regarding the above (30), the reflecting surface is a slope or a curved surface, and the surface reflection light flux or the total reflection light flux of the slope or the curved surface is configured to be received by the second light receiving element. To do.

【0011】[0011]

【作用】本発明の上記構成によれば、 (A)往路の光学系と復路の光学系のそれぞれに関係す
る光学部品を共通化でき、発光素子と受光素子を共通の
パッケージに格納できる。
According to the above configuration of the present invention, (A) the optical components relating to the forward optical system and the backward optical system can be made common, and the light emitting element and the light receiving element can be stored in a common package.

【0012】(B)往路の光路長と復路の光路長を異な
った値に設定でき、受光素子上に正確にスポットを照射
でき、特に焦点誤差信号の初期オフセットの除去に有効
である。
(B) The optical path length of the forward path and the optical path length of the return path can be set to different values, a spot can be accurately irradiated on the light receiving element, and it is particularly effective for removing the initial offset of the focus error signal.

【0013】(C)焦点誤差信号の初期オフセットの除
去に関する調整が簡略化できる。
(C) The adjustment concerning the removal of the initial offset of the focus error signal can be simplified.

【0014】(D)光学部品と受光素子との位置出しが
容易となる。
(D) It becomes easy to position the optical component and the light receiving element.

【0015】(E)光磁気信号を検出するための偏光分
離素子が、他の光学部品と複合化、一体化できる。
(E) A polarization separation element for detecting a magneto-optical signal can be combined and integrated with other optical components.

【0016】(F)発光素子の出射パワーを、特別な部
品を付加せずにモニターできる。
(F) The emission power of the light emitting element can be monitored without adding any special component.

【0017】等を主体に、数々の作用を生ずる。総体と
しては、一体成形の光学部材や偏光素子の採用により、
大幅な機能複合化、小型化、そして調整工程の簡略化が
実現できる。
A number of actions are produced mainly by the above. As a whole, by adopting integrally molded optical members and polarizing elements,
A large number of functions can be combined, the size can be reduced, and the adjustment process can be simplified.

【0018】[0018]

【実施例】【Example】

(実施例1)図1に本発明の実施例1における光ヘッド
を示す側断面図を、また図2に本光ヘッドを使った光ピ
ックアップの側断面図を示す。図1において、10は半
導体レーザから成る発光素子、120はカバープレート
と称する光学部材、130は光束分離のための曲線状回
折溝であるホログラム、170は多分割フォトダイオー
ドであるところの受光素子、80は発光素子10や受光
素子170を保持し収納するパッケージである。パッケ
ージ80は一方のみ開口した枠体であり、開口面を光学
部材120でカバーして接着し封止される。そしてこれ
らの素子を合体して構成されたものが本実施例の光ヘッ
ド1となる。光ヘッド1は光源と検出光学系が一体化さ
れ、また後に説明するように機能の複合化が図られてお
り、全体で約5mm角と小型の立方体的外形を成す。
(Embodiment 1) FIG. 1 is a side sectional view showing an optical head in Embodiment 1 of the present invention, and FIG. 2 is a side sectional view of an optical pickup using the present optical head. In FIG. 1, 10 is a light emitting element composed of a semiconductor laser, 120 is an optical member called a cover plate, 130 is a hologram which is a curved diffraction groove for separating light beams, 170 is a light receiving element which is a multi-divided photodiode, A package 80 holds and stores the light emitting element 10 and the light receiving element 170. The package 80 is a frame body having an opening on only one side, and the opening surface is covered with the optical member 120 to be adhered and sealed. The optical head 1 of this embodiment is formed by combining these elements. The optical head 1 has a light source and a detection optical system integrated with each other, and has a composite function as will be described later, and has a small cubic external shape of about 5 mm square as a whole.

【0019】図2において、2は光ピックアップのケー
スであり、この中に上述の光ヘッド1が収納される。ま
たミラー40、対物レンズ50も収納され、全体として
一体となって駆動(フォーカシングサーボ,トラッキン
グサーボ)される。対物レンズ50は唯一のレンズであ
り、有限系のコンパクトな光学系を構成している。具体
的には、対物レンズ50の物点像点間距離(トータルト
ラック)は約15mmと短く、従ってケース2は小型軽
量となり、光ピックアップ全体でも本実施例では約2g
rと軽量なものとなる。また、60は光記録媒体すなわ
ち光ディスクであり、記録面に微小ピッチのトラック溝
(非図示)が形成されている。
In FIG. 2, reference numeral 2 denotes an optical pickup case in which the above-mentioned optical head 1 is housed. Further, the mirror 40 and the objective lens 50 are also housed, and they are integrally driven (focusing servo, tracking servo) as a whole. The objective lens 50 is the only lens and constitutes a finite compact optical system. Specifically, the distance between object points and image points (total track) of the objective lens 50 is as short as about 15 mm, so that the case 2 is small and lightweight, and the entire optical pickup in this embodiment is about 2 g.
It will be as light as r. Reference numeral 60 is an optical recording medium, that is, an optical disc, in which track grooves (not shown) with a minute pitch are formed on the recording surface.

【0020】図1で、カバープレートと称する光学部材
120は発光素子10寄りの面に段差Lが形成され、平
面部121と段差部122とに領域分離されている。な
お、この光学部材120は、PMMA(ポリメチルメタ
クリレート)、PC(ポリカーボネイト)、あるいはA
PO(アモルファスポリオレフィン)等の光学用樹脂の
射出成形により、簡便な方法で造る事ができるし、低融
点ガラスを加熱プレスによって成形する事も可能であ
る。
In FIG. 1, a step L is formed on the surface of the optical member 120 called a cover plate, which is close to the light emitting element 10, and is divided into a plane portion 121 and a step portion 122. The optical member 120 is made of PMMA (polymethylmethacrylate), PC (polycarbonate), or A.
Injection molding of an optical resin such as PO (amorphous polyolefin) can be performed by a simple method, and low-melting glass can be molded by hot pressing.

【0021】ここで、発光素子10は受光素子170の
受光面即ち表面と完全な同一面で実装する事が現実的に
不可能である。何故ならば、受光素子170は半導体製
造プロセスによって作製され、半導体ウェハを小さくダ
イシングして外形を作るため、中央部に貫通穴をあける
事ができない。また、発光素子10を受光素子170上
にマウントする事も考えられるが、発光素子10の出射
面11(図4参照)及びその反対面12はレーザチップ
の内部反射のための界面であるため、受光素子170等
に接触してはならず、図4に示す様に底面14を使って
固定する必要がある。本実施例では、部品点数を最小限
にするため、図3や図4のように受光素子170の略中
央部に、窪み171と斜面172を形成し、窪み172
に発光素子10を水平に固着し、出射面11から発する
光束100を斜面172で反射させ、受光素子170の
平面に垂直な方向に発散光束101aとして出射させて
いる。斜面172は略45゜に傾いており、窪み171
とともに、シリコン基板から成る受光素子170に異方
性エッチング加工によって比較的簡単に形成する事がで
きる。なお、斜面172に金の薄膜を蒸着すると反射効
率に優れた反射面を得る事ができる。
Here, it is practically impossible to mount the light emitting element 10 on the light receiving surface of the light receiving element 170, that is, on the same plane as the surface. This is because the light receiving element 170 is manufactured by a semiconductor manufacturing process, and a semiconductor wafer is diced into small pieces to form an outer shape, so that a through hole cannot be formed in the central portion. Although it is possible to mount the light emitting element 10 on the light receiving element 170, since the emission surface 11 (see FIG. 4) of the light emitting element 10 and the opposite surface 12 are interfaces for internal reflection of the laser chip, The light receiving element 170 and the like must not be in contact with the light receiving element 170, and must be fixed using the bottom surface 14 as shown in FIG. In this embodiment, in order to minimize the number of parts, as shown in FIG. 3 and FIG. 4, a recess 171 and a slope 172 are formed in a substantially central portion of the light receiving element 170, and a recess 172 is formed.
The light emitting element 10 is fixed horizontally, and the light flux 100 emitted from the emission surface 11 is reflected by the inclined surface 172 and emitted as a divergent light flux 101a in a direction perpendicular to the plane of the light receiving element 170. The slope 172 is inclined at about 45 °, and the depression 171
At the same time, it can be relatively easily formed on the light receiving element 170 made of a silicon substrate by anisotropic etching. By depositing a gold thin film on the slope 172, a reflection surface having excellent reflection efficiency can be obtained.

【0022】ここで留意しなければならない点は、上記
のように発光素子10即ちレーザチップを実装すると、
図4に示すように、受光素子170の斜面172を境に
発光素子10の発光点14を鏡像移動した仮想発光点1
5は、必然的に受光素子170の受光面から下方(図4
で左側)にシフトする事である。面発光形式の半導体レ
ーザが技術確立していない現時点では、完全モノリシッ
ク形式に受光素子と発光素子を連続プロセスで一体製造
する事ができず、このような方法で別体のレーザチップ
即ち発光素子10を受光素子170に実装し、斜面17
2を利用して垂直方向に光束101fを出射する形態
が、最善の方法となる。故に、仮想発光点15は受光素
子170から下がった位置となり、本実施例では具体的
に約0.08mmだけ下がっている。
A point to be noted here is that when the light emitting element 10, that is, the laser chip is mounted as described above,
As shown in FIG. 4, a virtual light emitting point 1 obtained by mirror-moving the light emitting point 14 of the light emitting element 10 with the slope 172 of the light receiving element 170 as a boundary.
5 is inevitably downward from the light receiving surface of the light receiving element 170 (see FIG.
To the left). At the present time when surface emitting semiconductor lasers have not been established in technology, it is not possible to integrally manufacture a light receiving element and a light emitting element in a complete monolithic type in a continuous process, and a separate laser chip, that is, a light emitting element 10 is manufactured by such a method. Mounted on the light receiving element 170, and the slope 17
The best method is to use 2 to emit the light flux 101f in the vertical direction. Therefore, the virtual light emitting point 15 is located at a position lower than the light receiving element 170, and specifically, is lowered by about 0.08 mm in this embodiment.

【0023】なお、部品点数を増やす事を覚悟すれば、
例えば、受光素子170の表面にステム(長方形の金属
ブロック、非図示)を固着し、その側面に発光素子10
を平行に(即ち受光素子170に垂直に)実装する形態
も考えられる。この場合は、受光素子10の発光点は受
光素子から上方にシフトする事になる(非図示)。いず
れにしても、受光素子170の受光面し対して発光点は
下方もしくは上方に、若干シフトして実装せざるを得な
い。
If we are prepared to increase the number of parts,
For example, a stem (rectangular metal block, not shown) is fixed to the surface of the light receiving element 170, and the light emitting element 10 is attached to the side surface thereof.
It is also conceivable that the components are mounted in parallel (that is, perpendicular to the light receiving element 170). In this case, the light emitting point of the light receiving element 10 is shifted upward from the light receiving element (not shown). In any case, there is no choice but to mount the light-emitting point on the light-receiving surface of the light-receiving element 170 slightly downward or upward.

【0024】次に、図1と図2に戻って本実施例の光ヘ
ッドにおける光学的挙動を説明する。発光素子10より
出射した発散光束である往路光束101fは光学部材1
20の略中央部すなわち平面部121に入射して透過
し、光学部材120の表面に形成されたホログラム13
0を出射し、その0次光102f(ホログラム130に
よって回折されない光束)がミラー40及び対物レンズ
50に入射する。対物レンズ50で集光された光束10
3fは光記録媒体60の記録面にスポット104を結像
する。光記録媒体60で反射された光束103rは逆の
光路をたどり、光束102rとなってホログラム130
に入射し、回折された+/−1次光である復路光束10
1rが光学部材120内部を透過し、段差部122から
出射して、受光素子170の受光面即ち表面に入射す
る。
Next, returning to FIGS. 1 and 2, the optical behavior of the optical head of this embodiment will be described. The outward light flux 101f, which is a divergent light flux emitted from the light emitting element 10, is the optical member 1
The hologram 13 formed on the surface of the optical member 120 after being incident on and transmitted through the substantially central portion, that is, the flat surface portion 121 of 20.
0 is emitted, and the 0th-order light 102f (light flux not diffracted by the hologram 130) enters the mirror 40 and the objective lens 50. Light flux 10 condensed by the objective lens 50
3f images the spot 104 on the recording surface of the optical recording medium 60. The light flux 103r reflected by the optical recording medium 60 follows the opposite optical path to become the light flux 102r, and the hologram 130.
Return light flux 10 which is +/- 1 order light which is incident on and diffracted
1r is transmitted through the inside of the optical member 120, is emitted from the step portion 122, and is incident on the light receiving surface of the light receiving element 170, that is, the surface.

【0025】図5及び図6に示すように、ホログラム1
30は光記録媒体60の半径方向即ちトラック溝直交方
向、また別の表現をすればプッシュプル変調方向に対応
して2分割されている。2種類のホログラムパターン1
30aと130bは、それぞれ+/−1次の2本の光
束、合計4本の復路光束101rに回折分離すると同時
に、顕著な非点収差を発生するようパターン設計されて
いる。図7に示すように、受光素子170は4箇所に独
立に分割された短冊状の受光パターン173が半導体プ
ロセスによって形成されており、この受光パターン17
3の個々に光束101rが集光して、受光スポット10
5を形成する。受光スポット105は前述の非点収差に
より、焦点誤差に応じて形状が変化し、受光パターン1
73に取り込まれる光量が変化する。本実施例では、こ
の光量変化を焦点誤差信号として光電変換(いわゆる非
点収差法)するとともに、ホログラム130の2分割パ
ターン130a、130bを透過する光束の光量差をト
ラック誤差信号として光電変換(いわゆるプッシュプル
法)するよう構成されている。
As shown in FIGS. 5 and 6, the hologram 1
Reference numeral 30 is divided into two corresponding to the radial direction of the optical recording medium 60, that is, the direction orthogonal to the track groove, or in other words, the push-pull modulation direction. Two kinds of hologram patterns 1
The patterns 30a and 130b are designed so as to diffract and separate into two light fluxes of +/- 1 order and a total of four return light fluxes 101r, and at the same time generate remarkable astigmatism. As shown in FIG. 7, in the light receiving element 170, a strip-shaped light receiving pattern 173, which is divided into four parts independently, is formed by a semiconductor process.
The light flux 101r is condensed on each of the three light receiving spots 10
5 is formed. The shape of the light receiving spot 105 changes according to the focus error due to the astigmatism described above, and the light receiving pattern 1
The amount of light taken into 73 changes. In the present embodiment, this change in the light quantity is photoelectrically converted as a focus error signal (so-called astigmatism method), and the light quantity difference between the light fluxes transmitted through the two-division patterns 130a and 130b of the hologram 130 is photoelectrically converted as a track error signal (so-called so-called astigmatism method). Push-pull method).

【0026】ここで図6において、焦点誤差の量がゼロ
の基準状態で、受光素子170上に照射される復路光束
101rは非点隔差(焦線間隔)Dの中央、即ち最小錯
乱円103の位置に設定する必要がある。こうすると図
6に示すように最小錯乱円103の位置に前後して均等
に非点隔差Dが割り振られるため、焦点誤差が基準状態
にあるときには図7または図8(b)に示した様な最小
錯乱円の形状の受光スポット105を形成し、受光パタ
ーン173の各チャンネル173a〜dに取り込まれる
光量は均一となる。ここで、各チャンネルのうち、 (173a−173c)+(173d−173b) =(173a+173d)−(173b+173c) の加減演算で生成される焦点誤差信号106はゼロとな
る。次に、光記録媒体60と対物レンズ50との距離が
変化して焦点誤差の量が増加すると、幾何光学の原理に
従って復路光束101rの収束度合いが変化し、焦線1
04の位置が光軸方向にシフトする。すると図8(a)
または図8(c)に示すように受光スポット105の形
状が楕円に変化して、受光パターン173の各チャンネ
ルに取り込まれる光量が変化し、焦点誤差信号106の
レベルが変わる。非点隔差をDとおき、対物レンズ50
の倍率(横倍率:像側/物点側)をRとおき、焦点誤差
信号が単調に変化する領域の焦点誤差を距離で表示した
値をdとおくと、 d=D*(R*R)/2 となり、図9に示すような曲線で焦点誤差信号106が
変化する。なお本実施例の場合、対物レンズ50の倍率
は加工難度や、物点像点間距離との兼ね合いで、約1/
4倍に設定しているため、実際には、 d=D/32 の関係にある。
Here, in FIG. 6, in the reference state where the amount of focus error is zero, the backward light flux 101r irradiated on the light receiving element 170 is at the center of the astigmatic difference (focal line interval) D, that is, the circle of least confusion 103. Must be set to position. As a result, astigmatism D is evenly distributed before and after the position of the circle of least confusion 103 as shown in FIG. 6, so that when the focus error is in the reference state, as shown in FIG. 7 or FIG. The light receiving spot 105 having the shape of the circle of least confusion is formed, and the amount of light taken into each of the channels 173a to 173d of the light receiving pattern 173 becomes uniform. Here, in each channel, the focus error signal 106 generated by the addition / subtraction operation of (173a-173c) + (173d-173b) = (173a + 173d)-(173b + 173c) becomes zero. Next, when the distance between the optical recording medium 60 and the objective lens 50 changes and the amount of focus error increases, the degree of convergence of the backward light flux 101r changes according to the principle of geometrical optics, and the focal line 1
The position 04 is shifted in the optical axis direction. Then, FIG. 8 (a)
Alternatively, as shown in FIG. 8C, the shape of the light receiving spot 105 changes to an ellipse, the amount of light taken into each channel of the light receiving pattern 173 changes, and the level of the focus error signal 106 changes. The astigmatic difference is set to D, and the objective lens 50
Let R be the magnification (horizontal magnification: image side / object point side), and let d be the value indicating the focus error in the area where the focus error signal changes monotonically, d = D * (R * R ) / 2, and the focus error signal 106 changes with a curve as shown in FIG. In the case of the present embodiment, the magnification of the objective lens 50 is about 1 / (1) in consideration of the processing difficulty and the distance between object points and image points.
Since it is set to 4 times, the relationship is actually d = D / 32.

【0027】上述の焦点誤差信号106と前述のトラッ
ク誤差信号は、それぞれフォーカシングサーボとトラッ
キングサーボのための誤差信号として使われ、光記録媒
体60に正確にスポット104を結像するよう制御され
る。本発明においては、このサーボ系の如何は重要な内
容では無いので詳細な説明を省くが、フォーカシングサ
ーボを正確に制御するためには、基準状態において焦点
誤差信号106をゼロ即ち初期オフセットが無い状態に
設定する事が必要不可欠である。
The above-mentioned focus error signal 106 and the above-mentioned track error signal are used as error signals for focusing servo and tracking servo, respectively, and are controlled so that the spot 104 is accurately imaged on the optical recording medium 60. In the present invention, the details of the servo system are not important because they are not important. However, in order to accurately control the focusing servo, the focus error signal 106 in the reference state is zero, that is, there is no initial offset. It is essential to set to.

【0028】前述したように、本実施例では有限系の光
学系を成し、図1や図2に示したように仮想発光点15
と対物レンズ50の焦点(スポット104の位置)とは
光学的共役関係にある。また、復路光束101rの焦
点、この場合は最小錯乱円103と、対物レンズ50の
焦点とも共役関係にある。従って、仮想発光点15と最
小錯乱円103とは光学的共役関係が成立する。ここ
で、仮想発光点15と最小錯乱円103とが光軸方向に
同一面に置ければ、受光素子170上での受光スポット
形状は基準状態において最小錯乱円103となり、焦点
誤差信号106にはオフセットが発生しない。
As described above, in this embodiment, a finite optical system is formed, and as shown in FIG. 1 and FIG.
And the focus of the objective lens 50 (the position of the spot 104) are in an optically conjugate relationship. Further, the focal point of the backward light flux 101r, in this case the circle of least confusion 103, and the focal point of the objective lens 50 are also in a conjugate relationship. Therefore, an optical conjugate relationship is established between the virtual light emitting point 15 and the circle of least confusion 103. Here, if the virtual light emitting point 15 and the circle of least confusion 103 are placed on the same plane in the optical axis direction, the light receiving spot shape on the light receiving element 170 becomes the circle of least confusion 103 in the reference state, and the focus error signal 106 shows No offset occurs.

【0029】ところが図4で前述したように、仮想発光
点15は受光素子170の受光面に対して約0.08m
m後ろにある。また図10に示すが、ホログラム130
によって形成される+/−1次光の像面107(最小錯
乱円103を含む平面と考えて良い)は、対物レンズ5
0やホログラム130によって生ずる幾何光学的収差の
ため、前側(光学部材120寄り)に湾曲しており、こ
れにより自動的に仮想発光点15のズレをある程度補正
させる事は可能である。しかしながら、像面湾曲の量
(図10でWで示す)と上記の仮想発光点15のズレ量
を一致させるよう設計する事は、実際の種々の制約条件
の中では困難であり、本実施例の場合もズレ量0.08
mmに対して像面湾曲の量Wが0.13もあり、補正過
多となっている。結局0.05mmのズレが残る事にな
り、これは焦点誤差信号106に換算すると約1.6μ
mのオフセットとなってしまう。
However, as described above with reference to FIG. 4, the virtual light emitting point 15 is about 0.08 m from the light receiving surface of the light receiving element 170.
m behind. Also shown in FIG. 10, the hologram 130
The image plane 107 (which may be considered as a plane including the circle of least confusion 103) of the +/− 1st order light formed by
Because of the geometrical optical aberration caused by 0 or the hologram 130, it is curved to the front side (close to the optical member 120), and it is possible to automatically correct the deviation of the virtual light emitting point 15 to some extent. However, it is difficult to design the amount of curvature of field (indicated by W in FIG. 10) and the amount of deviation of the virtual light emitting point 15 to coincide with each other under various actual constraint conditions. In case of
The amount of field curvature W is 0.13 with respect to mm, which is overcorrection. After all, a deviation of 0.05 mm remains, which is about 1.6 μ when converted into the focus error signal 106.
It becomes an offset of m.

【0030】故に、このままでは焦点誤差信号106に
初期オフセットが発生してしまうため、本実施例ではこ
れを除去するために、前述したようにカバープレートと
称する光学部材120の表面に段差を設けて光路長を調
整している。これは非常に簡便な方法であり、本発明の
特徴的な項目となっている。この面121と面122の
段差をLとして、光学部材120の屈折率をn(=1.
5)とし、補正したい光路長をΔs(=0.13mm−
0.08mm=0.05mm)とおくと、 L=nΔs/(n−1)=1.5*0.05/(1.5−1) となる。従ってL=0.15mmに設定すると、仮想発
光点15と受光素子170との光軸方向位置差が補正さ
れ、焦点誤差信号106の初期オフセットがキャンセル
される。
Therefore, if this is left as it is, an initial offset occurs in the focus error signal 106. In order to remove this, in the present embodiment, a step is provided on the surface of the optical member 120 called the cover plate as described above. The optical path length is adjusted. This is a very simple method and is a characteristic item of the present invention. When the level difference between the surfaces 121 and 122 is L, the refractive index of the optical member 120 is n (= 1.
5), the optical path length to be corrected is Δs (= 0.13 mm-
0.08 mm = 0.05 mm), L = nΔs / (n-1) = 1.5 * 0.05 / (1.5-1). Therefore, when L = 0.15 mm is set, the positional difference between the virtual light emitting point 15 and the light receiving element 170 in the optical axis direction is corrected, and the initial offset of the focus error signal 106 is canceled.

【0031】ここで本実施例の特徴として、焦点誤差信
号の初期オフセットの調整工程を廃止できる事が大きな
利点となる。上記の段差Lの精度は金型精度が直接転写
されるため、+/−10μmの寸法公差内に十分入る実
力を有している。この公差を仮想発光点15基準の復路
光束101rの像面位置変化に置き直すと、 Δs=L*(n−1)/n=10μm*(1.5−1)/1.5 により、Δs=3.3μmとなる。更にこのΔsを焦点
誤差の量すなわち初期オフセットに換算すると、3.3
/32=0.1μmとなり、一般的なオフセット許容値
(約1μm以下)に対して十分な誤差に収まっているた
め、なんら問題なく無調整化できる。
As a feature of this embodiment, it is a great advantage that the step of adjusting the initial offset of the focus error signal can be omitted. Since the accuracy of the step L is directly transferred to the accuracy of the mold, the accuracy of the step L is sufficiently within the dimensional tolerance of +/− 10 μm. When this tolerance is replaced with the change in the image plane position of the backward-direction light flux 101r based on the virtual emission point 15, Δs = L * (n-1) / n = 10 μm * (1.5-1) /1.5 = 3.3 μm. Further, if this Δs is converted into the amount of focus error, that is, the initial offset, it is 3.3.
Since /32=0.1 μm, which is within a sufficient error with respect to a general offset allowable value (about 1 μm or less), no adjustment can be performed without any problem.

【0032】本実施例では、面122を面121より段
差Lだけ高く、即ち往路の光路長に対して、復路の光路
長を伸ばす方向になっている。但し、復路の光束101
rの像面湾曲が小さいような場合(ホログラムによる回
折角度が浅い場合等)では、復路光束101rの光路長
を逆に縮める方向に光路長を調整する事もあり、この場
合は面122が面121に対して逆に凹むよう、段差を
形成すれば良い。
In this embodiment, the surface 122 is higher than the surface 121 by the step L, that is, the optical path length of the return path is extended with respect to the optical path length of the outward path. However, the return light flux 101
When the curvature of field of r is small (when the diffraction angle by the hologram is shallow, etc.), the optical path length may be adjusted in the direction in which the optical path length of the backward light beam 101r is shortened. In this case, the surface 122 is a surface. A step may be formed so as to be concave with respect to 121.

【0033】付け加えると、本実施例では焦点誤差信号
106の検出方法として、いわゆる非点収差法を利用し
ているが、これに限らず、例えばスポットサイズ法など
の焦点誤差検出方法であっても同様の問題が発生する事
があり、発光素子10と受光素子170を同一パッケー
ジ80に収容する形態の光ヘッドにおいて特有の課題と
言える。故に本発明及び本実施例は、この種の光ヘッド
に広範に適用可能である。また、光学部材120は一体
成形の替わりに別体の光学部品を貼り合わせて一体化
し、表面に段差Lが形成されるようにしても良いが、寸
法精度は若干犠牲になる。
In addition, although the so-called astigmatism method is used as the method for detecting the focus error signal 106 in this embodiment, the present invention is not limited to this, and a focus error detection method such as a spot size method is also applicable. The same problem may occur, and it can be said that the problem is peculiar to an optical head in which the light emitting element 10 and the light receiving element 170 are housed in the same package 80. Therefore, the present invention and this embodiment can be widely applied to this type of optical head. Further, the optical member 120 may be formed by bonding separate optical components instead of integrally molding to form a step L on the surface, but the dimensional accuracy is slightly sacrificed.

【0034】更に、本実施例での光学部材120は、往
路光束101fの光路長と復路光束101rの光路長と
を異なった長さに設定できるという事が主目的である
が、概念的には複数の光束が透過する部材であって、そ
れぞれの光路長を自由に設定するためのものである。故
に、光ヘッド以外でも、光学系を含んだ機器であって、
近接して通過する複数の収束光束や発散光束が存在する
ような場合にも、本発明の適用範囲は拡大し得る。
Further, the main purpose of the optical member 120 in the present embodiment is that the optical path length of the forward light flux 101f and the optical path length of the backward light flux 101r can be set to different lengths, but conceptually, A member that allows a plurality of light beams to pass therethrough, and is for freely setting the optical path length of each member. Therefore, in addition to the optical head, it is a device that includes an optical system,
The application range of the present invention can be expanded even when there are a plurality of converging light fluxes or divergent light fluxes passing in close proximity.

【0035】(実施例2)図11は実施例2の光ヘッド
を示す側断面図である。この実施例は光学系の基本的仕
様は前述の実施例に類似しているが、光学部材220の
一面に形成されたホログラム230が回折溝断面方向に
鋸(のこぎり)歯状の微小な三角溝から成るブレーズ化
ホログラムである点と、光学部材220の他面に直線溝
の単純な回折格子すなわちグレーティング240が形成
されている点が、異なっている。
(Second Embodiment) FIG. 11 is a side sectional view showing an optical head according to a second embodiment. In this embodiment, the basic specifications of the optical system are similar to those of the above-mentioned embodiment, but the hologram 230 formed on one surface of the optical member 220 has a small triangular groove having a sawtooth shape in the diffraction groove cross section direction. 2 is different from the optical member 220 in that a simple diffraction grating of linear grooves, that is, a grating 240 is formed on the other surface of the optical member 220.

【0036】ホログラム230はブレーズ化されている
ため、公知のように回折1次光である復路光束201r
は片側にしか回折されない。従って実施例1のような非
点収差を利用した作動検出で焦点誤差信号を検出する事
はできず、替わりに、公知されているようなダブルナイ
フエッジ法(またはフーコー法)と呼ばれる焦点誤差信
号で検出する事ができる(詳細は省略)。またトラック
誤差信号は、やはり公知されているように、グレーティ
ング240で発生する+/−1次光201bを使った3
ビーム法で検出可能である。
Since the hologram 230 is blazed, it is well known that the backward light beam 201r, which is the diffracted first-order light, is known.
Is diffracted only on one side. Therefore, the focus error signal cannot be detected by the operation detection using the astigmatism as in the first embodiment, and instead, the focus error signal called the double knife edge method (or Foucault method) as known is used. Can be detected with (details omitted). Also, the track error signal is, as is also known, a signal obtained by using the +/− 1st order light 201b generated in the grating 240.
It can be detected by the beam method.

【0037】本実施例は上記のようにホログラム230
で発生する回折光束の本数が実施例1の場合の半分であ
り、従って受光素子270上の受光パターン(非図示)
が片側に寄せられるため、受光素子270やパッケージ
80が、より小型にできる。また、グレーティング24
0も光学部材220に一体で形成できるため、機能の複
合化が進んでいる。従って、CD(コンパクトディス
ク)の再生のみを行うような機能的にシンプルな光ヘッ
ドとして、非常に小型のものが提供できる。なお、図1
1で光学部材220に設けれれた段差部222は、実施
例1と同様に往路光束(回折1次光)201rの光路長
を調整して、焦点誤差信号の初期オフセットをキャンセ
ルするために設けられている。
This embodiment uses the hologram 230 as described above.
The number of diffracted light fluxes generated in 1 is half that in the first embodiment, and therefore, the light receiving pattern on the light receiving element 270 (not shown)
Is brought to one side, the light receiving element 270 and the package 80 can be made smaller. Also, the grating 24
Since 0 can also be formed integrally with the optical member 220, the combination of functions is progressing. Therefore, as a functionally simple optical head that only reproduces a CD (compact disc), a very small optical head can be provided. Note that FIG.
The stepped portion 222 provided on the optical member 220 at 1 is provided to adjust the optical path length of the outgoing light flux (first-order diffracted light) 201r in the same manner as in Embodiment 1 and cancel the initial offset of the focus error signal. ing.

【0038】(実施例3)前述の実施例1では、復路光
束101rの最小錯乱円103と仮想発光点15との光
軸方向位置ズレを補正するために、段差Lを有する光学
部材120を用いていた。しかしながら光路長を補正す
る手段は他にもある。
(Third Embodiment) In the first embodiment described above, the optical member 120 having the step L is used to correct the positional deviation in the optical axis direction between the minimum circle of confusion 103 of the returning light beam 101r and the virtual light emitting point 15. Was there. However, there are other means for correcting the optical path length.

【0039】図12に示す実施例3では、屈折率を局部
的に変える事で、光路長を変えるように構成している点
が特徴的である。即ち、光学部材320に部分的に周り
の材質A(321)に対して屈折率の異なる材質B(3
22)を内包している。具体的製法は、2段階の射出成
形を用いたいわゆる2色成形法を使っている。例えば材
質B(322)を小さな金型を使って射出成形し、金型
の一部を交換してその周りを材質A(321)で射出成
形する。具体的材質としては、 材質A…PMMA(屈折率1.5程度) 材質B…PC(屈折率1.6程度) に選定している。この場合は実施例1の様に、樹脂と空
気とのような極端な屈折率差を利用していないため、光
軸方向にある程度長い距離に渡って屈折率差を持続する
必要がある。材質Aの屈折率をnA、材質Bの屈折率を
nB、補正する光路長をΔS、屈折率差が存在する距離
をLとすると、 L=nB*Δs/(nB−nA) =1.6*0.05/(1.6−15) 従ってL=0.75mmに設定すれば良い。屈折率は材
質に固有の値であり非常に正確に管理できるため、実施
例1や実施例2の場合に比べて精度良く光路長を調整で
きるという効果がある。
The third embodiment shown in FIG. 12 is characterized in that the optical path length is changed by locally changing the refractive index. That is, the material B (3) having a different refractive index from the material A (321) around the optical member 320 is partially present.
22) is included. As a specific manufacturing method, a so-called two-color molding method using two-stage injection molding is used. For example, the material B (322) is injection-molded using a small mold, a part of the mold is replaced, and the periphery thereof is injection-molded with the material A (321). As specific materials, material A ... PMMA (refractive index of about 1.5) and material B ... PC (refractive index of about 1.6) are selected. In this case, unlike the first embodiment, the extreme difference in refractive index between resin and air is not used, and therefore it is necessary to maintain the difference in refractive index over a long distance in the optical axis direction. Assuming that the refractive index of the material A is nA, the refractive index of the material B is nB, the optical path length to be corrected is ΔS, and the distance at which the refractive index difference exists is L, then L = nB * Δs / (nB-nA) = 1.6 * 0.05 / (1.6-15) Therefore, it suffices to set L = 0.75 mm. Since the refractive index is a value specific to the material and can be managed very accurately, there is an effect that the optical path length can be adjusted more accurately than in the case of the first and second embodiments.

【0040】なお、材質B(322)を図12の様に端
面を同一面にして成形する替わりに、材質Bを材質Aの
内部に完全に内封する形式でも良い。また、上述のよう
な2色成形法によらず、屈折率の異なる別体部品をはめ
込む方法でも良いが寸法精度は若干不利となる。更に、
材質を樹脂に限定しなければ、屈折率分布レンズ(いわ
ゆるGRINレンズ)のようにイオンドーピング等の手
法で、局部的に屈折率を変える事も可能性がある。
Instead of molding the material B (322) with the end faces on the same plane as shown in FIG. 12, the material B may be completely enclosed inside the material A. Further, instead of the two-color molding method as described above, a method of fitting separate parts having different refractive indexes may be used, but the dimensional accuracy is slightly disadvantageous. Furthermore,
If the material is not limited to resin, it is possible to locally change the refractive index by a method such as ion doping like a gradient index lens (so-called GRIN lens).

【0041】(実施例4)実施例4として、光路長を補
正する更に他の方法を示す。図13において、光学部材
420の平面421には、局部的にレンズ面422が形
成されている。この場合には、前述のような屈折率差を
利用する替わりに、レンズによる屈折を積極的に利用し
て、焦点距離即ち焦点位置をシフトさせる。光路長を延
長させたい光束に対しては凹レンズ面を形成し、光路長
を短縮させたい光束に対しては凸レンズ面を形成すれば
よい。但し実施例1で説明したような光ヘッドに応用す
るには、光束に不要な収差を与えないようにする必要が
あり、レンズ面422は非球面形状が望ましい。
(Embodiment 4) As Embodiment 4, another method of correcting the optical path length will be described. In FIG. 13, a lens surface 422 is locally formed on the flat surface 421 of the optical member 420. In this case, instead of using the difference in refractive index as described above, refraction by the lens is positively used to shift the focal length, that is, the focal position. A concave lens surface may be formed for a light beam whose optical path length is desired to be extended, and a convex lens surface may be formed for a light beam whose optical path length is desired to be reduced. However, in order to apply it to the optical head as described in the first embodiment, it is necessary not to give unnecessary aberration to the light beam, and the lens surface 422 is preferably an aspherical shape.

【0042】(実施例5)図14と図15には、実施例
5としてカバープレート即ち光学部材520を用いて構
成した他の形式の光ヘッドを示す。この実施例では、光
学系の原理は前述の実施例1と同様であるが、光学部材
520の形状が異なる事と、ホログラム素子530が別
体として設けられている点が異なっている光学部材52
0の裏面521と、ホログラム素子530の表面531
と、受光素子570の表面に、それぞれ同一の平面方向
位置で、複数のアライメントマーク522,532,5
72が形成されている(図15)。これらのアライメン
トマークは、組立時の位置合わせ用のものであり、線幅
10μm程度の十字線であり、エッチングや金型彫刻等
によって形成される。この種の光ヘッドでは、受光素子
570の受光パターン573の各チャンネルに対する受
光スポット505の平面方向位置精度は、検出信号の品
質を確保するために受光スポット505(言い替えると
最小錯乱円)の直径に対して約10%以下にする必要が
ある。本実施例では受光スポット505の直径が約15
0μmであり、従って位置合わせ精度は+/−15μm
が要求される。しかるに、アライメントマーク(52
2,532,572)は、フォトマスクによるエッチン
グ加工で形成できるため、各部品に対して+/−5μm
程度の位置公差でマーキング可能である。よって、組立
時に光軸方向から透視して各アライメントマークを合わ
せるようにして位置出しすれば、+/−10μmのレベ
ルで、受光パターン573と受光スポット505の位置
合わせができる。
(Embodiment 5) FIGS. 14 and 15 show another type of optical head constructed by using a cover plate or optical member 520 as Embodiment 5. In this embodiment, the principle of the optical system is the same as that of the first embodiment, except that the shape of the optical member 520 is different and the hologram element 530 is provided as a separate body.
0 back surface 521 and hologram element 530 front surface 531
A plurality of alignment marks 522, 532, 5 at the same plane direction position on the surface of the light receiving element 570.
72 is formed (FIG. 15). These alignment marks are for alignment during assembly, are cross-shaped lines with a line width of about 10 μm, and are formed by etching, die engraving, or the like. In this type of optical head, the positional accuracy of the light receiving spot 505 with respect to each channel of the light receiving pattern 573 of the light receiving element 570 is determined by the diameter of the light receiving spot 505 (in other words, the circle of least confusion) in order to ensure the quality of the detection signal. On the other hand, it should be about 10% or less. In this embodiment, the diameter of the light receiving spot 505 is about 15
0 μm, therefore the alignment accuracy is +/− 15 μm
Is required. However, the alignment mark (52
2,532,572) can be formed by etching with a photomask, so +/− 5 μm for each part
It is possible to mark with a certain positional tolerance. Therefore, if the alignment marks are aligned and positioned through the optical axis direction during assembly, the light receiving pattern 573 and the light receiving spot 505 can be aligned at a level of +/− 10 μm.

【0043】次に、本実施例の光ヘッドの組立方法を示
す。図14で、受光素子570と、受光素子570上の
窪み571に実装されたレーザチップである発光素子1
0は、パッケージ80の枠体内部に固定されている。こ
の固定方法は通常銀ペーストによる鑞付け法によってい
る。パッケージ80の平面外形形状は、光学部材520
沿った外形形状を成しており、また開口面は良好な平面
度を有している。次にこのパッケージの開口面に接着材
85を少量塗布し、光学部材520を載せて前述のアラ
イメントマーク522をアライメントマーク572に適
合させるように、X−Y−θテーブルで精密位置調整
し、接着材85を硬化させる。
Next, a method of assembling the optical head of this embodiment will be described. In FIG. 14, a light receiving element 570 and a light emitting element 1 which is a laser chip mounted in a recess 571 on the light receiving element 570.
0 is fixed inside the frame of the package 80. This fixing method is usually a brazing method using silver paste. The planar outer shape of the package 80 is the optical member 520.
The outer surface has a flat shape, and the opening surface has good flatness. Next, a small amount of the adhesive material 85 is applied to the opening surface of this package, the optical member 520 is placed, and the alignment mark 522 is aligned with the alignment mark 572. The material 85 is cured.

【0044】本実施例では、接着剤85として作業性に
優れたアクリル系のUV(紫外線)硬化樹脂を用い、そ
の硬化後の接着剤硬度が、光学部材570やパッケージ
80の硬度に対して、非常に柔らかいものを選定してい
る。パッケージ80は、金属配線のモールドを必要とす
るため、一般にエポキシレジンまたはセラミックス等の
材質を使用し、一方光学部材520は実施例1で述べた
ようにPMMA等の光学樹脂を使っているが、両者の間
の熱膨張率が1桁以上異なっている。この両者の材質を
強固に接合すると、温度変化に対して光学部材520に
応力が発生し、透過波面収差や複屈折といった光学特性
を悪化させてしまう。従って、これらの部材間を接合す
る接着材85としては、熱膨張率の違いを吸収するよう
な極めて、軟質の材質でなければならない。実験的に
は、硬化後にショアAスケール硬度で60程度のもので
あれば光学部材520に光学的歪を殆ど与えない事が確
認されている。この硬度は一般的な接着剤の硬化後の硬
度の中ではかなり軟質に位置付けられ、また光学部材5
20の材質(PMMAやPC)の硬度に比べても、1桁
程度低硬度である。
In this embodiment, an acrylic UV (ultraviolet) curable resin having excellent workability is used as the adhesive 85, and the adhesive hardness after curing is relative to the hardness of the optical member 570 and the package 80. Very soft ones are selected. Since the package 80 requires molding of metal wiring, generally, a material such as epoxy resin or ceramics is used, while the optical member 520 uses optical resin such as PMMA as described in the first embodiment. The coefficient of thermal expansion between them differs by more than one digit. When these two materials are firmly bonded, stress is generated in the optical member 520 with respect to temperature change, and optical characteristics such as transmitted wavefront aberration and birefringence are deteriorated. Therefore, the adhesive material 85 that joins these members must be an extremely soft material that absorbs the difference in the coefficient of thermal expansion. Experimentally, it has been confirmed that if the Shore A scale hardness is about 60 after curing, optical distortion is hardly given to the optical member 520. This hardness is positioned to be relatively soft in the hardness after curing of a general adhesive, and the optical member 5
Compared with the hardness of 20 materials (PMMA and PC), the hardness is about one digit.

【0045】図16は、光学部材520の単体形状を示
した物である。光学部材520は約5mm角の平面形状
であり、その外周部にはフランジ部524が形成されて
いる。本実施例では、この光学部材520の製造方法と
しては金型による射出成形を前提としており、射出時の
樹脂流動口であるゲート525は、フランジ524の外
周側面に設けたサイドゲート方式を採用している。
FIG. 16 shows the optical member 520 in a single shape. The optical member 520 has a planar shape of about 5 mm square, and a flange portion 524 is formed on the outer peripheral portion thereof. In this embodiment, the method of manufacturing the optical member 520 is premised on injection molding using a mold, and the gate 525 which is a resin flow port at the time of injection adopts a side gate method provided on the outer peripheral side surface of the flange 524. ing.

【0046】フランジ部524の効用は、第一に全体の
剛性を向上する事、第2に成形時にサイドゲート方式の
ゲート525から流動する樹脂の圧力を均一化する事で
ある。本実施例の光ヘッドにおいては、光学部材520
のなかで光学特性を確保すべき有効領域は、中央部の直
径約2mmの領域となっている。この中央部526に応
力による光学歪が発生すると、透過波面収差や複屈折と
いった光学特性が悪化し、光ヘッドの情報記録再生の信
頼性を著しく悪化させる。本実施例のように、外周部に
フランジ部524が形成されていれば、外力や熱変形に
対して剛性が大幅に向上し、中央部526に発生する応
力は大幅に緩和される。また射出成形時には、このフラ
ンジ部524で樹脂の流動圧力が均一に緩和され、中央
部526には成形後の残留応力を殆どゼロにする事が可
能となり、やはり光学特性の向上に貢献している。
The effect of the flange portion 524 is to firstly improve the rigidity of the whole, and secondly to equalize the pressure of the resin flowing from the side gate type gate 525 during molding. In the optical head of this embodiment, the optical member 520
Among them, the effective region where the optical characteristics should be ensured is the region having a diameter of about 2 mm at the central portion. When optical distortion due to stress occurs in the central portion 526, optical characteristics such as transmitted wavefront aberration and birefringence are deteriorated, and reliability of information recording / reproducing of the optical head is significantly deteriorated. If the flange portion 524 is formed on the outer peripheral portion as in the present embodiment, the rigidity is significantly improved against external force and thermal deformation, and the stress generated in the central portion 526 is greatly relieved. Further, during injection molding, the flow pressure of the resin is uniformly relieved by the flange portion 524, and the residual stress after molding can be made almost zero in the central portion 526, which also contributes to the improvement of the optical characteristics. .

【0047】(実施例6)実施例6は本実施例の偏光分
離素子に関する実施例である。ここで説明する偏光分離
素子は、光磁気信号(MO信号)の再生を必要とする光
磁気ディスク装置の光ヘッド等に用いるための光学素子
である。本実施例の主旨は、従来の製造方法からの大幅
転換により、光磁気信号検出用の偏光分離素子を簡便な
方法で製造する事にある。以下、図17,図18,図1
9を用いて本実施例を説明する。
(Embodiment 6) Embodiment 6 is an embodiment relating to the polarization beam splitting element of this embodiment. The polarization separation element described here is an optical element for use in an optical head or the like of a magneto-optical disk device that requires reproduction of a magneto-optical signal (MO signal). The main purpose of this embodiment is to manufacture a polarization separation element for detecting a magneto-optical signal by a simple method, which is a great change from the conventional manufacturing method. Hereinafter, FIG. 17, FIG. 18, and FIG.
This embodiment will be described with reference to FIG.

【0048】図17において第1光学部材620は中央
部に窪み621と略45度の斜面622が形成されてい
る。この第1光学部材620はPMMA(ポリメチルメ
タクリレート)等の光学樹脂で一体に射出成形され、大
量にしかも低コストで製作できる。一方第2光学部材6
30は平行平面板であり、曲面や斜面を含まないため通
常の光学ガラスのカッティングで作られ、やはり大量に
しかも低コストで供給可能である。
In FIG. 17, the first optical member 620 has a recess 621 and a slope 622 of about 45 degrees formed in the center. The first optical member 620 is integrally injection-molded with an optical resin such as PMMA (polymethylmethacrylate), and can be manufactured in large quantity and at low cost. On the other hand, the second optical member 6
Reference numeral 30 denotes a plane parallel plate, which is manufactured by ordinary optical glass cutting because it does not include a curved surface or an inclined surface, and can also be supplied in large quantities at low cost.

【0049】図18には、第1光学部材620と第2光
学部材630とを合体して、偏光分離素子601を形成
する様子を示す。第1光学部材620の窪み621を、
樹脂640で埋め、第2光学部材630で覆っている。
この樹脂640は硬化後の屈折率が、第1及び第2光学
部材と同等に、約1.5となるよう化学的組成を調整さ
れている。そして第1及び第2光学部材が合体した状態
で窪み621に充填された樹脂640は三角プリズムと
して機能する。なお、本実施例では樹脂640としてU
V(紫外線)硬化樹脂を用い、合体後にUV照射を行っ
て硬化させているが、これに限らず熱硬化樹脂等を用い
ても良い。
FIG. 18 shows a state in which the first optical member 620 and the second optical member 630 are combined to form the polarization separation element 601. The recess 621 of the first optical member 620,
It is filled with resin 640 and covered with the second optical member 630.
The chemical composition of the resin 640 is adjusted so that the refractive index after curing is about 1.5, which is equivalent to that of the first and second optical members. The resin 640 filled in the recess 621 in the state where the first and second optical members are combined functions as a triangular prism. In this embodiment, the resin 640 is U
Although a V (ultraviolet) curing resin is used and UV irradiation is performed after the combination to cure the resin, a thermosetting resin or the like may be used.

【0050】第1光学部材620の斜面622もしくは
片面全域には誘電体の多層薄膜が図19の如くコーティ
ング(蒸着)され、誘電体A(625)と誘電体B(6
26)とが交互に積層されている。これは通常マルチコ
ートと呼ばれる蒸着手法であるが、本実施例では、基材
となる第1光学部材620が樹脂である事を考慮してい
る。すなわち、樹脂(本実施例ではPMMAを想定す
る)の耐熱温度(ガラス転移点;TG)が約80゜Cと
ガラスに比べて極端に低いため、蒸着の際には約70゜
C以下で行っている。また、樹脂の熱膨張率が大きいた
め、蒸着物質との応力歪によるクラックの発生を考慮し
て、蒸着物質が選定されている。具体的には、 誘電体A…MgF2(沸化マグネシウム)、屈折率=
1.3 誘電体B…ZrO2(酸化ジルコニウム)、屈折率=
2.2 を0.3〜0.4λ(λは使用波長;約780nm)の
膜厚で交互に積層し、それらの界面でのP偏光またはS
偏光による透過率の差を積み重ねて、所望の偏光透過特
性を得られるようにしている。
A dielectric multi-layer thin film is coated (deposited) on the inclined surface 622 or the entire area of one surface of the first optical member 620 as shown in FIG. 19 to form a dielectric A (625) and a dielectric B (6).
26) are alternately laminated. This is a vapor deposition method usually called multi-coating, but in the present embodiment, it is taken into consideration that the first optical member 620 serving as a base material is resin. That is, since the heat resistant temperature (glass transition point; TG) of the resin (PMMA is assumed in this example) is about 80 ° C., which is extremely low compared to glass, the temperature is set to about 70 ° C. or less during vapor deposition. ing. Further, since the coefficient of thermal expansion of the resin is large, the vapor deposition material is selected in consideration of the occurrence of cracks due to stress strain with the vapor deposition material. Specifically, dielectric A ... MgF2 (magnesium fluoride), refractive index =
1.3 Dielectric B ... ZrO2 (zirconium oxide), refractive index =
2.2 are alternately laminated with a film thickness of 0.3 to 0.4 λ (where λ is a wavelength used; approximately 780 nm), and P polarized light or S at the interface between them is laminated.
By stacking the differences in the transmittance due to the polarized light, a desired polarized light transmission characteristic can be obtained.

【0051】ここで、図18の樹脂640が充填した部
分と第1光学部材620は、上述の多層薄膜(625,
626)を介して、いわゆる偏光ビームスプリッタとし
て機能する事になる。実験の結果、最終的には蒸着薄膜
の層数を誘電体A,B合わせて10〜20層の範囲で最
適値があり、P偏光透過率(P波651の透過率)に対
するS偏光透過率(S波652の透過率)の割合、即ち
消光比が100:1程度の偏光透過特性が得られた。
Here, the portion filled with the resin 640 and the first optical member 620 of FIG. 18 are the above-mentioned multilayer thin film (625,
626) to function as a so-called polarization beam splitter. As a result of the experiment, the optimal number of layers of the vapor-deposited thin film was in the range of 10 to 20 for the dielectrics A and B, and the S-polarized light transmittance with respect to the P-polarized light transmittance (the transmittance of the P wave 651) was finally obtained. A polarized light transmission characteristic having a ratio of (transmittance of S wave 652), that is, an extinction ratio of about 100: 1 was obtained.

【0052】上記に示した蒸着物質の組み合わせは、ほ
んの1例といえるが、温度変化に対する特性変化やクラ
ックの発生も認められず、十分使用可能な偏光分離素子
601が供給できる。但し消光比を確保するためには、
組立後に樹脂640内部に残留応力による複屈折が発生
しない事が前提となる。このため本実施例では製造工程
の最後にアリーリング処理を実施し、樹脂640内部の
在留応力を除去している。アニーリング条件としては、
70°Cで1時間程度で良い。
It can be said that the combination of the vapor deposition materials shown above is only one example, but no change in characteristics due to temperature change or the occurrence of cracks is observed, and a polarization separation element 601 that can be sufficiently used can be provided. However, in order to secure the extinction ratio,
It is premised that birefringence due to residual stress does not occur inside the resin 640 after assembly. Therefore, in this embodiment, an aryling treatment is performed at the end of the manufacturing process to remove the residual stress inside the resin 640. The annealing conditions include
It may be about 1 hour at 70 ° C.

【0053】ところで、このように構成された偏光分離
素子601に入射させる光線の入射角θ(中心値45
度)に依存して、上記の消光比は変化する事に留意しな
ければならない。すなわち入射角θが変わると、誘電体
A,Bの有効膜厚が変化するため、光線の反射透過特性
が変わってしまう。最適の膜厚制御をしても、光磁気信
号検出に必要な消光比(約50:1以上)を確保できる
入射角θは偏光素子601内部での入射角で言うと、約
+/−9度が限界である事が、光学シミュレーション及
び実験の結果確認されている。これは媒質中のNA(開
口数)に換算してNA0.15の収束(または発散光
束)に相当する。
By the way, the incident angle θ (center value 45) of the light beam incident on the polarization separation element 601 having the above-mentioned structure.
It should be noted that the above extinction ratio changes depending on the (degree). That is, when the incident angle θ changes, the effective film thickness of the dielectrics A and B changes, so that the reflection / transmission characteristics of light rays change. The incident angle θ at which the extinction ratio (about 50: 1 or more) necessary for detecting the magneto-optical signal can be secured even with the optimum film thickness control is about +/− 9 in terms of the incident angle inside the polarizing element 601. It has been confirmed as a result of optical simulation and experiment that the degree is limited. This corresponds to the convergence (or divergent light flux) of NA 0.15 in terms of NA (numerical aperture) in the medium.

【0054】付け加えると、本実施例で示した偏光分離
素子601は、製造方法が簡単であるという利点に加え
て、光学部材620の形状精度特に斜面622の面精度
が、従来方式のガラス削り出しによる偏光ビームスプリ
ッタの場合に比べて大幅に緩和されるという特筆すべき
利点がある。この理由は、斜面622の面精度が悪くて
も樹脂640が埋めてくれるからであり、例えば樹脂6
40の屈折率が光学部材620の屈折率に対して0.0
3程度異なっている場合でも、斜面622が20μ程度
の面精度(うねり)以下であれば、光学特性上問題なく
使用できる。これは、従来形式の偏光ビームスプリッタ
を構成する三角プリズムの斜面精度の要求値に対しで、
20倍程度緩和される事を意味する。また、射出成形に
よって部品製作できるため、外形形状も非常に小型のも
のが製作可能であり、光磁気検出用の光ヘッドに適用す
ると非常に小型の検出光学系が実現できる。
In addition, in addition to the advantage that the polarization separation element 601 shown in this embodiment is easy to manufacture, the shape accuracy of the optical member 620, especially the surface accuracy of the slope 622, is the same as the conventional method for cutting glass. There is a remarkable advantage that it is significantly relaxed as compared with the case of the polarization beam splitter. The reason for this is that the resin 640 fills even if the surface accuracy of the slope 622 is poor.
The refractive index of 40 is 0.0 with respect to the refractive index of the optical member 620.
Even if they differ by about 3, the slopes 622 can be used without problems in terms of optical characteristics as long as the slope 622 has a surface accuracy (waviness) of about 20 μ or less. This is the required value of the slope accuracy of the triangular prism that constitutes the conventional type polarization beam splitter,
This means that it will be alleviated about 20 times. Moreover, since parts can be manufactured by injection molding, a very small outer shape can be manufactured, and when applied to an optical head for magneto-optical detection, a very small detection optical system can be realized.

【0055】なお、本実施例では窪んだ斜面622を樹
脂640でモールドしているが、周辺の密封性が良けれ
ば、液体例えばシリコンオイル等を充填しても同等の機
能を発揮し得る。この場合には、樹脂640で留意しな
ければならなかった複屈折の問題を回避し易いという利
点が有る。
In this embodiment, the recessed slope 622 is molded with the resin 640. However, if the peripheral sealing property is good, the same function can be exhibited even if a liquid such as silicon oil is filled. In this case, there is an advantage that it is easy to avoid the problem of birefringence that the resin 640 had to pay attention to.

【0056】(実施例7)図20には実施例7として、
他の形式の偏光分離素子を示す。この実施例では実施例
6で述べた偏光ビームスプリッタの機能を、偏光フィル
ムまたは偏光板で置き換えている。
(Seventh Embodiment) FIG. 20 shows a seventh embodiment.
7 shows another type of polarization splitting element. In this embodiment, the function of the polarization beam splitter described in Embodiment 6 is replaced with a polarizing film or a polarizing plate.

【0057】図20で、光学部材720は光学樹脂で成
形され、窪んだ部分に偏光板740をはめこんで固着し
ている。偏光板はガラス板に微細な銀粒子を混在させ
て、加熱伸張させて偏光機能を持たせたものが、性能す
なわち消光比が優れているが、これに限らず沃素の入っ
たフィルムを伸張して造った偏光フィルム等でも良い。
但し、一般的にこの様な偏光フィルムは耐熱性が悪く、
高温環境下で伸張していたフィルムが残留応力で縮む事
で偏光特性が劣化するという欠点があった。
In FIG. 20, the optical member 720 is formed of an optical resin, and the polarizing plate 740 is fitted and fixed in the depressed portion. The polarizing plate is a glass plate in which fine silver particles are mixed and heated and stretched to have a polarizing function, which has excellent performance, that is, an extinction ratio, but is not limited to this, and a film containing iodine is stretched. A polarizing film made by the above method may be used.
However, such a polarizing film generally has poor heat resistance,
The film, which had been stretched in a high temperature environment, had a drawback that its polarization characteristics were deteriorated due to shrinkage due to residual stress.

【0058】本実施例の利点は、偏光板または偏光フィ
ルムを、それらに較べて遥かに頑丈な光学部材720で
裏打ちしているため、耐熱性の悪い偏光フィルムであっ
ても高温環境下で縮み難くなる事である。ゆえに耐環境
特性のすぐれた偏光分離素子701を得る事ができる。
しかしながら光学部材720と偏光板または偏光フィル
ム740を固着する接着層での微少な剪断ズレがある
と、偏光板または偏光フィルム740が若干縮む恐れが
あり、長期の経時変化が発生する恐れがある。この防止
策として本実施例では、組立工程後にアリーリング処理
を実施し、予め残留応力を緩和させて経時変化を防止し
ている。アニーリング条件としては、70°Cで1時間
程度で良い。
The advantage of this embodiment is that the polarizing plate or the polarizing film is lined with a much stronger optical member 720 than those, so that even a polarizing film having poor heat resistance shrinks in a high temperature environment. It will be difficult. Therefore, it is possible to obtain the polarization separation element 701 having excellent environment resistance characteristics.
However, if there is a slight shear shift in the adhesive layer that fixes the optical member 720 and the polarizing plate or the polarizing film 740, the polarizing plate or the polarizing film 740 may be slightly shrunk, and a long-term aging may occur. As a preventive measure, in this embodiment, an aryling process is performed after the assembly process to relieve the residual stress in advance and prevent the change over time. The annealing conditions may be 70 ° C. for about 1 hour.

【0059】(実施例8)実施例8は、光磁気信号検出
用の光ヘッドに前述の実施例6に示した偏光分離素子を
応用したものであり、以下図21,図22,図23によ
って説明する。
(Embodiment 8) Embodiment 8 is an application of the polarization separation element shown in the above-mentioned Embodiment 6 to an optical head for detecting a magneto-optical signal, and will be described below with reference to FIGS. 21, 22 and 23. explain.

【0060】図21で、光学部材820は実施例6で示
した光学部材620に類似しており、窪んだ斜面は斜面
方向の異なる3種類の斜面828a,828b,828
cから成っている。
In FIG. 21, the optical member 820 is similar to the optical member 620 shown in the sixth embodiment, and the concave slopes are three types of slopes 828a, 828b, 828 having different slope directions.
made of c.

【0061】また、本実施例では実施例6の第2光学部
材630の代わりに、ホログラム素子830を用いてお
り、これらで偏光分離素子801を構成し、機能複合さ
せている。窪んだ斜面828a〜cには光学部材820
の屈折率と同等の約1.5の屈折率を示す樹脂を3箇所
に充填する。図22には組み立てた状態の光ヘッドを示
すが、光学部材820は実施例6で述べた偏光分離機能
を有すると共に、実施例1で述べた復路光束の光路長調
整機能も有していることが特徴的である。
Further, in this embodiment, a hologram element 830 is used instead of the second optical member 630 of the sixth embodiment, and the polarization separation element 801 is constituted by these, and the functions are compounded. The optical member 820 is formed on the recessed slopes 828a to 828c.
A resin having a refractive index of about 1.5, which is equivalent to the refractive index of, is filled in three places. FIG. 22 shows the optical head in the assembled state. The optical member 820 has the polarization separation function described in the sixth embodiment, and also has the optical path length adjusting function for the return light flux described in the first embodiment. Is characteristic.

【0062】図23は光軸方向から見た光ヘッドの平面
図であり、図22に示した各部品を透視して示してい
る。図中矢印829は光学部材820に形成された3箇
所の斜面の方向即ち偏光透過方向を示しており、中央部
の斜面828cは発光素子10の接合面つまり偏波面の
方向に沿っている。一方両側の斜面828a,828b
は斜面828cの方向に対して、略45度回転させた方
向に斜面が向いている。
FIG. 23 is a plan view of the optical head as seen from the direction of the optical axis, showing each of the parts shown in FIG. 22 as seen through. In the figure, arrows 829 indicate the directions of the three inclined surfaces formed on the optical member 820, that is, the polarization transmission direction, and the central inclined surface 828c is along the junction surface of the light emitting element 10, that is, the polarization plane. On the other hand, slopes 828a, 828b on both sides
Is inclined by about 45 degrees with respect to the direction of the slope 828c.

【0063】本実施例では光記録媒体(非図示)として
光磁気ディスクを想定しており、光ヘッドの仕様として
は、光記録媒体で反射される時に生じる復路光束801
r中のカー回転角を変調成分として検出する形式となっ
ている。光記録媒体に入射する光束は直線偏光であり、
本実施例では斜面828cに対してP偏光になってい
る。従って、往路光束(図22の801f)は殆ど損失
無く斜面828cを透過する。また、復路光束801r
(計4本の光束)は2本の光束が一対となり斜面828
a及び828bを透過しようとするが、上記のように斜
面828aと斜面828bとはそれぞれ別方向に略45
度だけ回転しているため、復路光束801rに含まれる
光磁気信号変調成分であるところのカー回転角を、直交
する45度方向に偏光透過した後に差動検出して検出で
きる。
In the present embodiment, a magneto-optical disk is assumed as the optical recording medium (not shown), and the specifications of the optical head are the return light flux 801 generated when reflected by the optical recording medium.
The Kerr rotation angle in r is detected as a modulation component. The light beam incident on the optical recording medium is linearly polarized light,
In this embodiment, P-polarized light is formed on the slope 828c. Therefore, the outward light flux (801f in FIG. 22) passes through the slope 828c with almost no loss. In addition, the return light beam 801r
(A total of four luminous fluxes) Two luminous fluxes form a pair and the slope 828
a and 828b, the slopes 828a and 828b are about 45 degrees in different directions as described above.
Since it is rotated by a degree, the Kerr rotation angle, which is the magneto-optical signal modulation component included in the backward light flux 801r, can be detected by differentially detecting it after polarization transmission in the direction of 45 degrees orthogonal to each other.

【0064】ところで、光学部材820に形成された3
箇所の窪んだ斜面のうち中央部の斜面828cを省略し
ても機能上は問題が無い。但し本実施例では部品製造方
法上の観点から斜面を敢えて形成し、ここに実施例6で
述べたような誘電体の多層薄膜をコーティングしてい
る。その理由は、仮に斜面828cが無く平面であった
とすると、誘電体薄膜を蒸着した場合、往路光束801
fの入射角が0度となって、往路光束801fを透過せ
ずにかなりの部分を反射してしまうのと、逆にこの微小
な部分をコーティングしない為には、微妙かつ精密なマ
スキング工程が必要となってしまうからである。即ち斜
面828cはダミーとして存在していると言える。しか
しながら、この斜面828cによる偏光分離機能即ちフ
ィルター効果を利用して、発行素子10から出射するレ
ーザ光線の消光比を向上させ、光磁気信号の品質を若干
改善するという副次的な効果も存在する。
By the way, 3 formed on the optical member 820
There is no functional problem even if the central slope 828c is omitted among the recessed slopes. However, in this embodiment, the slope is intentionally formed from the viewpoint of the method of manufacturing the component, and the multilayer thin film of the dielectric as described in Embodiment 6 is coated thereon. The reason is that if there is no slope 828c and the surface is flat, then when the dielectric thin film is vapor-deposited, the outgoing light flux 801 is generated.
When the incident angle of f becomes 0 degree, a large amount of light is reflected without transmitting the outward light flux 801f. On the contrary, in order not to coat this minute portion, a delicate and precise masking process is required. Because it will be necessary. That is, it can be said that the slope 828c exists as a dummy. However, there is also a secondary effect that the extinction ratio of the laser beam emitted from the issuing element 10 is improved and the quality of the magneto-optical signal is slightly improved by utilizing the polarization separation function, that is, the filter effect by the sloped surface 828c. .

【0065】(実施例9)実施例9は、光磁気信号検出
用の光ヘッドに前述の実施例7に示した偏光分離素子を
応用したものであり、図24,図25に図示する。
(Embodiment 9) Embodiment 9 is an application of the polarization separating element shown in the above-mentioned Embodiment 7 to an optical head for detecting a magneto-optical signal, and is shown in FIGS. 24 and 25.

【0066】本実施例は上述の実施例8で説明したよう
な窪んだ斜面828a,828bによる偏光分離機能
を、偏光板940a,940bで置き換えたものであ
る。従って図25に示す偏光板940a,940bの偏
光透過方向は、それぞれ実施例8の斜面828a,82
8bの方向に対応している。
In this embodiment, the polarization separating function by the recessed slopes 828a and 828b as described in the above-mentioned Embodiment 8 is replaced with the polarizing plates 940a and 940b. Therefore, the polarization transmission directions of the polarizing plates 940a and 940b shown in FIG. 25 are the slopes 828a and 82 of Example 8, respectively.
It corresponds to the direction of 8b.

【0067】本実施例では、図24に示すように偏光板
940a.940bを光学部材920にはめ込んで固着
した状態で、光学部材920の平面に対して段差Lだけ
偏光板が飛び出している。これは実施例1で述べた段差
Lと同意義であり、復路光束の光路長を調整して焦点誤
差信号の初期オフセットをキャンセルするために設けら
れている。
In this embodiment, as shown in FIG. 24, the polarizing plates 940a. In the state where the optical member 920 is fitted and fixed to the optical member 920, the polarizing plate projects by a step L from the plane of the optical member 920. This has the same meaning as the step L described in the first embodiment, and is provided in order to cancel the initial offset of the focus error signal by adjusting the optical path length of the returning light flux.

【0068】(実施例10)実施例10は今まで説明し
た以外の機能を光学部材1020に付加したものであ
り、図26に示す。
(Embodiment 10) Embodiment 10 is one in which functions other than those described above are added to the optical member 1020, and is shown in FIG.

【0069】光学部材1020の発光素子10側の面に
は、鏡面仕上げされた平面部1021,段差部1022
に加えて、微小な凹凸から成る乱反射面1023が一体
で形成されている。乱反射面1023に存在する微小な
凹凸は、凹凸高さとピッチが数λ〜数10λ(λは使用
波長)の荒らされた面であり、射出成形の金型に部分的
にシボ加工またはサンドブラスト(砂掛け)加工を施
し、その荒れた金型面を成形時に転写して形成される。
一方、平面部1021,段差部1022は、それぞれ光
学系の往路光束1001f,1001rが効率良く透過
する事が必要であり、鏡面であると同時に場合によって
は反射防止コーティングを蒸着して透過率を向上する事
が可能である。
On the surface of the optical member 1020 on the light emitting element 10 side, a mirror-finished flat surface portion 1021 and stepped portion 1022 are formed.
In addition to the above, the irregular reflection surface 1023 formed of minute irregularities is integrally formed. The minute unevenness present on the irregular reflection surface 1023 is a roughened surface having unevenness height and pitch of several λ to several tens of λ (where λ is a wavelength used), and is partially embossed or sandblasted (sand) in the injection molding die. It is formed by subjecting the roughened mold surface to transfer during molding.
On the other hand, the plane portion 1021 and the step portion 1022 are required to efficiently transmit the outward light fluxes 1001f and 1001r of the optical system. It is possible to do

【0070】この種の光ヘッドでは、発光素子10と受
光素子1070が近接しているため、発光素子10から
出射された発散光束のうち、対物レンズ(非図示)の入
射瞳に入射されて利用される中央部の光束以外は、光ヘ
ッド内部で反射されて受光素子1070に戻る恐れがあ
る。これは迷光と呼ばれ、検出信号にDC的なノイズと
して加わり信号品質を悪化させる原因となるため、極力
排除する事が望ましい。本実施例ではこの観点から、光
ヘッド内で発生する不要な迷光を吸収するための方策と
して、上記の乱反射面1023を設けている。この乱反
射面1023は迷光を吸収すると同時に、吸収仕切れな
かった迷光をあらゆる方向に迷光を乱反射させて、受光
素子1070上の各受光パターン(実施例1の173と
同様)に均一にバランス良く入射させ、結果として差動
検出される各種検出信号にノイズが加わらないようにす
る効果がある。
In this type of optical head, since the light emitting element 10 and the light receiving element 1070 are close to each other, the divergent light flux emitted from the light emitting element 10 is incident on the entrance pupil of the objective lens (not shown) for use. Except for the central light flux, there is a possibility that it will be reflected inside the optical head and return to the light receiving element 1070. This is called stray light, which is added to the detection signal as DC noise and deteriorates the signal quality. Therefore, it is desirable to eliminate it as much as possible. From this point of view, in the present embodiment, the irregular reflection surface 1023 is provided as a measure for absorbing unnecessary stray light generated in the optical head. The irregular reflection surface 1023 absorbs stray light, and at the same time, diffuses stray light that has not been completely absorbed and diffuses the stray light in all directions, and makes it uniformly incident on each light receiving pattern on the light receiving element 1070 (similar to 173 of the first embodiment). As a result, there is an effect that noise is not added to various detection signals that are differentially detected.

【0071】なお、乱反射面1023による迷光吸収効
果をより高めるために、この面に黒色塗料等を塗布する
(いわゆる墨塗り)と一層効果的であり、本実施例の主
旨に添ったものである。
In order to enhance the effect of absorbing stray light by the irregular reflection surface 1023, it is more effective to apply a black paint or the like to this surface (so-called black-painting), which is in accordance with the purpose of this embodiment. .

【0072】(実施例11)上記実施例10は迷光を除
去するためのものであるが、発光素子から出射する光束
のうち、不要な周辺部の光束を積極的に活用するのが、
本実施例である。
(Embodiment 11) In Embodiment 10, the stray light is removed, but among the light flux emitted from the light emitting element, unnecessary peripheral light flux is positively utilized.
This is the present embodiment.

【0073】図27において発光素子10から出射した
発散光束は、受光素子1170にエッチング加工で形成
された45度斜面1172で反射される。この光束のう
ち、中央部の光束は往路光束1101fとして光学部材
1120に入射する。本実施例では、この往路光束11
01fの透過する領域1121のみに、限定的に無反射
コーティングを蒸着している。この反射防止コーティン
グは多層蒸着(マルチコート)を行えば、0.5%以下
という極めて低反射率の面が得られる。一方、反射防止
コーティングを施さない非コーティング領域面1122
ではフレネルの式に基づき、約5%の反射率を有する。
In FIG. 27, the divergent light flux emitted from the light emitting element 10 is reflected by the 45-degree inclined surface 1172 formed on the light receiving element 1170 by etching. Of this light flux, the light flux in the central portion is incident on the optical member 1120 as a forward light flux 1101f. In the present embodiment, this forward light flux 11
A non-reflective coating is vapor-deposited only on the area 1121 where 01f is transmitted. If this antireflection coating is subjected to multilayer vapor deposition (multicoating), a surface having an extremely low reflectance of 0.5% or less can be obtained. On the other hand, the non-coated area surface 1122 on which the antireflection coating is not applied
Has a reflectance of about 5% based on the Fresnel equation.

【0074】受光素子1170の上面には、発光素子1
0から若干隔離して、比較的大面積の第2の受光素子1
175が、一体で形成されている。図27で示すよう
に、非コーティング領域1122で反射された周辺光束
1101bは、第2受光素子1175で受光される。周
辺光束1101bは中央部の光束であるところの往路光
束1101fの光量と比例し、発光素子10の発光パワ
ーにも比例する。従って、第2受光素子1175で受光
して光電変換された信号(パワーモニタ信号1176)
をチェックすることで、発光パワー即ち対物レンズ出射
パワーを監視できる。またこのパワーモニタ信号117
6を発光素子10の駆動電流制御回路(非図示)に帰還
させれば、APC(オート・パワー・コントロール)制
御系が構成でき、発光素子10の発光パワーを正確に制
御して、安定的な情報記録再生が可能となる。
On the upper surface of the light receiving element 1170, the light emitting element 1
The second light receiving element 1 having a relatively large area separated from 0
175 is integrally formed. As shown in FIG. 27, the peripheral light flux 1101b reflected by the non-coating area 1122 is received by the second light receiving element 1175. The peripheral light flux 1101b is proportional to the light amount of the outward light flux 1101f, which is the light flux in the central portion, and is also proportional to the light emission power of the light emitting element 10. Therefore, the signal received by the second light receiving element 1175 and photoelectrically converted (power monitor signal 1176)
By checking, it is possible to monitor the light emission power, that is, the objective lens output power. Also, this power monitor signal 117
If 6 is fed back to the drive current control circuit (not shown) of the light emitting element 10, an APC (auto power control) control system can be configured, and the light emitting power of the light emitting element 10 can be accurately controlled to ensure stable operation. Information recording / reproduction becomes possible.

【0075】(実施例12)実施例12は、実施例11
で述べた不要な周辺光束を、より積極的に、第2受光素
子に取り込むための実施例である。
(Embodiment 12) Embodiment 12 corresponds to Embodiment 11
This is an embodiment for more positively taking in the unnecessary peripheral light flux described in 1) into the second light receiving element.

【0076】図28において、往路光束1201fは光
学部材1220の反射防止コーティング領域1221に
入射する。一方周辺部の光束1201bは、光学部材1
220に一体で形成された曲面1223で反射/集光さ
れ、効率良く第2受光素子1275に入射させる事が可
能となる。従って、パワーモニタ信号1276の信号レ
ベルが向上し、より正確なAPC制御が可能となる。
In FIG. 28, the outgoing light flux 1201f is incident on the antireflection coating region 1221 of the optical member 1220. On the other hand, the light flux 1201b in the peripheral portion is the optical member 1
It is reflected / focused by the curved surface 1223 formed integrally with 220, and can be efficiently incident on the second light receiving element 1275. Therefore, the signal level of the power monitor signal 1276 is improved, and more accurate APC control becomes possible.

【0077】なお、図28には1223を曲面で形成し
たが、斜面であっても効果は期待できる。また、曲面1
223の表面反射を使わずに、他の形状を用いて全反射
させる形態でも良い。更に、曲面や斜面を別体部材で作
り、これを光学部材1220に合体させても機能上は同
等であり、本発明の主旨に属する。
Note that although 1223 is formed as a curved surface in FIG. 28, the effect can be expected even if it is an inclined surface. Also, curved surface 1
Instead of using the surface reflection of 223, it is also possible to use another shape to perform total reflection. Further, even if the curved surface and the inclined surface are formed by separate members and are combined with the optical member 1220, the functions are the same, and they belong to the gist of the present invention.

【0078】最後に、以上説明した各実施例はそれぞれ
単独で応用するのみでなく、各実施例の発明内容を適宜
組み合わせて、より一層の機能複合を図る事ができる。
Finally, each of the above-described embodiments can be applied not only individually, but also by combining the contents of the invention of each embodiment as appropriate to further enhance the functional combination.

【0079】[0079]

【発明の効果】以上説明したように本発明によれば、往
路の光学系と復路の光学系のそれぞれに関係する光学部
品を共通化でき、発光素子と受光素子を共通のパッケー
ジに収容できる。そして往路の光路長と復路の光路長を
異なった値に設定して受光素子上に正確にスポットを照
射できるため、特に焦点誤差信号のオフセットの除去に
非常に有効である。また、このオフセットの除去に関す
る調整工程が廃止でき、光学部品と受光素子との位置出
しが容易であるため、組立工程の簡略化が実現できると
同時に経時変化や温特変化の少ない高信頼度の光ヘッド
を提供できる。
As described above, according to the present invention, the optical components related to the forward optical system and the backward optical system can be made common, and the light emitting element and the light receiving element can be housed in a common package. Then, the optical path length of the forward path and the optical path length of the return path can be set to different values to accurately irradiate the spot on the light receiving element, which is very effective especially for removing the offset of the focus error signal. In addition, the adjustment process related to the removal of the offset can be eliminated, and the positioning of the optical component and the light receiving element is easy, so that the assembling process can be simplified and at the same time, there is little change over time or change in temperature, which is highly reliable. An optical head can be provided.

【0080】また、光磁気信号を検出するための偏光分
離素子が、他の光学部品と複合化、一体化でき、経時変
化の少ない安定的な信号検出が可能となる。
Further, the polarization separation element for detecting the magneto-optical signal can be combined and integrated with other optical parts, and stable signal detection with little change over time can be performed.

【0081】更に、発光素子の出射パワーを特別な部品
を付加せずにモニターできる。
Further, the emission power of the light emitting element can be monitored without adding any special component.

【0082】等の数々の効果が得られる。Various effects such as the above can be obtained.

【0083】また全体を通して、一体成形の光学部材や
偏光分離素子の採用、そしてホログラム素子の一体化に
より、大幅な機能複合化、小型化、そして調整工程の簡
略化が実現できるため、光記録再生装置の市場に与える
インパクトは大きい。
In addition, since an integrally formed optical member and a polarization separation element are adopted and a hologram element is integrated, a large number of functions can be combined, the size can be reduced, and the adjustment process can be simplified. The impact on the equipment market is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の光学部材を含む、光ヘッドの側断面
図。
FIG. 1 is a side sectional view of an optical head including an optical member according to a first embodiment.

【図2】実施例1の光ヘッドを含む、光ピックアップの
側断面図。
FIG. 2 is a side sectional view of an optical pickup including the optical head of the first embodiment.

【図3】実施例1の光ヘッドの、発光素子と受光素子を
示す斜視図。
FIG. 3 is a perspective view showing a light emitting element and a light receiving element of the optical head of the first embodiment.

【図4】実施例1の光ヘッドの、発光素子と受光素子を
示す正断面図。
FIG. 4 is a front sectional view showing a light emitting element and a light receiving element of the optical head of the first embodiment.

【図5】実施例1の光ヘッドの、ホログラムを示す平面
図。
FIG. 5 is a plan view showing a hologram of the optical head of the first embodiment.

【図6】実施例1の光ヘッドの、ホログラムの機能を示
す斜視図。
FIG. 6 is a perspective view showing a hologram function of the optical head according to the first embodiment.

【図7】実施例1の光ヘッドの、発光素子と受光素子を
示す平面図。
FIG. 7 is a plan view showing a light emitting element and a light receiving element of the optical head of the first embodiment.

【図8】(a),(b),(c)は実施例1に基づく光
ヘッドの、受光スポットの変化を示す説明図。
8A, 8B, and 8C are explanatory views showing changes in a light receiving spot of the optical head according to the first embodiment.

【図9】実施例1の光ヘッドの、焦点誤差信号を示すグ
ラフ。
FIG. 9 is a graph showing a focus error signal of the optical head of the first embodiment.

【図10】実施例1の光ヘッドの、像面湾曲を示す説明
図。
FIG. 10 is an explanatory diagram showing field curvature of the optical head according to the first embodiment.

【図11】実施例2の光ヘッドを示す側断面図。FIG. 11 is a side sectional view showing an optical head according to a second embodiment.

【図12】実施例3の光学部材を示す側断面図。FIG. 12 is a side sectional view showing an optical member of Example 3.

【図13】実施例4の光学部材を示す側断面図。FIG. 13 is a side sectional view showing an optical member of Example 4.

【図14】実施例5の光ヘッドを示す側断面図。FIG. 14 is a side sectional view showing an optical head of Example 5.

【図15】実施例5の光ヘッドを示す平面図。FIG. 15 is a plan view showing an optical head of Example 5;

【図16】実施例5の光ヘッドにおける光学部材を示す
斜視図。
FIG. 16 is a perspective view showing an optical member in the optical head of Example 5.

【図17】実施例6の偏光分離素子を示す斜視図。FIG. 17 is a perspective view showing a polarization beam splitting element of Example 6.

【図18】実施例6の偏光分離素子を示す断面図。FIG. 18 is a sectional view showing a polarization beam splitting element of Example 6;

【図19】実施例6の偏光分離素子の、多層薄膜を示す
断面図。
FIG. 19 is a sectional view showing a multilayer thin film of the polarization beam splitting element of Example 6;

【図20】実施例7の偏光分離素子を示す斜視図。FIG. 20 is a perspective view showing a polarization beam splitting element of Example 7.

【図21】実施例8の光ヘッドの、偏光分離素子を示す
斜視図。
FIG. 21 is a perspective view showing a polarization beam splitting element of the optical head of Example 8.

【図22】実施例8の光ヘッドを示す側断面図。22 is a side sectional view showing an optical head of Example 8. FIG.

【図23】実施例8の光ヘッドを示す平面図。FIG. 23 is a plan view showing an optical head of Example 8.

【図24】実施例9の光ヘッドを示す側断面図。FIG. 24 is a side sectional view showing an optical head of Example 9.

【図25】実施例9の光ヘッドを示す平面図。FIG. 25 is a plan view showing an optical head of Example 9;

【図26】実施例10の光ヘッドを示す側断面図。FIG. 26 is a side sectional view showing an optical head of Example 10.

【図27】実施例10の光ヘッドを示す側断面図。FIG. 27 is a side sectional view showing an optical head of Example 10.

【図28】実施例10の光ヘッドを示す側断面図。28 is a side sectional view showing the optical head of Example 10. FIG.

【符号の説明】[Explanation of symbols]

1 光ヘッド 2 ケース 10 発光素子 15 仮想発光点 40 ミラー 50 対物レンズ 60 光記録媒体 80 パッケージ 120,220,320,420,520,620,7
20,820,920,1020,1120,1220
光学部材 130,230,1030 ホログラム 530,830,930 ホログラム素子 622,822a,822b,822c 斜面 740,940a,940b 偏光板 170,270,570,870,970,1070,
1170,1270受光素子 1175,1275 第2受光素子 101f,201f,302f,401f,501f,
801f,901f,1001f,1101f,120
1f 往路光束 101r,201r,302r,401r,501r,
801r,901r,1001r 復路光束
1 Optical Head 2 Case 10 Light Emitting Element 15 Virtual Light Emitting Point 40 Mirror 50 Objective Lens 60 Optical Recording Medium 80 Package 120, 220, 320, 420, 520, 620, 7
20,820,920,1020,1120,1220
Optical member 130,230,1030 Hologram 530,830,930 Hologram element 622,822a, 822b, 822c Slope 740,940a, 940b Polarizing plate 170,270,570,870,970,1070,
1170, 1270 light receiving element 1175, 1275 second light receiving element 101f, 201f, 302f, 401f, 501f,
801f, 901f, 1001f, 1101f, 120
1f Forward light flux 101r, 201r, 302r, 401r, 501r,
801r, 901r, 1001r Return light flux

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G11B 11/10 Z 9075−5D (72)発明者 有村 敏男 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI technical display location G11B 11/10 Z 9075-5D (72) Inventor Toshio Arimura 3-3 Yamato, Suwa City, Nagano Prefecture No. 5 within Seiko Epson Corporation

Claims (31)

【特許請求の範囲】[Claims] 【請求項1】 発散性ないし収束性の往路光束及び復路
光束が透過する一体の部材であって、該往路光束の光路
長と該復路光束の光路長とが異なるように構成された事
を特徴とする光学部材。
1. An integral member for transmitting a divergent or convergent outward light flux and a backward light flux, wherein the optical path length of the outward light flux and the optical path length of the backward light flux are different from each other. And optical members.
【請求項2】 前記光学部材が一体で成形され、表面に
段差を有する事を特徴とする請求項1記載の光学部材。
2. The optical member according to claim 1, wherein the optical member is integrally molded and has a step on the surface.
【請求項3】 前記光学部材が少なくとも二体の別体部
品の貼り合わせから成り、該別体部品を貼り合わせた状
態で表面に段差が形成される事を特徴とする請求項1記
載の光学部材。
3. The optical element according to claim 1, wherein the optical member is formed by laminating at least two separate components, and a step is formed on the surface in the state where the separate components are laminated. Element.
【請求項4】 請求項1記載の光学部材を透明樹脂で一
体で射出成形し、表面に段差を形成する事を特徴とする
光学部材の製造方法。
4. A method of manufacturing an optical member, characterized in that the optical member according to claim 1 is integrally injection-molded with a transparent resin to form a step on the surface.
【請求項5】 請求項1記載の光学部材をガラスで一体
にプレス成形し、表面に段差を形成する事を特徴とする
光学部材の製造方法。
5. A method of manufacturing an optical member, comprising press-molding the optical member according to claim 1 integrally with glass to form a step on the surface.
【請求項6】 少なくとも二値の屈折率を局部的に有
し、往路光束と復路光束とがそれぞれ異なる屈折率の領
域を透過し、該往路光束の光路長と該復路光束の光路長
とが異なるよう構成された事を特徴とする光学部材。
6. An optical path length of at least a binary refractive index is locally provided, and a forward light flux and a backward light flux pass through regions having different refractive indexes, and an optical path length of the forward light flux and an optical path length of the backward light flux are An optical member characterized by being configured differently.
【請求項7】 一体化された部材に往路光束と復路光束
が透過し、該往路光束の透過する領域の屈折パワーと、
該復路光束の透過する領域の屈折パワーとが、異なるよ
う構成された事を特徴とする光学部材。
7. The refracting power of a region through which the forward light flux and the backward light flux are transmitted through the integrated member, and the area where the forward light flux is transmitted,
An optical member characterized in that the refracting power of a region through which the backward light flux passes is different.
【請求項8】 表面に局部的に凸または凹の曲面を形成
した事を特徴とする請求項7記載の光学部材。
8. The optical member according to claim 7, wherein a locally convex or concave curved surface is formed on the surface.
【請求項9】 請求項1、請求項6または請求項7記載
の光学部材と、該光学部材に略対向して背後に配置され
た受光素子と、 該受光素子の受光面から若干高くまたは若干低く配置さ
れた発光素子とから構成され、 該発光素子から出射する往路光束と、光記録媒体で反射
されて該受光素子に向かう復路光束とが、共に前記光学
部材を透過するよう構成された事を特徴とする光ヘッ
ド。
9. The optical member according to claim 1, claim 6 or claim 7, a light receiving element disposed behind and substantially facing the optical member, and slightly higher or slightly higher than a light receiving surface of the light receiving element. A light emitting element which is arranged low, and a forward light flux which is emitted from the light emitting element and a backward light flux which is reflected by an optical recording medium and is directed to the light receiving element are configured to pass through the optical member. An optical head characterized by.
【請求項10】 前記復路光束の前記受光素子上でのス
ポット形状の変化を検出して、少なくとも焦点誤差信号
を生成するよう構成された事を特徴とする請求項9記載
の光ヘッド。
10. The optical head according to claim 9, wherein the optical head is configured to detect at least a focus error signal by detecting a change in the spot shape of the returning light flux on the light receiving element.
【請求項11】 前記光学部材は透明樹脂で形成され外
周にフランジを有し、該フランジ部に射出成形用のゲー
トを設置した事を特徴とする請求項9記載の光ヘッド。
11. The optical head according to claim 9, wherein the optical member is made of a transparent resin and has a flange on its outer periphery, and a gate for injection molding is installed on the flange portion.
【請求項12】 前記光学部材は透明樹脂で形成され、
前記光学部材の表面または裏面と、前記受光素子の表面
に、位置合わせ用のアライメントマークを形成または印
刷した事を特徴とする請求項9記載の光ヘッド。
12. The optical member is formed of transparent resin,
The optical head according to claim 9, wherein alignment marks for alignment are formed or printed on the front surface or the back surface of the optical member and the front surface of the light receiving element.
【請求項13】 前記光学部材の表面または裏面に、回
折格子もしくはホログラムを形成した事を特徴とする請
求項9記載の光ヘッド。
13. The optical head according to claim 9, wherein a diffraction grating or a hologram is formed on the front surface or the back surface of the optical member.
【請求項14】 前記ホログラムが、回折溝ピッチ単位
に三角歯状にブレーズ化された、ブレーズ化ホログラム
である事を特徴とする請求項13記載の光ヘッド。
14. The optical head according to claim 13, wherein the hologram is a blazed hologram that is blazed in a triangular tooth shape in units of pitches of diffraction grooves.
【請求項15】 請求項1、請求項6または請求項7記
載の光学部材と、該光学部材に略対向して背後に配置さ
れた受光素子と、該受光素子の受光面から若干高くまた
は若干低く配置された発光素子と、該受光素子及び該発
光素子を保持するパッケージとを備え、 前記光学部材と該パッケージとの協同により、前記受光
素子及び前記発光素子を封止する事を特徴とする光ヘッ
ド。
15. The optical member according to claim 1, claim 6 or claim 7, a light receiving element disposed behind and substantially facing the optical member, and slightly higher or slightly higher than a light receiving surface of the light receiving element. A light emitting element arranged low, and a package for holding the light receiving element and the light emitting element, wherein the light receiving element and the light emitting element are sealed by cooperation of the optical member and the package. Optical head.
【請求項16】 前記光学部材と前記パッケージとが、
互いに接着材を介して固着され、該接着材が前記光学部
材及び前記パッケージの材質に対し、硬化後の硬度が低
い事を特徴とする請求項15記載の光ヘッド。
16. The optical member and the package are
16. The optical head according to claim 15, wherein the optical members are fixed to each other via an adhesive material, and the adhesive material has a lower hardness after curing than the materials of the optical member and the package.
【請求項17】 第1の光学部材と、該第1の光学部材
に貼り合わされる第2の光学部材を有し、該第1または
第2の光学部材に斜面を含む窪みを形成し、該斜面に誘
電体の多層薄膜をコーティングして偏光分離機能を持た
せ、前記窪みを透明樹脂または液体で埋め、前記第1及
び第2の光学部材を貼り合わせて形成された事を特徴と
する偏光分離素子。
17. A first optical member and a second optical member bonded to the first optical member, wherein the first or second optical member is formed with a depression including an inclined surface, and Polarization formed by coating a multilayered thin film of a dielectric on a slope to provide a polarization separation function, filling the recess with a transparent resin or liquid, and bonding the first and second optical members together Separation element.
【請求項18】 前記第1の光学部材と、前記第2の光
学部材と、前記窪みを埋める透明樹脂または液体の各々
の屈折率が、概ね同一である事を特徴とする請求項17
記載の偏光分離素子。
18. The refractive index of each of the first optical member, the second optical member, and the transparent resin or liquid filling the recess is substantially the same.
The polarized light separating element described.
【請求項19】 前記斜面に入射する光束を、媒質中換
算のNA(開口数)で0.15以下の収束光束または発
散光束とした事を特徴とする請求項17記載の偏光分離
素子。
19. The polarization beam splitting element according to claim 17, wherein the light flux incident on the slope is a convergent light flux or a divergent light flux having an NA (numerical aperture) equivalent to 0.15 or less in the medium.
【請求項20】 前記斜面及び前記窪みは、一体の光学
部材内に複数箇所形成され、複数の前記斜面に共通の誘
電体の多層薄膜をコーティングした事を特徴とする請求
項17記載の偏光分離素子。
20. The polarization splitting device according to claim 17, wherein the sloped surface and the recess are formed at a plurality of positions in an integrated optical member, and the plurality of sloped surfaces are coated with a common dielectric multilayer thin film. element.
【請求項21】 請求項17記載の前記斜面に誘電体の
多層薄膜をコーティングして偏光分離機能を持たせ、前
記窪みを透明樹脂で埋め、前記第1及び第2の光学部材
を貼り合わせた後に、アニーリング処理を施す事を特徴
とする偏光分離素子の製造方法。
21. The inclined surface according to claim 17, which is coated with a multilayered thin film of a dielectric material so as to have a polarization separation function, the recess is filled with a transparent resin, and the first and second optical members are bonded together. A method for manufacturing a polarization beam splitting element, characterized by performing an annealing treatment later.
【請求項22】 光学部材の表面または内部に、偏光板
または偏光フィルムを固着または保持して形成された事
を特徴とする偏光分離素子。
22. A polarization separation element formed by fixing or holding a polarizing plate or a polarizing film on the surface or inside of an optical member.
【請求項23】 請求項22記載の前記光学部材の表面
または内部に、前記偏光板または前記偏光フィルムを固
着または保持した後に、アニーリング処理を施す事を特
徴とする偏光分離素子の製造方法。
23. A method of manufacturing a polarization beam splitting element, which comprises performing an annealing treatment after fixing or holding the polarizing plate or the polarizing film on the surface or inside of the optical member according to claim 22.
【請求項24】 請求項17または請求項22記載の偏
光分離素子を用い、前記偏光分離素子を透過した復路光
束を受光素子で受光して、光磁気信号を検出するよう構
成した事を特徴とする光ヘッド。
24. The polarization separating element according to claim 17 or 22, wherein the returning light flux transmitted through the polarization separating element is received by a light receiving element to detect a magneto-optical signal. Optical head to do.
【請求項25】 請求項17記載の偏光分離素子を用
い、往路光束と復路光束をそれぞれ偏光分離機能を有す
る第1及び第2の斜面に透過させ、前記偏光分離素子の
第2の斜面を透過した復路光束を受光素子で受光して、
光磁気信号を検出するよう構成した事を特徴とする光ヘ
ッド。
25. The polarization beam splitting element according to claim 17, wherein the forward beam and the backward beam are transmitted to the first and second slopes having a polarization separating function, respectively, and are transmitted through the second slope of the polarization beam splitter. The received light flux is received by the light receiving element,
An optical head characterized by being configured to detect a magneto-optical signal.
【請求項26】 前記往路光束の偏光面を前記第1の斜
面の偏光透過方向と一致させ、前記復路光束の偏光面に
対し前記第2の斜面の偏光分離方向を略45度回転して
設定した事を特徴とする請求項25記載の光ヘッド。
26. The polarization plane of the outgoing light flux is set to coincide with the polarization transmission direction of the first inclined surface, and the polarization separation direction of the second oblique surface is rotated by about 45 degrees with respect to the polarization plane of the return optical flux. 26. The optical head according to claim 25, wherein:
【請求項27】 鏡面仕上げされた領域と、微細な凸凹
を有する乱反射領域とに分離された光学部材を用い、該
鏡面仕上げ領域に往路光束及び復路光束を透過させるよ
う構成した事を特徴とする光ヘッド。
27. An optical member, which is divided into a mirror-finished region and a diffused reflection region having fine irregularities, is used, and the outward light flux and the backward light flux are transmitted to the mirror-finished region. Optical head.
【請求項28】 反射防止コーティングを蒸着した領域
と、反射防止コーティングを蒸着しない非コーティング
領域とに分離された光学部材を用い、該反射防止コーテ
ィング領域に発光素子から出射する発散光束の中央部を
透過させ、該非コーティング領域で該発散光束の一部を
反射し、該反射光を受光する発光パワー検出用の第2の
受光素子を備えた事を特徴とする光ヘッド。
28. An optical member, which is divided into a region having an antireflection coating deposited thereon and a non-coating region having no antireflection coating deposited thereon, is provided with a central portion of a divergent light beam emitted from a light emitting device in the antireflection coating region. An optical head comprising: a second light receiving element for light emission power detection which transmits the light, reflects a part of the divergent light flux in the non-coating area, and receives the reflected light.
【請求項29】 前記発光パワー検出用の第2の受光素
子と、光記録媒体の反射光である復路光束を受光する第
1の受光素子とを有し、該第1及び第2の受光素子が一
体の基板上に形成された事を特徴とする請求項28記載
の光ヘッド。
29. A second light-receiving element for detecting the emission power, and a first light-receiving element for receiving a return light beam which is a reflected light of an optical recording medium, and the first and second light-receiving elements. 29. The optical head according to claim 28, wherein the optical head is formed on an integrated substrate.
【請求項30】 往路光束及び復路光束が透過しない領
域に反射面を形成した光学部材を用い、該反射面で該往
路光束の一部を反射し、該反射光を受光する発光パワー
検出用の第2の受光素子を備えた事を特徴とする光ヘッ
ド。
30. A light-emission power detecting device, comprising: an optical member having a reflecting surface formed in a region where a forward light flux and a backward light flux are not transmitted, wherein the reflecting surface reflects a part of the forward light flux and receives the reflected light. An optical head comprising a second light receiving element.
【請求項31】 前記反射面は斜面または曲面であり、
該斜面または該曲面の表面反射光束または全反射光束
を、前記第2の受光素子で受光するよう構成された事を
特徴とする請求項30記載の光ヘッド。
31. The reflection surface is an inclined surface or a curved surface,
31. The optical head according to claim 30, wherein the surface reflection light flux or the total reflection light flux of the inclined surface or the curved surface is received by the second light receiving element.
JP06434893A 1992-07-14 1993-03-23 Light head Expired - Fee Related JP3261794B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP06434893A JP3261794B2 (en) 1993-03-23 1993-03-23 Light head
PCT/JP1993/000964 WO1994001794A1 (en) 1992-07-14 1993-07-13 Polarizing element and optical element, and optical head
EP93914992A EP0608432B1 (en) 1992-07-14 1993-07-13 Polarizing element and optical element, and optical head
DE69329945T DE69329945T2 (en) 1992-07-14 1993-07-13 POLARIZING ELEMENT, OPTICAL ELEMENT AND OPTICAL HEAD
EP99203376A EP0981063A3 (en) 1992-07-14 1993-07-13 Polarizer, optical element, and optical head
US08/637,033 US5825022A (en) 1992-07-14 1996-04-30 Polarizer, including thin polarizing film, optical element with polarizer, optical head with polarizer and methods and apparatus for forming same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06434893A JP3261794B2 (en) 1993-03-23 1993-03-23 Light head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001013358A Division JP3551925B2 (en) 2001-01-22 2001-01-22 Polarization separation element and optical head

Publications (2)

Publication Number Publication Date
JPH06274926A true JPH06274926A (en) 1994-09-30
JP3261794B2 JP3261794B2 (en) 2002-03-04

Family

ID=13255654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06434893A Expired - Fee Related JP3261794B2 (en) 1992-07-14 1993-03-23 Light head

Country Status (1)

Country Link
JP (1) JP3261794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043256A (en) * 2001-07-31 2003-02-13 Ricoh Co Ltd Polarization separation element and laser unit light source
JP2017053933A (en) * 2015-09-08 2017-03-16 日本電産サンキョー株式会社 Lens unit
JP2020154106A (en) * 2019-03-19 2020-09-24 コニカミノルタ株式会社 Display member and display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043256A (en) * 2001-07-31 2003-02-13 Ricoh Co Ltd Polarization separation element and laser unit light source
JP2017053933A (en) * 2015-09-08 2017-03-16 日本電産サンキョー株式会社 Lens unit
JP2020154106A (en) * 2019-03-19 2020-09-24 コニカミノルタ株式会社 Display member and display device

Also Published As

Publication number Publication date
JP3261794B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US7079472B2 (en) Beamshaper for optical head
US7457206B2 (en) Optical head, optical information storage apparatus, and their fabrication method
US5825022A (en) Polarizer, including thin polarizing film, optical element with polarizer, optical head with polarizer and methods and apparatus for forming same
JPH07311970A (en) Optical head and optical memory
US6914868B1 (en) Low profile optical head
US5774443A (en) Optical head device capable of reducing the light power loss
JP2002243912A (en) Lens, doublet, manufacturing method, optical pickup device, and optical disk device
JPH06274926A (en) Optical member, polarization separating element, optical head and manufacture thereof
US7149040B2 (en) Scanning device including an objective lens formed of two materials
EP1459306B1 (en) Field curvature reduction for optical system
AU1947501A (en) Low profile optical head
US20050073747A1 (en) Diffractive optical element, manufacturing method thereof, optical pickup apparatus and optical disk drive apparatus
JPH1145455A (en) Optical element for optical pickup, manufacture of the same and optical pickup
JP2001249228A (en) Polarized light separating element and optical head
JPH0243503A (en) Composite optical element
JP2004511060A (en) Optical head for scanning a record carrier
EP0981063A2 (en) Polarizer, optical element, and optical head
JP3457982B2 (en) Optical semiconductor device and method of manufacturing the same
JP3837893B2 (en) Optical head device
US8085645B2 (en) Optical pickup device and optical disk apparatus
JPS59187309A (en) Light converging device
JPH08271712A (en) Optical element and optical integrated circuit
JPH1139703A (en) Hologram laser unit and dual-focus optical pickup device
JPH06309688A (en) Optical integrated circuit, optical pickup and optical information processing device
JPH06162553A (en) Optical information read-out device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees