JPH06273814A - Optical wavelength conversion element and short wavelength laser beam source formed by using the same - Google Patents

Optical wavelength conversion element and short wavelength laser beam source formed by using the same

Info

Publication number
JPH06273814A
JPH06273814A JP4891593A JP4891593A JPH06273814A JP H06273814 A JPH06273814 A JP H06273814A JP 4891593 A JP4891593 A JP 4891593A JP 4891593 A JP4891593 A JP 4891593A JP H06273814 A JPH06273814 A JP H06273814A
Authority
JP
Japan
Prior art keywords
optical
conversion element
optical waveguide
wavelength conversion
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4891593A
Other languages
Japanese (ja)
Other versions
JP3049986B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Kiminori Mizuuchi
公典 水内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5048915A priority Critical patent/JP3049986B2/en
Publication of JPH06273814A publication Critical patent/JPH06273814A/en
Application granted granted Critical
Publication of JP3049986B2 publication Critical patent/JP3049986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To stabilize the higher harmonic waves emitted from the optical wavelength conversion element for which a nonlinear optical effect is used and is concerned with the element and to efficiently modulate the optical wavelength conversion element with a low voltage. CONSTITUTION:Electrodes 15 are formed by depositing Al by evaporation on an optical waveguide 2 of the optical wavelength conversion element formed of polarity inversion layers 3 and the optical waveguide 2 on an LiTaO3 substrate 1. The refractive index of the optical wavelength conversion element is controlled by impressing a voltage to these electrodes 15. As a result, a stable operation is executed by changing the impressed voltage on the optical wavelength conversion element even if the wavelength of a semiconductor changes with a change in environmental temp. The modulation of a higher harmonic wave p2 output by modulating the voltage is possible as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒ−レント光を利用
する光情報処理分野、あるいは光応用計測制御分野に使
用する光波長変換素子およびそれを用いた短波長レーザ
光源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion element used in the field of optical information processing utilizing coherent light or in the field of optical application measurement control, and a short wavelength laser light source using the same.

【0002】[0002]

【従来の技術】図13に従来の光波長変換素子の構成図
を示す。以下820nmの波長の基本波に対する高調波発生
(波長410nm)について図を用いて詳しく述べる。(E.
J.Lim,M.M.Fejer, R.L.Byer and W.J.Kozlovsky, "Blue
light generation by frequency doubling in period
ically-poled lithium niobate channel waveguide", E
lectronics Letters, Vol.27, P731-732,1989年、参
照)。
2. Description of the Related Art FIG. 13 is a block diagram of a conventional light wavelength conversion element. The harmonic generation (wavelength 410 nm) with respect to the fundamental wave having a wavelength of 820 nm will be described below in detail with reference to the drawings. (E.
J. Lim, MMFejer, RLByer and WJKozlovsky, "Blue
light generation by frequency doubling in period
ically-poled lithium niobate channel waveguide ", E
lectronics Letters, Vol.27, P731-732, 1989).

【0003】図13に示されるようにLiNbO3基板1に光
導波路2が形成され、さらに光導波路2には周期的に分
極の反転した層3(分極反転層)が形成されている。基
本波と発生する高調波の伝搬定数の不整合を分極反転層
3と非分極反転層5の周期構造で補償することにより高
効率に高調波を出すことができる。まず、図14を用い
て高調波増幅の原理を説明する。分極反転していない非
分極反転素子31では分極反転層は形成されておらずに
分極反転方向は一方向となっている。この非分極反転素
子31では光導波路の進行方向に対して高調波出力31
aは増減を繰り返しているだけである。これに対して周
期的に分極が反転している分極反転波長変換素子(1次
周期)32では出力32aは図14に示されるように光
導波路の長さLの2乗に比例して高調波出力は増大す
る。ただし分極反転において基本波P1に対して高調波
P2の出力が得られるのは擬似位相整合するときだけで
ある。この擬似位相整合が成立するのは分極反転層の周
期Λ1がλ/(2(N2ω−Nω))に一致するときに
限られる。ここでNωは基本波(波長λ)の実効屈折
率、N2ωは高調波(波長λ/2)の実効屈折率であ
る。このような従来の光波長変換素子は分極反転構造を
基本構成要素としていた。
As shown in FIG. 13, an optical waveguide 2 is formed on a LiNbO 3 substrate 1, and a layer 3 (polarization inversion layer) whose polarization is periodically inverted is formed on the optical waveguide 2. By compensating the mismatch between the propagation constants of the fundamental wave and the generated harmonic by the periodic structure of the polarization inversion layer 3 and the non-polarization inversion layer 5, the harmonic can be generated with high efficiency. First, the principle of harmonic amplification will be described with reference to FIG. In the non-polarization inversion element 31 which is not polarization-inverted, the polarization inversion layer is not formed and the polarization inversion direction is one direction. In this non-polarization inverting element 31, a harmonic output 31 is generated in the traveling direction of the optical waveguide.
a simply repeats increasing and decreasing. On the other hand, in the polarization inversion wavelength conversion element (first-order period) 32 in which the polarization is periodically inverted, the output 32a is a harmonic wave in proportion to the square of the length L of the optical waveguide as shown in FIG. The output increases. However, in the polarization inversion, the output of the harmonic wave P2 is obtained with respect to the fundamental wave P1 only when the quasi phase matching is performed. This quasi-phase matching is established only when the period Λ1 of the polarization inversion layer coincides with λ / (2 (N2ω-Nω)). Here, Nω is the effective refractive index of the fundamental wave (wavelength λ), and N2ω is the effective refractive index of the harmonic wave (wavelength λ / 2). Such a conventional light wavelength conversion element has a polarization inversion structure as a basic constituent element.

【0004】この素子の製造方法について図15を用い
て説明する。同図(a)で非線形光学結晶であるLiN
bO3基板1にTi31のパターンをリフトオフと蒸着
により幅数μmの周期で形成していた。次に同図(b)
で1100℃程度の温度で熱処理を行いLiNbO3基板1と
分極が反対向きに反転した分極反転層3を形成した。次
に同図(c)で安息香酸(200℃)中で20分熱処理
を行った後350℃で3時間アニールを行い光導波路2
を形成する。上記安息香酸処理により作製される光波長
変換素子は波長820nmの基本波P1に対して、光導波路
の長さを1mm、基本波P1のパワーを14.7mWにした
とき高調波P2のパワー940nWが得られていた。
A method of manufacturing this element will be described with reference to FIG. In the same figure (a), LiN which is a nonlinear optical crystal
A Ti31 pattern was formed on the bO 3 substrate 1 by lift-off and vapor deposition at a cycle of several μm in width. Next, the same figure (b)
Then, heat treatment was performed at a temperature of about 1100 ° C. to form a polarization inversion layer 3 in which the polarization was inverted in the opposite direction to the LiNbO 3 substrate 1. Next, as shown in FIG. 3C, heat treatment is performed in benzoic acid (200 ° C.) for 20 minutes, and then annealing is performed at 350 ° C. for 3 hours to perform optical waveguide 2
To form. The optical wavelength conversion element produced by the above benzoic acid treatment obtains a power of 940 nW of the harmonic wave P2 when the length of the optical waveguide is 1 mm and the power of the fundamental wave P1 is 14.7 mW with respect to the fundamental wave P1 of the wavelength 820 nm. It was being done.

【0005】[0005]

【発明が解決しようとする課題】上記のような分極反転
層を基本とした光波長変換素子では素子長5mmのとき
基本波のレーザの波長変動に対する許容度が狭く半値幅
で0.1nmしかない。そのため光波長変換素子と半導
体レーザと組み合わせた場合、半導体レーザが温度変化
のため波長変動を生じ高調波がでなくなるか、または大
きく高調波の出力が変動するといった問題があった。こ
れについて詳しく説明する。図16に温度変化した場合
の波長に対する高調波出力の関係を示す。図16に示す
ように半導体レーザは波長820nmで高調波出力が最大で
あるが、レーザの波長が0.05nmずれただけで高調波出
力は半分になってしまう。半導体レーザの波長変化に対
する許容度はこのように小さいのである。具体的に半導
体レーザが20℃から21℃に1℃温度変化すると、波
長は820nmから820.2nm変化するため、高調波出力は
ゼロになる。
In the optical wavelength conversion element based on the polarization inversion layer as described above, when the element length is 5 mm, the tolerance for the wavelength variation of the fundamental wave is narrow and the half width is only 0.1 nm. . Therefore, when the optical wavelength conversion element and the semiconductor laser are combined, there is a problem that the semiconductor laser causes a wavelength change due to a temperature change and the harmonics disappear or the harmonic output largely fluctuates. This will be described in detail. FIG. 16 shows the relationship between the harmonic output and the wavelength when the temperature changes. As shown in FIG. 16, the semiconductor laser has the maximum harmonic output at the wavelength of 820 nm, but the harmonic output is halved only when the wavelength of the laser shifts by 0.05 nm. The tolerance for the wavelength change of the semiconductor laser is thus small. Specifically, when the semiconductor laser temperature changes from 20 ° C. to 21 ° C. by 1 ° C., the wavelength changes from 820 nm to 820.2 nm, so that the harmonic output becomes zero.

【0006】そこで本発明は、環境温度に左右されな
い、すなわち環境温度が変わっても安定した高調波の出
力が得られる光波長変換素子、およびそれを用いた短波
長レーザ光源を提供することを目的とする。
Therefore, the present invention has an object to provide an optical wavelength conversion element which is not affected by the ambient temperature, that is, which can obtain a stable harmonic wave output even when the ambient temperature changes, and a short wavelength laser light source using the same. And

【0007】[0007]

【課題を解決するための手段】本発明は、上記問題点を
解決するため分極反転構造を基本とした光波長変換素子
に新たな工夫を加えることにより半導体レーザの温度変
化に対して高調波を安定に出力する光波長変換素子を提
供するものである。つまり、本発明は非線形光学結晶中
に周期状分極反転層および光導波路を有し、なおかつ光
導波路上に電極が形成されていることからなるという手
段を有するものである。
In order to solve the above problems, the present invention provides a wavelength conversion element based on a domain-inverted structure with a new device so that a harmonic wave is generated with respect to a temperature change of a semiconductor laser. An optical wavelength conversion element that outputs stably is provided. That is, the present invention has a means that the nonlinear polarization crystal has a periodically poled layer and an optical waveguide, and that an electrode is formed on the optical waveguide.

【0008】また、本発明の短波長レーザ光源は安定な
出力を得るために非線形光学結晶中に周期状分極反転層
および光導波路を有する光波長変換素子と半導体レーザ
を有し、なおかつ前記光波長変換素子が電圧により制御
されているという手段を有するものである。
Further, the short wavelength laser light source of the present invention has an optical wavelength conversion element having a periodic domain inversion layer and an optical waveguide in a nonlinear optical crystal and a semiconductor laser in order to obtain a stable output, It has a means that the conversion element is controlled by voltage.

【0009】[0009]

【作用】本発明の光波長変換素子を電極を用いて電圧制
御することにより、半導体レーザの波長が変化しても電
圧を変化させることで常に最高の高調波出力が得られ
る。これを詳しく説明する。環境温度が変化すると半導
体レーザの波長が変化してしまい、光波長変換素子の擬
似位相整合条件が合わなくなり高調波の出力が得られな
くなる。前述したように基本波と高調波が位相整合する
条件はΛ1=λ/(2(N2ω−Nω))である。ここ
で光波長変換素子の周期Λ1は光波長変換素子を作製し
た段階で規定されてしまうから、環境温度が変化しても
変わらない。ところが環境温度が変化すると半導体レー
ザの発振波長λが変化する。すると図16で示したよう
に半導体レーザに対する許容度が小さいために高調波の
出力が変動することとなる。ここで擬似位相整合条件を
合わすために、半導体レーザの波長λが変化しても、そ
れに応じて(N2ω−Nω)の値を変化させ、結果的に
Λ1=λ/(2(N2ω−Nω))の条件式を満たすよ
うにする。
By controlling the voltage of the optical wavelength conversion element of the present invention using the electrodes, the highest harmonic output can always be obtained by changing the voltage even if the wavelength of the semiconductor laser changes. This will be described in detail. When the environmental temperature changes, the wavelength of the semiconductor laser changes, and the quasi-phase matching condition of the optical wavelength conversion element does not match, and it becomes impossible to obtain harmonic output. As described above, the condition that the fundamental wave and the harmonic wave are phase-matched is Λ1 = λ / (2 (N2ω-Nω)). Here, since the period Λ1 of the light wavelength conversion element is defined at the stage of manufacturing the light wavelength conversion element, it does not change even if the environmental temperature changes. However, when the environmental temperature changes, the oscillation wavelength λ of the semiconductor laser changes. Then, as shown in FIG. 16, since the tolerance for the semiconductor laser is small, the output of the harmonic wave fluctuates. Here, in order to meet the quasi-phase matching condition, even if the wavelength λ of the semiconductor laser changes, the value of (N2ω-Nω) is changed accordingly, resulting in Λ1 = λ / (2 (N2ω-Nω) ) Is satisfied.

【0010】(N2ω−Nω)の値は図17のように光
波長変換素子の光導波路に電界つまり電圧を印加するこ
とで変化させることができる。このことを詳しく説明す
る。LiNbO3は非線形光学効果だけでなく電気光学効果も
大きい。これは電界Eを加えると屈折率変化ΔnがN3
rE/2に比例して生じるものである。ここでNは基板
の屈折率、rは電気光学定数である。電気光学定数rは
波長依存性を持っており、短波長側で大きくなる。その
ため(N2ω−Nω)の値は変化することとなる。これ
により光波長変換素子の電圧を変化させ光導波路の屈折
率を変え、新しい擬似位相整合波長に合わせることがで
きる。これにより高調波が安定に保たれる。また、最初
から擬似的に位相整合する波長からずれていたとしても
電圧を印加することで擬似位相整合条件にすることがで
き高調波を高効率に取り出すことができる。また、本発
明の短波長レーザ光源によれば、同様な作用により高調
波の出力安定度を大幅に向上できる。
The value of (N2ω-Nω) can be changed by applying an electric field, that is, a voltage to the optical waveguide of the optical wavelength conversion element as shown in FIG. This will be described in detail. LiNbO 3 has a large electro-optical effect as well as a non-linear optical effect. This is because the refractive index change Δn is N 3 when an electric field E is applied.
It occurs in proportion to rE / 2. Here, N is the refractive index of the substrate, and r is the electro-optic constant. The electro-optic constant r has wavelength dependence and increases on the short wavelength side. Therefore, the value of (N2ω-Nω) changes. As a result, the voltage of the optical wavelength conversion element can be changed to change the refractive index of the optical waveguide, and the wavelength can be adjusted to a new quasi phase matching wavelength. This keeps the harmonics stable. Further, even if the wavelength deviates from the wavelength at which the phase is pseudo-matched from the beginning, the voltage can be applied so that the pseudo-phase matching condition can be established and the harmonics can be extracted with high efficiency. Further, according to the short wavelength laser light source of the present invention, the output stability of higher harmonics can be significantly improved by the same action.

【0011】また、上記のような構成により電圧印加に
対して効率的に屈折率が変化し変調することが可能とな
る。初期状態で位相整合がとれているとする。これに電
圧を印加することにより屈折率変化が生じる。これによ
り(N2ωーNω)は大きく変化し、位相整合条件から
ずれる。よって電圧変化により高調波出力のON、OF
Fが得られるのである。
Further, with the above-mentioned structure, the refractive index can be efficiently changed and modulated in response to the voltage application. It is assumed that the phase is matched in the initial state. When a voltage is applied to this, a change in the refractive index occurs. As a result, (N2ω-Nω) changes greatly and deviates from the phase matching condition. Therefore, harmonic output is turned on and off due to voltage change.
F is obtained.

【0012】[0012]

【実施例】実施例の一つとして本発明の光波長変換素子
の構成を図を用いて説明する。まず、本発明による光波
長変換素子の第1の実施例の構造図を図1に示す。この
実施例では分極反転型の光波長変換素子としてLiTaO3
板1中にプロトン交換を用いて作製した光導波路2を用
いたものである。図1で1は−Z板(Z軸と垂直に切り
出された基板の−側)のLiTaO3基板、2は形成された光
導波路、3は分極反転層、10は基本波P1の入射部、
12は高調波P2の出射部、15a,15b,15cは
光導波路上に形成されたAlの電極である。光導波路2
に入った基本波P1は位相整合長Lの長さを持った分極
反転層で高調波P2に変換され、次の同じくLの長さを
持った非分極反転層で高調波パワーは増す事になる。こ
のようにして光導波路2内でパワーを増した高調波P2
は出射部12より放射される。擬似位相整合により高調
波が発生する波長(擬似位相整合波長)は非線形光学結
晶の屈折率と分極反転層の周期により決まる。LiTaO3
非線形光学効果だけでなく電気光学効果も大きく電界に
より屈折率を変えることができる。つまり光導波路に印
加する電圧を変化させることで屈折率が変化し変調する
ことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As one of the embodiments, the structure of the optical wavelength conversion device of the present invention will be described with reference to the drawings. First, FIG. 1 shows a structural diagram of a first embodiment of an optical wavelength conversion device according to the present invention. In this embodiment, an optical waveguide 2 manufactured by using proton exchange in a LiTaO 3 substrate 1 is used as a polarization inversion type optical wavelength conversion element. In FIG. 1, 1 is a -Z plate (-side of the substrate cut out perpendicular to the Z axis), a LiTaO 3 substrate, 2 is an optical waveguide formed, 3 is a polarization inversion layer, 10 is an incident portion of a fundamental wave P1,
Reference numeral 12 is an output portion of the harmonic wave P2, and 15a, 15b, 15c are Al electrodes formed on the optical waveguide. Optical waveguide 2
The entered fundamental wave P1 is converted into a harmonic wave P2 in the polarization inversion layer having the phase matching length L, and the harmonic power is increased in the next non-polarization inversion layer having the same L length. Become. In this way, the harmonic wave P2 whose power is increased in the optical waveguide 2
Is radiated from the emission unit 12. The wavelength at which harmonics are generated by quasi-phase matching (quasi-phase matching wavelength) is determined by the refractive index of the nonlinear optical crystal and the period of the polarization inversion layer. LiTaO 3 has a large non-linear optical effect as well as an electro-optical effect, and its refractive index can be changed by an electric field. That is, the refractive index can be changed and modulated by changing the voltage applied to the optical waveguide.

【0013】図2に光導波路に垂直な面で切った断面図
を示す。光導波路上に+電圧を印加し光導波路の横をグ
ランドに落としておくと図のように電気力線が走り電界
がかかる。これにより屈折率が変化する。
FIG. 2 shows a sectional view taken along a plane perpendicular to the optical waveguide. When + voltage is applied to the optical waveguide and the side of the optical waveguide is dropped to the ground, the lines of electric force run and an electric field is applied as shown in the figure. This changes the refractive index.

【0014】図3に光導波路に平行な方向に切った断面
図(a)およびその拡大図(b)を示す。図3のように
この光導波路2の基本波P1の強度が1/e2になる点D1
の表面からの厚みS1は2μmであり分極反転層3の厚
み1.6μmに比べ大きい。また、高調波P2の強度が
1/e2になる点D2の表面からの厚みより分極反転層の厚
みdは大きい。このような構成を採ったのは電圧印加に
対する屈折率変化を有効に生じさせるためである。つま
り光導波路に電界をかけることにより分極反転層3は屈
折率が低下し、その反対に非分極反転層4は屈折率が増
加する。そのため平均屈折率は変化しないことになる。
しかしながら、光導波路を伝搬する基本波の一部が分極
反転していないためその部分は屈折率が変化し、全体と
して位相整合条件からずれるため、変調された電圧を印
加することで高調波の変調できることになるからであ
る。
FIG. 3 shows a sectional view (a) taken along a direction parallel to the optical waveguide and an enlarged view (b) thereof. As shown in FIG. 3, the point D1 at which the intensity of the fundamental wave P1 of the optical waveguide 2 becomes 1 / e 2
The thickness S1 from the surface is 2 μm, which is larger than the thickness 1.6 μm of the domain inversion layer 3. In addition, the intensity of the harmonic P2
The thickness d of the domain-inverted layer is larger than the thickness from the surface of the point D2 that becomes 1 / e 2 . The reason for adopting such a configuration is to effectively cause a change in the refractive index with respect to the voltage application. That is, by applying an electric field to the optical waveguide, the refractive index of the domain inversion layer 3 decreases, and conversely, the refractive index of the non-domain inversion layer 4 increases. Therefore, the average refractive index does not change.
However, since a part of the fundamental wave propagating in the optical waveguide is not polarization-inverted, the refractive index changes in that part, and the phase shift condition as a whole deviates from the phase matching condition. Because you can do it.

【0015】次にこの光波長変換素子の製造方法につい
て図を使って説明する。図4(a)でLiTaO3基板1aに
通常のフォトプロセスとドライエッチングを用いてTa
6aを周期状にパターニングする。次に同図(b)でT
a6aによるパターンが形成されたLiTaO3基板1aにピ
ロ燐酸中で260℃、30分間プロトン交換を行いスリット
直下に厚み0.8μmのプロトン交換層を形成した後、550
℃の温度で1分間熱処理する。これにより分極反転層3
が周期的に形成される。次に同図(c)でプロトン交換
用保護マスクとしてTaを30nmストライプ状にパターニ
ングした後、260℃、16分間プロトン交換を行った。そ
の後380℃、10分間アニールを行い光導波路2が形成
される。さらに同図(d)でSiO214を保護膜として形
成した後、電極15となるTi膜を形成する。Tiの厚み
は200nmである。次にフォトリソとドライエッチングを
用いて図1に見られるようなTiのパターンを形成す
る。これが電極15となる。この電極15の周期と分極
反転層の周期は一致している。最後に研磨により入出射
面を形成する。光導波路2は幅4μm、長さは1cmであ
る。分極反転の周期は3.8μm、分極反転層の厚みは
1.6μmである。
Next, a method of manufacturing this optical wavelength conversion element will be described with reference to the drawings. In FIG. 4A, Ta is formed on the LiTaO 3 substrate 1a by using a normal photoprocess and dry etching.
6a is patterned in a periodic pattern. Next, in FIG.
The LiTaO 3 substrate 1a on which the pattern of a6a was formed was subjected to proton exchange in pyrophosphoric acid at 260 ° C. for 30 minutes to form a proton exchange layer having a thickness of 0.8 μm immediately below the slit, and then 550
Heat-treat for 1 minute at a temperature of ° C. As a result, the polarization inversion layer 3
Are periodically formed. Next, as shown in FIG. 3C, Ta was patterned into a 30 nm stripe pattern as a proton exchange protection mask, and then proton exchange was performed at 260 ° C. for 16 minutes. Then, the optical waveguide 2 is formed by annealing at 380 ° C. for 10 minutes. Further, as shown in FIG. 3D, after forming SiO 2 14 as a protective film, a Ti film to be the electrode 15 is formed. The thickness of Ti is 200 nm. Next, a pattern of Ti as shown in FIG. 1 is formed by using photolithography and dry etching. This becomes the electrode 15. The period of this electrode 15 and the period of the domain inversion layer are the same. Finally, the entrance / exit surface is formed by polishing. The optical waveguide 2 has a width of 4 μm and a length of 1 cm. The period of polarization inversion is 3.8 μm, and the thickness of the polarization inversion layer is 1.6 μm.

【0016】図5に電極に印加される電圧に対する擬似
位相整合波長との関係を示す。電圧を印加しないときの
擬似位相整合波長は860nmであるのに対して30Vの電圧を
印加すると862nmまで変化した。電極15を用いると電
圧の変化に対する擬似位相整合波長の変化が大きく、広
い範囲で半導体レーザの波長変化に追随することが可能
である。この実施例での変換効率は40mW入力で2.
5%である。光損傷はなく高調波出力は非常に安定して
いた。次にこの櫛形電極にピーク電圧5Vのパルス状変
調電圧(繰り返し200ps)を印可した。図6に印加
電圧波形と高調波出力の関係を示す。5GHzの周波数の
変調電圧に対して高調波も追随して応答していた。この
ように電極に変調電圧を印加することで変調された高調
波も得ることができる。
FIG. 5 shows the relationship between the voltage applied to the electrodes and the quasi phase matching wavelength. The quasi-phase matching wavelength when no voltage was applied was 860 nm, while it changed to 862 nm when a voltage of 30 V was applied. When the electrode 15 is used, the change in the quasi phase matching wavelength with respect to the change in the voltage is large, and it is possible to follow the wavelength change of the semiconductor laser in a wide range. The conversion efficiency in this example is 2.
5%. There was no optical damage and the harmonic output was very stable. Next, a pulsed modulation voltage (repeated 200 ps) having a peak voltage of 5 V was applied to this comb-shaped electrode. FIG. 6 shows the relationship between the applied voltage waveform and the harmonic output. The harmonics also responded to the modulation voltage of the frequency of 5 GHz. By applying the modulation voltage to the electrodes in this way, modulated harmonics can also be obtained.

【0017】次に本発明の短波長レーザ光源の第2の実
施例を説明する。図7の短波長レーザ光源の構成図を示
す。短波長レーザ光源は基本的には半導体レーザ21と
光波長変換素子22により構成される。Al枠20に固
定された半導体レーザ21から出射された基本波P1は
コリメータレンズ24で平行光にされた後、フォーカス
レンズ25で光波長変換素子22の光導波路2に導入さ
れ高調波P2へと変換される。また、23は石英板であ
り断熱のためのものである。ここで光波長変換素子の構
成は実施例1と同様である。本実施例ではLiNbO3基板に
比べて光損傷に強いMgOドープのLiNbO3を用い112
0℃で熱処理し分極反転層を形成した。LiNbO3に比べて
処理温度が高いのはキュリー温度がMgOドープするこ
とにより80℃程度高いためである。又、光導波路には
分極反転層の形成時の熱処理温度に比べて低温処理が可
能であるプロトン交換光導波路を用いた。この実施例で
はこの光波長変換素子22と半導体レーザ21を組み合
わせて短波長レーザ光源を作製した。出力される高調波
P2の出力はビームスプリッタ26により分岐され、S
iディテクター27により検出され電気処理によりフィ
ードバックがかかり高調波出力の最大点で光波長変換素
子22に形成されている電極に電圧を印加することで高
調波が一定に保たれる。半導体レーザ21の波長変動に
追随して光波長変換素子22に形成された電極により印
加する電圧を変化することにより光波長変換素子22の
光導波路2の屈折率が変化し高調波出力は安定化され
る。図8に作製された短波長レーザ光源の環境温度依存
性を示す。変換効率は80mW入力で4%であり、30
℃程度の範囲にわたって出力も非常に安定していた。図
9に従来の短波長レーザ光源と本発明の短波長レーザ光
源の環境温度25℃と35℃での高調波出力の比較を示
す。25℃の環境温度では従来の短波長レーザ光源の光
波長変換素子も擬似位相整合条件を満たしているため高
調波は最高出力の3mWとなっているが、35℃では擬
似位相整合条件からずれるため高調波出力は0である。
これに対して本発明の光波長変換素子では環境温度が変
わっても、光波長変換素子の光導波路の屈折率が電圧に
より制御されており常に最大の高調波出力(3mW)が
保たれることとなる。
Next, a second embodiment of the short wavelength laser light source of the present invention will be described. FIG. 8 is a configuration diagram of the short wavelength laser light source of FIG. 7. The short wavelength laser light source is basically composed of a semiconductor laser 21 and a light wavelength conversion element 22. The fundamental wave P1 emitted from the semiconductor laser 21 fixed to the Al frame 20 is collimated by the collimator lens 24, and then introduced into the optical waveguide 2 of the optical wavelength conversion element 22 by the focus lens 25 to be a harmonic P2. To be converted. Reference numeral 23 is a quartz plate for heat insulation. Here, the configuration of the light wavelength conversion element is similar to that of the first embodiment. In this embodiment, MgO-doped LiNbO 3 which is more resistant to optical damage than the LiNbO 3 substrate is used.
A heat treatment was performed at 0 ° C. to form a domain inversion layer. The treatment temperature is higher than that of LiNbO 3 because the Curie temperature is higher by about 80 ° C. due to the MgO doping. As the optical waveguide, a proton exchange optical waveguide that can be processed at a lower temperature than the heat treatment temperature at the time of forming the domain inversion layer was used. In this embodiment, a short wavelength laser light source is manufactured by combining the light wavelength conversion element 22 and the semiconductor laser 21. The output of the output harmonic P2 is split by the beam splitter 26,
The harmonics are kept constant by applying a voltage to the electrodes formed on the optical wavelength conversion element 22 at the maximum point of the harmonic wave output detected by the i detector 27 and fed back by electrical processing. By changing the voltage applied by the electrodes formed on the optical wavelength conversion element 22 following the wavelength fluctuation of the semiconductor laser 21, the refractive index of the optical waveguide 2 of the optical wavelength conversion element 22 changes and the harmonic output is stabilized. To be done. FIG. 8 shows the environmental temperature dependence of the manufactured short wavelength laser light source. Conversion efficiency is 4% at 80mW input, 30
The output was very stable over the range of about ℃. FIG. 9 shows a comparison of the harmonic output between the conventional short wavelength laser light source and the short wavelength laser light source of the present invention at ambient temperatures of 25 ° C. and 35 ° C. At an ambient temperature of 25 ° C, the optical wavelength conversion element of the conventional short-wavelength laser light source also satisfies the quasi-phase matching condition, so the harmonic output is 3 mW, which is the maximum output, but at 35 ° C, the quasi-phase matching condition deviates. The harmonic output is zero.
On the other hand, in the optical wavelength conversion element of the present invention, even if the environmental temperature changes, the refractive index of the optical waveguide of the optical wavelength conversion element is controlled by the voltage, and the maximum harmonic output (3 mW) is always maintained. Becomes

【0018】次に本発明の光波長変換素子の第3の実施
例を説明する。光波長変換素子の構成を図10に示す。
本実施例ではLiTaO3を基板として用いた。LiTaO3はキュ
リー温度が620℃と低く低温で分極反転処理が可能で
ある。また、本実施例では電極として櫛形電極を用い
た。この櫛形電極15の周期は分極反転層の周期と一致
している。分極反転層3上の電極15をグランドに接続
し、非分極反転層5上の電極に+電圧を印加する。この
ことにより分極反転層3および非分極反転層5の屈折率
変化はどちらも増加となるため、擬似位相整合波長が大
きく変化できる。光導波路2はピロ燐酸中でのプロトン
交換により作製した。また、光導波路の上に櫛形電極1
5としてTiを200nm蒸着により形成している。以下
作製方法について図11を用いて説明する。図11
(a)でLiTaO3基板1aに通常のフォトプロセスとドラ
イエッチングを用いてTa6aを周期状にパターニング
する。次に同図(b)でTa6aによるパターンが形成
されたLiTaO3基板1aにピロ燐酸中で260℃、30分間プ
ロトン交換を行いスリット直下に厚み0.8μmのプロト
ン交換層を形成した後、550℃の温度で1分間熱処理す
る。これにより分極反転層3が周期的に形成される。次
に同図(c)でプロトン交換用保護マスクとしてTaを
30nmストライプ状にパターニングした後、260℃、16分
間プロトン交換を行った。その後380℃、10分間アニ
ールを行い光導波路2が形成される。さらに同図(d)
でSiO214を保護膜として形成した後、電極15となる
Ti膜を形成する。Tiの厚みは200nmである。次にフォ
トリソとドライエッチングを用いて図10に見られるよ
うなTiの周期的パターンを形成する。これが櫛形電極
15となる。この櫛形電極15の周期と分極反転層の周
期は一致している。最後に研磨により入出射面を形成す
る。光導波路2は厚みは1.9μm、幅4μm、長さは1c
mである。分極反転の周期は3.6μm、分極反転層の
厚みは1.8μmである。
Next, a third embodiment of the optical wavelength conversion device of the present invention will be described. The structure of the light wavelength conversion element is shown in FIG.
In this example, LiTaO 3 was used as the substrate. LiTaO 3 has a low Curie temperature of 620 ° C. and can be subjected to polarization reversal treatment at a low temperature. In addition, in this embodiment, a comb-shaped electrode is used as the electrode. The cycle of the comb-shaped electrode 15 matches the cycle of the domain inversion layer. The electrode 15 on the domain inversion layer 3 is connected to the ground, and a + voltage is applied to the electrode on the non-domain inversion layer 5. As a result, the refractive index changes of the polarization inversion layer 3 and the non-polarization inversion layer 5 are both increased, so that the quasi phase matching wavelength can be greatly changed. The optical waveguide 2 was produced by proton exchange in pyrophosphoric acid. In addition, the comb-shaped electrode 1 is provided on the optical waveguide.
As No. 5, Ti is formed by vapor deposition of 200 nm. The manufacturing method will be described below with reference to FIGS. Figure 11
Patterning Ta6a periodically shape using a conventional photo process and dry etching the LiTaO 3 substrate 1a in (a). Next, in FIG. 2B, the LiTaO 3 substrate 1a on which the pattern of Ta6a was formed was subjected to proton exchange in pyrophosphoric acid at 260 ° C. for 30 minutes to form a 0.8 μm-thick proton exchange layer immediately below the slit, and then at 550 ° C. Heat treatment at the temperature of 1 minute. As a result, the domain inversion layer 3 is periodically formed. Next, in the same figure (c), Ta is used as a protective mask for proton exchange.
After patterning in a 30 nm stripe pattern, proton exchange was performed at 260 ° C. for 16 minutes. Then, the optical waveguide 2 is formed by annealing at 380 ° C. for 10 minutes. Furthermore, the same figure (d)
After forming SiO 2 14 as a protective film with, it becomes the electrode 15
Form a Ti film. The thickness of Ti is 200 nm. Next, a periodic pattern of Ti as shown in FIG. 10 is formed using photolithography and dry etching. This becomes the comb-shaped electrode 15. The period of the comb-shaped electrode 15 and the period of the domain inversion layer match. Finally, the entrance / exit surface is formed by polishing. The optical waveguide 2 has a thickness of 1.9 μm, a width of 4 μm, and a length of 1 c
m. The period of polarization inversion is 3.6 μm, and the thickness of the polarization inversion layer is 1.8 μm.

【0019】櫛形電極15に10Vの電圧を加えること
により光波長変換素子の屈折率を制御し擬似位相整合波
長を半導体レーザの発振波長に合わせた。このとき電界
は2×106V/mである。すると基本波40mWの入
力で1mWの高調波(波長420nm)を得た。この場合の
変換効率は2.5%である。光波長変換素子の波長に対
する許容度は0.03nmである。この半導体レーザの
波長変動を光波長変換素子の電圧を変化させて補正し高
調波が安定に出力されるようにする。半導体レーザの波
長変化に対する光波長変換素子の電圧との関係を図12
に示す。波長が0.03nmずれても電圧を10Vから40V
まで変化させるとまた、高調波出力は最大になる。高調
波出力の安定度は従来の光波長変換素子に比べ大幅に改
善され実用性が増した。環境温度が3℃程度変化して半
導体レーザの発振波長が840nmから840.6nmになったとし
ても電極により光導波路に印加する電圧を10Vより7
0Vに変えることで高調波出力は安定に得られた。電圧
制御はps程度の速さで応答が可能なので波長変動に対
して追随させるには効果的である。なお基本波に対して
マルチモード伝搬では高調波の出力が不安定で実用的で
はなくシングルモードが有効である。
By applying a voltage of 10 V to the comb-shaped electrode 15, the refractive index of the optical wavelength conversion element was controlled and the quasi phase matching wavelength was adjusted to the oscillation wavelength of the semiconductor laser. At this time, the electric field is 2 × 10 6 V / m. Then, a harmonic wave (wavelength 420 nm) of 1 mW was obtained with an input of 40 mW of the fundamental wave. The conversion efficiency in this case is 2.5%. The tolerance for the wavelength of the light wavelength conversion element is 0.03 nm. The wavelength variation of the semiconductor laser is corrected by changing the voltage of the optical wavelength conversion element so that the harmonic wave is stably output. FIG. 12 shows the relationship between the voltage of the optical wavelength conversion element and the wavelength change of the semiconductor laser.
Shown in. Voltage from 10V to 40V even if wavelength shifts 0.03nm
Also, the harmonic output becomes maximum when the value is changed up to. The stability of the harmonic output is greatly improved compared to the conventional optical wavelength conversion element, and its practicality is increased. Even if the oscillation temperature of the semiconductor laser changes from 840 nm to 840.6 nm due to a change in the ambient temperature of about 3 ° C, the voltage applied to the optical waveguide by the electrode is 7V from 10V.
The harmonic output was stably obtained by changing to 0V. Since the voltage control can respond at a speed of about ps, it is effective to follow the wavelength fluctuation. In multi-mode propagation with respect to the fundamental wave, the output of harmonics is unstable, so single mode is effective rather than practical.

【0020】次にこの櫛形電極にピーク電圧10Vのパ
ルス状変調電圧(繰り返し1ns)を印可した。変調電
圧に対して高調波も追随して応答していた。このように
櫛形電極に変調電圧を印加することで変調された高調波
も得ることができる。このように、櫛形電極を用いると
効率良く屈折率変化を与えることができ効果的である。
Then, a pulsed modulation voltage (repetition of 1 ns) having a peak voltage of 10 V was applied to this comb-shaped electrode. The harmonics also responded to the modulation voltage. By applying the modulation voltage to the comb-shaped electrodes in this way, modulated harmonics can also be obtained. As described above, the use of the comb-shaped electrode is effective because it can efficiently change the refractive index.

【0021】また、実施例では非線形光学結晶としてLi
NbO3およびLiTaO3を用いたがKNbO3、KTP等の強誘電
体、MNA等の有機材料にも適用可能である。
Further, in the embodiment, Li is used as the nonlinear optical crystal.
Although NbO 3 and LiTaO 3 are used, it is also applicable to ferroelectric materials such as KNbO 3 , KTP, and organic materials such as MNA.

【0022】なお基本波を発生する光源として半導体レ
ーザを用いたがYAGやYVO4等の固体レーザを用い
ても良い。この場合は発振波長は一定なので電圧により
擬似位相整合に合わせるという目的対して効果を生む。
Although the semiconductor laser is used as the light source for generating the fundamental wave, a solid-state laser such as YAG or YVO 4 may be used. In this case, since the oscillation wavelength is constant, the effect is produced for the purpose of matching the quasi phase matching with the voltage.

【0023】[0023]

【発明の効果】以上説明したように本発明の光波長変換
素子によれば、分極反転層を持つ光波長変換素子上に電
極を形成し光波長変換素子を電圧コントロールすること
により擬似位相整合波長をレーザ発振波長に合わせるこ
とで簡単になおかつ安定に高調波発生を行うことができ
る。また、本発明の短波長レーザ光源によれば半導体レ
ーザの波長変動を光導波路に印加される電圧の制御によ
り補正することで、高調波出射の安定な動作を実現でき
る。
As described above, according to the optical wavelength conversion element of the present invention, a quasi phase matching wavelength is obtained by forming an electrode on the optical wavelength conversion element having a polarization inversion layer and controlling the voltage of the optical wavelength conversion element. It is possible to easily and stably generate higher harmonics by adjusting the wavelength of the laser oscillation wavelength. Further, according to the short-wavelength laser light source of the present invention, the stable operation of harmonic emission can be realized by correcting the wavelength fluctuation of the semiconductor laser by controlling the voltage applied to the optical waveguide.

【0024】また、本発明の光波長変換素子により高調
波を光導波路から取り出すことができ簡単に非点収差の
ないスポットを安定に得ることができ、その実用的効果
は極めて大きい。
Further, the optical wavelength conversion element of the present invention can extract a higher harmonic wave from the optical waveguide and easily obtain a spot free of astigmatism, and its practical effect is extremely large.

【0025】さらに、本発明の光波長変換素子によれ
ば、分極反転層を持つ光波長変換素子上に電極を形成し
光波長変換素子を電圧印加する際、分極反転層の厚みを
d、基本波が伝搬する厚みをS1、高調波が伝搬する厚
みをS2とするとS1>d>S2と構成することで単純
な電極構成により基本波のみを大きく屈折率変化させる
ことが可能となり、電極に電圧を印加することで高調波
出力を効率良く変調することができる。
Further, according to the optical wavelength conversion element of the present invention, when an electrode is formed on an optical wavelength conversion element having a polarization inversion layer and a voltage is applied to the optical wavelength conversion element, the thickness of the polarization inversion layer is basically d. Assuming that the thickness of wave propagation is S1 and the thickness of harmonic propagation is S2, it becomes possible to greatly change the refractive index of only the fundamental wave with a simple electrode configuration by configuring S1>d> S2, and the voltage is applied to the electrodes. Is applied, the harmonic output can be efficiently modulated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光波長変換素子の第1の実施例の構造
FIG. 1 is a structural diagram of a first embodiment of an optical wavelength conversion device of the present invention.

【図2】本発明の光波長変換素子を光導波路に垂直な報
告で切った断面図
FIG. 2 is a cross-sectional view of the optical wavelength conversion element of the present invention cut by a report perpendicular to an optical waveguide.

【図3】本発明の光波長変換素子を光導波路に平行な方
向で切った断面図
FIG. 3 is a sectional view of the optical wavelength conversion element of the present invention cut in a direction parallel to an optical waveguide.

【図4】本発明の光波長変換素子の製造工程図FIG. 4 is a manufacturing process diagram of the optical wavelength conversion element of the present invention.

【図5】光波長変換素子に印加する電圧と擬似位相整合
波長の関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between the voltage applied to the optical wavelength conversion element and the quasi phase matching wavelength.

【図6】本発明の第1の実施例の光波長変換素子の変調
特性を示す特性図
FIG. 6 is a characteristic diagram showing the modulation characteristics of the optical wavelength conversion element according to the first embodiment of the present invention.

【図7】本発明の短波長レーザ光源の構成図FIG. 7 is a block diagram of a short wavelength laser light source of the present invention.

【図8】環境温度に対する高調波出力の依存性の従来例
と本発明の短波長レーザ光源の比較図
FIG. 8 is a comparison diagram of a conventional example of the dependence of harmonic output on environmental temperature and a short wavelength laser light source of the present invention.

【図9】環境温度に対する従来例と本発明の短波長レー
ザ光源の高調波出力の比較図
FIG. 9 is a comparison diagram of harmonic outputs of the conventional example and the short wavelength laser light source of the present invention with respect to ambient temperature.

【図10】本発明の第3の実施例の光波長変換素子の構
成図
FIG. 10 is a configuration diagram of an optical wavelength conversion device according to a third embodiment of the present invention.

【図11】本発明の第3の実施例の光波長変換素子の製
造工程図
FIG. 11 is a manufacturing process diagram of an optical wavelength conversion device according to a third embodiment of the present invention.

【図12】本発明の第3の実施例の光波長変換素子に印
加する電圧と擬似位相整合波長の関係を示す特性図
FIG. 12 is a characteristic diagram showing the relationship between the voltage applied to the optical wavelength conversion element of the third embodiment of the present invention and the quasi phase matching wavelength.

【図13】従来の光波長変換素子の構成図FIG. 13 is a configuration diagram of a conventional optical wavelength conversion element.

【図14】光波長変換素子による波長変換の原理図FIG. 14: Principle diagram of wavelength conversion by an optical wavelength conversion element

【図15】従来の光波長変換素子の製造工程図FIG. 15 is a manufacturing process diagram of a conventional light wavelength conversion element

【図16】温度を変化させた場合の波長に対する光波長
変換素子の高調波出力を示す特性図
FIG. 16 is a characteristic diagram showing the harmonic output of the optical wavelength conversion element with respect to the wavelength when the temperature is changed.

【図17】印加電圧に対する屈折率変化(N2w−Nw
の関係を示す特性図
FIG. 17: Change in refractive index with applied voltage (N 2w −N w ).
Characteristic diagram showing the relationship of

【符号の説明】[Explanation of symbols]

1 LiTaO3基板 2 光導波路 3 分極反転層 15 電極 21 半導体レーザ 22 光波長変換素子 P1 基本波 P2 高調波1 LiTaO 3 substrate 2 optical waveguide 3 polarization inversion layer 15 electrode 21 semiconductor laser 22 optical wavelength conversion element P1 fundamental wave P2 harmonic

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】非線形光学結晶中に周期状分極反転層およ
び光導波路を有し、なおかつ前記光導波路上に電極が形
成されており、前記光導波路に基本波が入射すると光導
波路内で高調波に変換され外部に放出されることを特徴
とする光波長変換素子。
1. A nonlinear optical crystal having a periodically poled layer and an optical waveguide, and an electrode formed on the optical waveguide. When a fundamental wave is incident on the optical waveguide, harmonics are generated in the optical waveguide. An optical wavelength conversion element, which is converted into light and emitted to the outside.
【請求項2】非線形光学結晶中に周期状分極反転層およ
び光導波路および櫛形電極を有し、なおかつ前記分極反
転層の周期と櫛形電極の周期が一致しており、前記光導
波路に基本波が入射すると光導波路内で高調波に変換さ
れ外部に放出されることを特徴とする光波長変換素子。
2. A nonlinear optical crystal having a periodic domain-inverted layer, an optical waveguide and a comb-shaped electrode, and the period of the domain-inverted layer and the period of the comb-shaped electrode are the same, and a fundamental wave is transmitted to the optical waveguide. An optical wavelength conversion element characterized in that when it is incident, it is converted into higher harmonics in the optical waveguide and is emitted to the outside.
【請求項3】非線形光学結晶中に周期状分極反転層およ
び光導波路を有する光波長変換素子と半導体レーザより
なり、半導体レーザから出射された基本波が光導波路中
で高調波へと変換され、なおかつ前記光波長変換素子上
に形成された電極に電圧を印加することで高調波出力を
制御していることを特徴とする短波長レーザ光源。
3. A non-linear optical crystal comprising an optical wavelength conversion element having a periodically poled layer and an optical waveguide and a semiconductor laser, wherein a fundamental wave emitted from the semiconductor laser is converted into a harmonic in the optical waveguide, Furthermore, a short wavelength laser light source is characterized in that a harmonic output is controlled by applying a voltage to an electrode formed on the light wavelength conversion element.
【請求項4】非線形光学結晶中に周期状分極反転層およ
び光導波路を有する光波長変換素子と半導体レーザより
なり、半導体レーザから出射された基本波が光導波路中
で高調波へと変換され、なおかつ前記光波長変換素子上
に形成された電極に変調電圧を印加することで変調され
た高調波出力を取り出すことを特徴とする短波長レーザ
光源。
4. A non-linear optical crystal comprising an optical wavelength conversion element having a periodic domain-inverted layer and an optical waveguide and a semiconductor laser, wherein a fundamental wave emitted from the semiconductor laser is converted into a harmonic in the optical waveguide, Further, a short wavelength laser light source, wherein a modulated harmonic output is extracted by applying a modulation voltage to an electrode formed on the light wavelength conversion element.
【請求項5】非線形光学結晶中に周期状分極反転層およ
び光導波路を有し、なおかつ前記光導波路上に電極が形
成されており、前記分極反転層の厚みをd、光導波路中
を基本波が伝搬する厚みをS1、前記光導波路中を高調
波が伝搬する厚みをS2とするとS1>d>S2となる
ことを特徴とする光波長変換素子。
5. A nonlinear optical crystal having a periodic domain-inverted layer and an optical waveguide, and an electrode formed on the optical waveguide. The domain-inverted layer has a thickness d and a fundamental wave in the optical waveguide. The optical wavelength conversion element is characterized in that S1>d> S2, where S1 is the thickness at which the wave propagates and S2 is the thickness at which the harmonic propagates in the optical waveguide.
【請求項6】非線形光学結晶がLiNbxTa1-x
3(0≦X≦1)基板である請求項1または2記載の光
波長変換素子。
6. The nonlinear optical crystal is LiNb x Ta 1-x O.
3. The light wavelength conversion element according to claim 1, which is a 3 (0 ≦ X ≦ 1) substrate.
【請求項7】非線形光学結晶がLiNbxTa1-x
3(0≦X≦1)基板である請求項3または4記載の短
波長レーザ光源。
7. The nonlinear optical crystal is LiNb x Ta 1-x O.
The short wavelength laser light source according to claim 3 or 4, which is a 3 (0≤X≤1) substrate.
【請求項8】光導波路がプロトン交換光導波路である請
求項1または2記載の光波長変換素子。
8. The optical wavelength conversion element according to claim 1, wherein the optical waveguide is a proton exchange optical waveguide.
【請求項9】光導波路がプロトン交換光導波路である請
求項3または4記載の短波長レーザ光源。
9. The short wavelength laser light source according to claim 3, wherein the optical waveguide is a proton exchange optical waveguide.
【請求項10】電極直下には保護膜が形成されている請
求項1または2記載の光波長変換素子。
10. The light wavelength conversion element according to claim 1, wherein a protective film is formed immediately below the electrodes.
【請求項11】光導波路が半導体レーザ光に対してシン
グルモード伝搬である請求項1または2記載の光波長変
換素子。
11. The optical wavelength conversion element according to claim 1, wherein the optical waveguide is a single-mode propagation for the semiconductor laser light.
【請求項12】ディテクターおよびビームスプリッタを
有する請求項3または4記載の短波長レーザ光源。
12. The short wavelength laser light source according to claim 3, further comprising a detector and a beam splitter.
JP5048915A 1992-03-11 1993-03-10 Optical wavelength conversion element Expired - Fee Related JP3049986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5048915A JP3049986B2 (en) 1992-03-11 1993-03-10 Optical wavelength conversion element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5254892 1992-03-11
JP725393 1993-01-20
JP4-52548 1993-01-20
JP5-7253 1993-01-20
JP5048915A JP3049986B2 (en) 1992-03-11 1993-03-10 Optical wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH06273814A true JPH06273814A (en) 1994-09-30
JP3049986B2 JP3049986B2 (en) 2000-06-05

Family

ID=27277532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5048915A Expired - Fee Related JP3049986B2 (en) 1992-03-11 1993-03-10 Optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JP3049986B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038757A1 (en) * 1995-06-02 1996-12-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US6738398B2 (en) 1999-12-22 2004-05-18 Yokogawa Electric Corporation SHG laser light source and method of modulation for use therewith
WO2024023879A1 (en) * 2022-07-25 2024-02-01 日本電信電話株式会社 Light-emitting element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305185C (en) * 1995-06-02 2007-03-14 松下电器产业株式会社 Optical element, laser light source, laser device and method for mfg. optical element
CN1304877C (en) * 1995-06-02 2007-03-14 松下电器产业株式会社 Optical element, laser light source, laser device and method for mfg. optical element
US7623559B2 (en) 1995-06-02 2009-11-24 Panasonic Corporation Optical device, laser beam source, laser apparatus and method of producing optical device
US6914918B2 (en) 1995-06-02 2005-07-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7101723B2 (en) 1995-06-02 2006-09-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
CN1305183C (en) * 1995-06-02 2007-03-14 松下电器产业株式会社 Optical element, laser light source, laser device and method for mfg. optical element
US6333943B1 (en) * 1995-06-02 2001-12-25 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
CN1305184C (en) * 1995-06-02 2007-03-14 松下电器产业株式会社 Optical element, laser light source, laser device and method for mfg. optical element
WO1996038757A1 (en) * 1995-06-02 1996-12-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7295583B2 (en) 1995-06-02 2007-11-13 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7339960B2 (en) 1995-06-02 2008-03-04 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7382811B2 (en) 1995-06-02 2008-06-03 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7570677B2 (en) 1995-06-02 2009-08-04 Panasonic Corporation Optical device, laser beam source, laser apparatus and method of producing optical device
US6738398B2 (en) 1999-12-22 2004-05-18 Yokogawa Electric Corporation SHG laser light source and method of modulation for use therewith
WO2024023879A1 (en) * 2022-07-25 2024-02-01 日本電信電話株式会社 Light-emitting element

Also Published As

Publication number Publication date
JP3049986B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
US5036220A (en) Nonlinear optical radiation generator and method of controlling regions of ferroelectric polarization domains in solid state bodies
US20110043895A1 (en) Wavelength converting device, laser, and method to stabilize the wavelength conversion efficiency
Harada et al. Bulk periodically poled MgO‐LiNbO3 by corona discharge method
US5253259A (en) Frequency doubler and visible laser source having a heater
JP3915145B2 (en) Optical wavelength conversion element and method of manufacturing polarization inversion
JP3264081B2 (en) Optical wavelength conversion element and short wavelength light generator
JP3049986B2 (en) Optical wavelength conversion element
JP2910370B2 (en) Optical wavelength conversion element and short wavelength laser light source using the same
Chang et al. Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate
JP2718259B2 (en) Short wavelength laser light source
JP3006309B2 (en) Optical wavelength conversion element and short wavelength laser light source
JPH0566440A (en) Laser light source
JPH0651359A (en) Wavelength conversion element, short wavelength laser device and wavelength variable laser device
JPH06265956A (en) Optical wavelength conversion method
JP2643735B2 (en) Wavelength conversion element
JP2899345B2 (en) Optical device
Chen et al. Ultra-efficient and highly tunable frequency conversion in Z-cut periodically poled lithium niobate nanowaveguides
JPH0667235A (en) Wavelength conversion device
JP2982366B2 (en) Waveguide type wavelength conversion element
JPH06123903A (en) Second harmonic wave generator
JPH0643513A (en) Wavelength converting element
JP3310024B2 (en) Harmonic generator with modulation function
JP2833392B2 (en) Wavelength conversion element
JP2002062556A (en) Higher harmonic output stabilization method and short wavelength laser beam source using the method
JP4114693B2 (en) Manufacturing method of polarization reversal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees