JPH0627274A - Nozzle under nuclear fuel assembly in pressurized water reactor - Google Patents

Nozzle under nuclear fuel assembly in pressurized water reactor

Info

Publication number
JPH0627274A
JPH0627274A JP4201802A JP20180292A JPH0627274A JP H0627274 A JPH0627274 A JP H0627274A JP 4201802 A JP4201802 A JP 4201802A JP 20180292 A JP20180292 A JP 20180292A JP H0627274 A JPH0627274 A JP H0627274A
Authority
JP
Japan
Prior art keywords
nuclear fuel
lower nozzle
support substrate
fuel assembly
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4201802A
Other languages
Japanese (ja)
Inventor
Kazutoshi Tokai
和俊 渡海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP4201802A priority Critical patent/JPH0627274A/en
Publication of JPH0627274A publication Critical patent/JPH0627274A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To realize a structure capable of absorbing irradiation growth by decreasing length without damaging the strength of a lower nozzle and the flowing-through state of cooling water, to improve the inflow state of cooling water in the lower nozzle, and to take a proper measure so as not to let a free solid arrive in the position of a fuel rod by obstructing it by the lower nozzle to catch even if it occurs within a core by any chance. CONSTITUTION:The under surface of a supporting base B of a nozzle under a nuclear fuel assembly of a PWR is formed in an arch form convex toward the center. A flow-through port in which a trap structure G is provided around the base B, is disposed. The structure G comprises large caliber drill holes shifting the central axes respectively to connect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧水型原子炉(PW
R)に供されるPWR核燃料集合体の1部材であるPW
R核燃料集合体の下部ノズルに関する。
BACKGROUND OF THE INVENTION The present invention relates to a pressurized water reactor (PW).
PW which is one member of the PWR nuclear fuel assembly provided for R)
It relates to the lower nozzle of the R nuclear fuel assembly.

【0002】[0002]

【従来の技術】加圧水型原子炉(PWR)の炉心には、
数百体のPWR核燃料集合体が格子状に配列され、それ
ぞれ下方にばね付勢された状態で炉心の上下の支持板の
間隔に固定される。そして、炉心運転中には、加圧され
て未沸騰状態を維持した冷却水がPWR核燃料集合体内
を貫流して炉心の下部から炉心の上部へ流れ、PWR核
燃料集合体内では、貫流方向に配置された4mにもおよ
ぶ細長い燃料棒に沿って冷却水が高速で上昇し、燃料棒
を熱交換して除熱する。また、定期的なPWR核燃料集
合体の交換の際には、例えば、炉心から全体の1/3の
PWR核燃料集合体を取出し、残り2/3のPWR核燃
料集合体を並べ替え、空いたスペ−スに取出した1/3
の替わりの新しいPWR核燃料集合体が追加される。
2. Description of the Related Art The core of a pressurized water reactor (PWR) is
Several hundreds of PWR nuclear fuel assemblies are arranged in a lattice, and are fixed to the space between the upper and lower support plates of the core while being spring-biased downward. Then, during the core operation, the cooling water pressurized and maintained in the non-boiling state flows through the PWR nuclear fuel assembly and flows from the lower part of the core to the upper part of the core, and is arranged in the flow-through direction in the PWR nuclear fuel assembly. The cooling water rises at high speed along the long and narrow fuel rods that extend for 4 m, and heat is removed by exchanging heat with the fuel rods. Further, when the PWR nuclear fuel assemblies are regularly replaced, for example, one-third of the whole PWR nuclear fuel assemblies are taken out from the core, the remaining 2/3 of the PWR nuclear fuel assemblies are rearranged, and the empty space is replaced. 1/3 taken out
Will replace the new PWR nuclear fuel assembly.

【0003】PWR核燃料集合体は、上部ノズルと下部
ノズルとを複数本のシンブル管で接続してシンブル管の
中間位置に複数段の支持格子を設置して格子状の骨格構
造を形成し、この格子状の骨格構造内に多数本の燃料棒
を整列状態で把持させたもので、燃料棒の交換単位を構
成するとともに、炉心に組み込まれた状態では加圧水に
よる熱交換水路(チャンネル)を形成する。
In a PWR nuclear fuel assembly, an upper nozzle and a lower nozzle are connected by a plurality of thimble tubes, and a plurality of stages of support grids are installed at intermediate positions of the thimble tubes to form a grid-like skeleton structure. A large number of fuel rods are held in an aligned state in a lattice-like skeletal structure, which constitutes a fuel rod exchange unit and forms a heat exchange channel by pressurized water when assembled in the core. .

【0004】従来のPWR核燃料集合体の下部ノズル
は、燃料棒の下端部と密着または間隔を隔てて対向する
側の表面が平坦で中央部分から外周部分まで厚みが一様
な支持基板と、支持基板の下面の四隅に配置されて支持
基板を支持する脚部とを有し、支持基板の表面には、複
数のシンブル管のそれぞれに適合させてシンブル管接続
孔が配列され、シンブル管接続孔の間隔を埋めつくし
て、定められた1〜2種類の口径の冷却水貫流孔が規則
的に多数配置される。各冷却水貫流孔は、一様な直径で
真直ぐに支持基板を貫通する。
The lower nozzle of the conventional PWR nuclear fuel assembly is supported by a supporting substrate which has a flat surface on the side facing the lower end portion of the fuel rod in close contact or with a space and having a uniform thickness from the central portion to the outer peripheral portion. And a leg portion which is disposed at four corners of the lower surface of the substrate and supports the supporting substrate, and on the surface of the supporting substrate, thimble pipe connecting holes are arranged so as to be adapted to each of the plurality of thimble pipes. By filling the gap of No. 1, a large number of cooling water flow-through holes having a predetermined one or two kinds of diameters are regularly arranged. Each cooling water through hole straightly penetrates the support substrate with a uniform diameter.

【0005】[0005]

【発明が解決しようとする課題】加圧水型原子炉(PW
R)の設備利用率を向上させて核燃料コストを低減する
ために、核燃料の濃縮度を高めて燃料棒の寿命を伸ば
し、従来よりもPWR核燃料集合体の交換寿命を延長し
て、交換寿命期間内の核燃料の燃焼度を高めることが望
まれている。しかし、PWR核燃料集合体の交換寿命を
延長すると、通算の放射線被爆量が増して、燃料棒を把
持する骨格構造の照射成長を従来の炉心構造では十分に
吸収できなくなり、また、燃料棒の照射成長を従来のP
WR核燃料集合体構造では十分に吸収できなくなる。従
って、従来どおりの炉心構造と燃料棒長さを前提にし
て、PWR核燃料集合体の寿命末期までの照射成長を吸
収できる程度にPWR核燃料集合体の全長を少し短く
し、かつ燃料棒の寿命末期までの照射成長を吸収できる
程度に上部ノズルと下部ノズルの間隔を少し拡大するこ
とが必要となる。ここで、上部ノズル側には長さを減じ
る余地がなく、下部ノズルの脚部も炉心側の支持板との
取り付け構造から長さを減じる余地がなく、従って、下
部ノズルの支持基板に対して、強度と冷却水の貫流状態
を損なうことなくその厚みを減じる要求がなされた。
[Problems to be Solved by the Invention] Pressurized water reactor (PW)
In order to improve the facility utilization rate of R) and reduce the cost of nuclear fuel, the enrichment of nuclear fuel is increased to extend the life of fuel rods, and the exchange life of PWR nuclear fuel assemblies is extended as compared to the conventional one, and the exchange life period is extended. It is desired to increase the burnup of the nuclear fuel inside. However, if the exchange life of the PWR nuclear fuel assembly is extended, the total amount of radiation exposure increases, and the irradiation growth of the skeletal structure that holds the fuel rod cannot be sufficiently absorbed by the conventional core structure. Conventional P growth
The structure of the WR nuclear fuel assembly cannot be sufficiently absorbed. Therefore, on the premise of the conventional core structure and fuel rod length, the overall length of the PWR nuclear fuel assembly is slightly shortened to the extent that the irradiation growth until the end of life of the PWR nuclear fuel assembly can be absorbed, and the end of life of the fuel rod is shortened. It is necessary to slightly increase the distance between the upper nozzle and the lower nozzle to absorb the irradiation growth up to. Here, there is no room to reduce the length on the upper nozzle side, and there is no room to reduce the length of the legs of the lower nozzle from the mounting structure with the support plate on the core side. However, there has been a demand for reducing the thickness of the cooling water without impairing its strength and the flow-through state of the cooling water.

【0006】また、炉心運転中には、炉心の下部から下
部ノズルを貫流した冷却水が燃料棒に沿って高速で上昇
して熱交換するが、冷却水の循環系や炉心構造の保守点
検作業の際に針金や切り屑が放置される等して炉心に遊
離固形物が発生すると、遊離固形物が冷却水の流れに巻
き込まれて上昇して燃料棒の位置にまで達し、炉心の減
速や停止に伴って浮沈を繰り返しつつ移動し、長期間に
わたって燃料棒と衝突や摩擦を繰り返して燃料棒を損傷
させる可能性がある。従って、下部ノズルにトラップ構
造を設けて、万が一こうした遊離固形物が炉心に発生し
ても、下部ノズルで阻止して燃料棒の位置にまでは到達
させない必要がある。従来のPWR核燃料集合体の下部
ノズルでは、例えば、冷却水貫流孔を小径化することに
より対処していたが、この方法では、下部ノズルの抵抗
が大きくなって隣接するPWR核燃料集合体との隙間を
貫流する冷却水の割合が増し、この隙間を通じて遊離固
形物が上昇して燃料棒の位置にまで到達する可能性が高
い。
Further, during the core operation, the cooling water flowing from the lower part of the core through the lower nozzle rises along the fuel rods at a high speed and exchanges heat, but maintenance work of the cooling water circulation system and the core structure is performed. If free solids are generated in the core due to wires or chips being left unattended during the operation, the free solids are caught in the flow of cooling water and rise to the position of the fuel rod, which slows down the core and When stopped, it moves up and down repeatedly, and there is a possibility of repeatedly colliding with and rubbing against the fuel rod for a long period of time and damaging the fuel rod. Therefore, it is necessary to provide a trap structure in the lower nozzle so that even if such loose solids are generated in the core, they are blocked by the lower nozzle and do not reach the position of the fuel rod. In the lower nozzle of the conventional PWR nuclear fuel assembly, for example, the cooling water through hole is reduced in diameter. However, in this method, the resistance of the lower nozzle is increased and the gap between the adjacent PWR nuclear fuel assemblies is increased. There is a high possibility that the proportion of cooling water flowing through the fuel cell will increase and free solids will rise through this gap and reach the position of the fuel rod.

【0007】本発明は、下部ノズルの支持基板に対し
て、強度と冷却水の貫流状態を損なうことなくその厚み
を減じるとともに、その減じられた厚みの制約の中で支
持基板に遊離固形物のトラップ構造を設け、しかも、下
部ノズルの抵抗を減じて隣接するPWR核燃料集合体と
の隙間を貫流する冷却水の割合を低く押えたPWR核燃
料集合体の下部ノズルを提供することを目的としてい
る。
The present invention reduces the thickness of the support substrate of the lower nozzle without impairing the strength and the flow-through state of the cooling water, and, in the constraint of the reduced thickness, free solid matter is deposited on the support substrate. An object of the present invention is to provide a lower nozzle for a PWR nuclear fuel assembly, which is provided with a trap structure, and which further reduces the resistance of the lower nozzle and keeps the proportion of cooling water flowing through a gap between adjacent PWR nuclear fuel assemblies to be low.

【0008】[0008]

【課題を解決するための手段】請求項1のPWR核燃料
集合体の下部ノズルは、その平坦な表面に配置された多
数のシンブル管接続孔の間隔に多数の冷却水貫流孔を形
成した支持基板と、該支持基板の下面の四隅に配置され
て該支持基板を支持する脚部とを有するPWR核燃料集
合体の下部ノズルにおいて、前記支持基板の下面を中央
に向かって高い形状に形成し、前記支持基板の厚みを中
央部で薄く、該中央部の周囲部分で厚くしたものであ
る。
A lower nozzle of a PWR nuclear fuel assembly according to claim 1, wherein a plurality of cooling water through holes are formed at intervals between a plurality of thimble pipe connecting holes arranged on a flat surface thereof. And a lower nozzle of the PWR nuclear fuel assembly having four legs arranged at four corners of the lower surface of the supporting substrate to support the supporting substrate, the lower surface of the supporting substrate is formed in a shape higher toward the center, The thickness of the support substrate is thin in the central portion and thick in the peripheral portion of the central portion.

【0009】請求項2のPWR核燃料集合体の下部ノズ
ルは、請求項1のPWR核燃料集合体の下部ノズルにお
いて、前記冷却水貫流孔の口径を複数種類とし、口径の
大きなものを前記支持基板の周囲部分に配置し、口径の
小さなものを前記支持基板の内側部分に配置したもので
ある。
The lower nozzle of the PWR nuclear fuel assembly according to claim 2 is the same as the lower nozzle of the PWR nuclear fuel assembly according to claim 1, wherein the cooling water through holes have a plurality of different diameters, and a large diameter of the supporting substrate is used. It is arranged in a peripheral portion, and a small diameter one is arranged in an inner portion of the supporting substrate.

【0010】請求項3のPWR核燃料集合体の下部ノズ
ルは、請求項1、2いずれかのPWR核燃料集合体の下
部ノズルにおいて、前記支持基板の周囲部分に配置され
た冷却水の貫流孔に、該貫流孔の開口幅を途中で縮小さ
せてなるトラップ構造を設けたものである。
The lower nozzle of the PWR nuclear fuel assembly according to claim 3 is the lower nozzle of the PWR nuclear fuel assembly according to any one of claims 1 and 2, wherein the cooling water through-holes arranged in the peripheral portion of the supporting substrate are A trap structure is provided in which the opening width of the through-hole is reduced midway.

【0011】請求項4のPWR核燃料集合体の下部ノズ
ルは、請求項3のPWR核燃料集合体の下部ノズルにお
いて、前記トラップ構造は、前記支持基板の下面側から
形成したキリ孔を前記支持基板の表面側から形成したキ
リ孔の複数個に接続する形式で、前記支持基板の下面側
から形成したキリ孔と前記支持基板の表面側から形成し
たキリ孔とを前記支持基板の厚みの中間位置で相互の中
心軸をずらせて連結してなるものである。
A lower nozzle of the PWR nuclear fuel assembly according to a fourth aspect is the lower nozzle of the PWR nuclear fuel assembly according to the third aspect, wherein the trap structure has a drill hole formed from the lower surface side of the supporting substrate in the supporting substrate. In the form of connecting to a plurality of drill holes formed from the front surface side, a drill hole formed from the lower surface side of the support substrate and a drill hole formed from the front surface side of the support substrate at an intermediate position of the thickness of the support substrate. It is formed by shifting the central axes of the two and connecting them.

【0012】[0012]

【作用】請求項1のPWR核燃料集合体の下部ノズルで
は、シンブル管を通じて支持基板に伝達される荷重を4
個の脚部に分散して炉心側に伝達し、下部ノズルは、支
持基板上に分布した荷重を4個の脚部で支持する構造で
ある。従って、支持基板には、その四隅に近づくほど大
きな剪断荷重と曲げモ−メントが作用する。しかし、支
持基板の下面を中央に向かって高いア−チ状に形成し
て、支持基板の厚みを四隅に近づくほど厚くしているの
で、応力が低減され、荷重の脚部への伝達も円滑であ
る。従って、支持基板の剛性を維持したまま支持基板を
薄形化でき、厚みの減少の著しい中央部において冷却水
の貫流抵抗が低くなり、隣接するPWR核燃料集合体の
間隔を貫流する冷却水の割合が減じ、下部ノズルの中央
部を貫流する冷却水の割合が増す。
In the lower nozzle of the PWR nuclear fuel assembly according to claim 1, the load transmitted to the supporting substrate through the thimble tube is 4
The lower nozzle has a structure in which the load is distributed to the individual legs and transmitted to the core side, and the lower nozzle supports the load distributed on the support substrate by the four legs. Therefore, a larger shear load and bending moment act on the supporting substrate as it approaches the four corners. However, since the lower surface of the support substrate is formed in a high arch shape toward the center and the thickness of the support substrate is made thicker toward the four corners, the stress is reduced and the load is smoothly transmitted to the legs. Is. Therefore, the supporting substrate can be thinned while maintaining the rigidity of the supporting substrate, the flow-through resistance of the cooling water becomes low in the central portion where the thickness is remarkably reduced, and the ratio of the cooling water flowing through the space between the adjacent PWR nuclear fuel assemblies is reduced. And the proportion of cooling water flowing through the central part of the lower nozzle increases.

【0013】請求項2のPWR核燃料集合体の下部ノズ
ルでは、支持基板の内側部分に配置された小口径の冷却
水貫流孔は、長さが短いので冷却水の貫流抵抗が小さ
く、開口形成による支持基板の強度損失の割合が小さ
い。一方、支持基板の周囲部分に配置された大口径の冷
却水貫流孔は、口径が大きいので冷却水の貫流抵抗が小
さく、小口径の冷却水貫流孔の場合よりも支持基板の強
度損失の割合が大きいものの支持基板の周囲部分は肉厚
が大きいので問題とならない。
In the lower nozzle of the PWR nuclear fuel assembly according to claim 2, since the small-diameter cooling water through-holes arranged in the inner portion of the supporting substrate have a short length, the through-flow resistance of the cooling water is small, which results from the formation of the openings. The ratio of strength loss of the supporting substrate is small. On the other hand, the large-diameter cooling water through-holes arranged in the peripheral portion of the supporting substrate have a small through-flow resistance due to the large diameter, and the strength loss ratio of the supporting substrate is lower than that of the small-diameter cooling water through-holes. However, there is no problem because the peripheral portion of the supporting substrate has a large thickness.

【0014】請求項3のPWR核燃料集合体の下部ノズ
ルでは、冷却水に巻き込まれてPWR核燃料集合体に流
れ込む炉心の遊離固形物のうちで、貫流孔の口径よりも
小さく途中で縮小させた開口幅よりも大きいものがトラ
ップ構造に補足され、燃料棒側に到達できない。厚みの
減少の著しい支持基板の中央部では従来どおりの小口径
の貫流孔でも冷却水の貫流孔の抵抗が十分に低く、遊離
固形物は、支持基板のア−チ状の天井に沿って中心に移
動し、冷却水の流速が多少変化しても中心で安定した補
足状態を維持する。一方、周囲部分では、貫流方向の厚
みが確保できるので有効なトラップ構造を設け易く、ま
た、従来どおりの小口径の貫流孔では抵抗が大きくなる
ので、貫流孔を大口径化して貫流孔内に遊離固形物を補
足できるようにし、冷却水の流速が多少変化しても隣接
するPWR核燃料集合体の間隔に遊離固形物が流れ出さ
ないようにした。
In the lower nozzle of the PWR nuclear fuel assembly according to claim 3, of the solid solid matter of the core which is entrained in the cooling water and flows into the PWR nuclear fuel assembly, the opening which is smaller than the diameter of the through hole and is reduced in the middle Those larger than the width are trapped in the trap structure and cannot reach the fuel rod side. In the central part of the support substrate where the thickness is remarkably reduced, the resistance of the through hole of the cooling water is sufficiently low even with the through hole of the conventional small diameter, and the free solids are distributed along the arched ceiling of the support substrate. , And maintains a stable supplemental state at the center even if the flow velocity of the cooling water changes slightly. On the other hand, in the peripheral portion, it is easy to provide an effective trap structure because the thickness in the flow-through direction can be secured, and since resistance increases with the conventional small-diameter through-holes, the through-holes can be made larger and inside the through-holes. The free solids were able to be trapped so that the free solids did not flow out into the space between the adjacent PWR nuclear fuel assemblies even if the flow rate of the cooling water was slightly changed.

【0015】請求項4のPWR核燃料集合体の下部ノズ
ルでは、支持基板の厚みの中間位置で相互の中心軸をず
らせて連結した大口径のキリ孔でトラップ構造が構成さ
れ、支持基板の下面側から流入した冷却水は支持基板の
表面側から形成したキリ孔の複数個に分散する形式で支
持基板を貫流する。
In the lower nozzle of the PWR nuclear fuel assembly according to claim 4, the trap structure is composed of large-diameter perforated holes which are connected by shifting the central axes of the supporting substrates at an intermediate position of the thickness of the supporting substrate, and the lower surface side of the supporting substrate. The cooling water that has flowed in through the support substrate flows through the support substrate in such a manner that it is dispersed in a plurality of drill holes formed from the surface side of the support substrate.

【0016】[0016]

【発明の実施例】本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described with reference to the drawings.

【0017】図1は実施例のPWR核燃料集合体の下部
ノズルの模式図、図2は図1の下部ノズルの説明図であ
る。ここでは、支持基板の下面を中央に向かって高いア
−チ状に形成し、支持基板の周囲部分にトラップ構造を
設けた貫流口を配置し、トラップ構造が中心軸をずらせ
て連結した大口径のキリ孔で構成されており、図2の
(a) は下部ノズルの1/4の平面図、(b) は(a) のX−
X断面図である。
FIG. 1 is a schematic view of the lower nozzle of the PWR nuclear fuel assembly of the embodiment, and FIG. 2 is an explanatory view of the lower nozzle of FIG. Here, the lower surface of the support substrate is formed in a high arch shape toward the center, a through-flow port provided with a trap structure is arranged in the peripheral portion of the support substrate, and the trap structure has a large diameter connected by shifting the central axis. It is composed of drill holes of
(a) is a 1/4 plan view of the lower nozzle, (b) is X- of (a)
It is an X sectional view.

【0018】図1、図2において、PWR核燃料集合体
の下部ノズルは、一辺が約220mmの17×17型PW
R核燃料集合体に適用されるもので、支持基板Bの四隅
をそれぞれ足Aで支持して、支持基板Bに取り付けられ
るシンブル管を通じて支持基板Bに伝達される荷重を4
本の足Aに分散して、炉心側の支持板に伝達する。支持
基板Bの下面は中央に向かって高いア−チ状に形成さ
れ、ア−チは半径220mmの球面で構成され、中央部分
の厚みを従来の3/4の厚さとした。このとき、支持基
板Bの最外周部の厚みは中央部の約3倍となり、足Aを
含めた下部ノズル全体の長さは従来よりも5mm短くでき
た。
In FIGS. 1 and 2, the lower nozzle of the PWR nuclear fuel assembly is a 17 × 17 type PW having a side of about 220 mm.
It is applied to the R nuclear fuel assembly, and the four corners of the support substrate B are supported by the feet A, respectively, and the load transmitted to the support substrate B through the thimble tube attached to the support substrate B is 4
It is distributed to the legs A of the book and transmitted to the support plate on the core side. The lower surface of the support substrate B is formed in a shape of a high arch toward the center, and the arch is composed of a spherical surface having a radius of 220 mm, and the thickness of the central portion is 3/4 of the conventional thickness. At this time, the thickness of the outermost peripheral portion of the support substrate B was about three times that of the central portion, and the entire length of the lower nozzle including the foot A could be shortened by 5 mm as compared with the conventional one.

【0019】燃料棒の下端部に対向する支持基板Bの上
面は平坦で、支持基板Bには、合計21個のシンブル管
接続孔が規則的に配置され、シンブル管接続孔の間隔を
埋めて多数の流水孔E1、E2、E3が規則的に配置さ
れる。流水孔E1、E2、E3のうち、支持基板Bの中
央部には口径3mmの流水口E3、外縁部には口径10mm
の流水口E1、中間位置には口径5mmの流水口E2が配
置され、流水口E1および流水口E2の隙間を埋めて口
径3mmの流水口E3を配置して、従来と開口面積の割合
を揃えている。外縁部の流水口E1には、図2(b) に示
されるトラップ構造Gが設けられる。
The upper surface of the supporting substrate B facing the lower end of the fuel rod is flat, and a total of 21 thimble pipe connecting holes are regularly arranged in the supporting substrate B, and the intervals of the thimble pipe connecting holes are filled. A large number of water flow holes E1, E2, E3 are regularly arranged. Of the water flow holes E1, E2, E3, a water flow port E3 having a diameter of 3 mm is provided at the center of the support substrate B, and a diameter of 10 mm is provided at the outer edge.
The water outlet E1 and the water outlet E2 having a diameter of 5 mm are arranged at the intermediate position, and the gap between the water outlet E1 and the water outlet E2 is filled with the water outlet E3 having a diameter of 3 mm to make the ratio of the opening area the same as the conventional one. ing. A trap structure G shown in FIG. 2 (b) is provided at the water outlet E1 at the outer edge.

【0020】トラップ構造Gは、支持基板Bの下面側か
ら形成したキリ孔を支持基板Bの表面側から形成したキ
リ孔の複数個に接続する形式で、支持基板Bの下面側か
ら形成した大口径のキリ孔と支持基板Bの表面側から形
成した大口径のキリ孔とを支持基板Bの厚みの中間位置
で相互の中心軸をずらせて、径方向で口径の1/4が重
なるように連結して形成される。
The trap structure G is a type in which a perforation hole formed from the lower surface side of the support substrate B is connected to a plurality of perforation holes formed from the front surface side of the support substrate B, and is formed from the lower surface side of the support substrate B. The center hole of the bore hole and the bore hole of the large diameter formed from the front surface side of the support substrate B are displaced from each other at the middle position of the thickness of the support substrate B so that ¼ of the bore overlaps in the radial direction. It is formed by connecting.

【0021】このように構成されたPWR核燃料集合体
の下部ノズルの支持基板Bには、シンブル管からの加重
によって、その四隅に近づくほど大きな剪断荷重と曲げ
モ−メントが作用する。しかし、支持基板Bの下面を中
央に向かって高いア−チ状に形成して、支持基板Bの厚
みを四隅に近づくほど厚くしているので、強度計算の結
果、下部ノズルの圧縮強度は、長さを短くしたにもかか
わらず従来のものと同等であることが確認された。ま
た、流水抵抗計算の結果、下部ノズルの圧損は従来型と
同等であることが確認された。
On the supporting substrate B of the lower nozzle of the PWR nuclear fuel assembly constructed as described above, due to the weight from the thimble tube, a large shear load and bending moment act toward the four corners. However, since the lower surface of the supporting substrate B is formed in a high arch shape toward the center and the thickness of the supporting substrate B is made thicker toward the four corners, the result of strength calculation shows that the compressive strength of the lower nozzle is It was confirmed that it was equivalent to the conventional one even though the length was shortened. As a result of water flow resistance calculation, it was confirmed that the pressure loss of the lower nozzle was equivalent to that of the conventional type.

【0022】また、炉心運転中、冷却水に巻き込まれて
PWR核燃料集合体に流れ込む炉心の遊離固形物のうち
で、中口径の流水口E2よりも小さく、大口径の流水口
E1のトラップ構造Gの開口幅よりも大きいものが大口
径の流水口E1の内部および支持基板Bのア−チ状の天
井に補足されて、下部ノズルを貫流できず、炉心の遊離
固形物は、冷却水の流速が多少変化してもトラップ構造
Gおよび支持基板Bのア−チ状の天井の中心で安定した
補足状態を維持し、少なくとも隣接するPWR核燃料集
合体の間隔には流れ出さない。
In addition, among the free solids of the core that are entrained in the cooling water and flow into the PWR nuclear fuel assembly during the core operation, the trap structure G of the large-diameter flowing water port E1 is smaller than the medium-diameter flowing water port E2. Which is larger than the opening width of No. 2 is captured by the inside of the large-diameter water flow port E1 and the arch-shaped ceiling of the supporting substrate B and cannot flow through the lower nozzle. Even if it changes a little, the stable trapped state is maintained at the center of the arched ceiling of the trap structure G and the support substrate B, and the trap structure G and the support substrate B do not flow into at least the space between the adjacent PWR nuclear fuel assemblies.

【0023】本実施例では、支持基板Bと4本の足Aが
ア−チ状の天井部分を含めて一体に形成されるが、複数
の部品をネジ結合して組み立てる構造、例えば、支持基
板Bをトラップ構造Gの高さで分離し、4本の足Aとア
−チ状の天井の一部分で構成される部材と、該部材上に
ネジ止めされる一様な厚みの板部材とで構成してもよ
い。また、ア−チ状の天井部分は、連続した滑らかな曲
面である必要はなく、いくつかの平面の組み合わせや段
差を含んでもよい。
In this embodiment, the supporting board B and the four legs A are integrally formed including the arch-shaped ceiling portion. However, a structure in which a plurality of parts are screwed and assembled together, for example, the supporting board is used. B is separated at the height of the trap structure G, and is composed of a member composed of four legs A and a part of an arch-shaped ceiling, and a plate member having a uniform thickness screwed onto the member. You may comprise. Further, the arch-shaped ceiling portion does not have to be a continuous smooth curved surface, and may include a combination of several planes or a step.

【0024】[0024]

【発明の効果】請求項1のPWR核燃料集合体の下部ノ
ズルによれば、下部ノズルの支持基板に対して、強度と
冷却水の貫流状態を損なうことなくその厚みを減じるこ
とができ、下部ノズルの抵抗を減じて隣接するPWR核
燃料集合体との隙間を貫流する冷却水の割合を低く押え
ることができる。従って、PWR核燃料集合体を貫流す
る冷却水の流れ状態が改善され、万が一炉心内に遊離固
形物が発生しても、炉心の遊離固形物が支持基板下で拘
束されて燃料棒の位置に到達しにくくなる。
According to the lower nozzle of the PWR nuclear fuel assembly of the first aspect, it is possible to reduce the thickness of the supporting substrate of the lower nozzle without impairing the strength and the flowing state of the cooling water. Of the cooling water flowing through the gap between the adjacent PWR nuclear fuel assemblies can be suppressed to be low. Therefore, the flow state of the cooling water flowing through the PWR nuclear fuel assembly is improved, and even if free solid matter is generated in the core, the free solid matter in the core is bound under the support substrate and reaches the position of the fuel rod. Hard to do.

【0025】請求項2のPWR核燃料集合体の下部ノズ
ルによれば、支持基板の強度を大きく損なうことなく、
支持基板における冷却水の貫流抵抗を低下できる。
According to the lower nozzle of the PWR nuclear fuel assembly of claim 2, the strength of the supporting substrate is not significantly impaired,
The flow resistance of the cooling water in the support substrate can be reduced.

【0026】請求項3のPWR核燃料集合体の下部ノズ
ルによれば、下部ノズルの減じられた厚みの制約の中で
支持基板に遊離固形物の有効なトラップ構造を設けるこ
とができ、炉心の遊離固形物がトラップ構造で拘束され
て燃料棒の位置に到達しにくくなる。
According to the lower nozzle of the PWR nuclear fuel assembly of the third aspect, an effective trap structure for free solids can be provided on the supporting substrate within the reduced thickness constraint of the lower nozzle, and the free core is removed. The solid matter is restrained by the trap structure, making it difficult to reach the position of the fuel rod.

【0027】請求項4のPWR核燃料集合体の下部ノズ
ルによれば、下部ノズルにトラップ構造を容易に形成で
き、トラップ構造を設けても、トラップ構造による冷却
水の貫流孔の流路面積の減少が小さくて済むため下部ノ
ズルの抵抗(圧損)が大きくならない。
According to the lower nozzle of the PWR nuclear fuel assembly of claim 4, the trap structure can be easily formed in the lower nozzle, and even if the trap structure is provided, the flow passage area of the through-hole of the cooling water by the trap structure is reduced. The lower nozzle does not have a large resistance (pressure loss).

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のPWR核燃料集合体の下部ノズルの模
式図である。
FIG. 1 is a schematic view of a lower nozzle of a PWR nuclear fuel assembly of an example.

【図2】図1の下部ノズルの説明図である。FIG. 2 is an explanatory diagram of a lower nozzle of FIG.

【符号の説明】[Explanation of symbols]

A 足 B 支持基板 D シンブル管接続孔 G トラップ構造 E1 流水孔 E2 流水孔 E3 流水孔 A foot B support substrate D thimble tube connection hole G trap structure E1 water flow hole E2 water flow hole E3 water flow hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 その平坦な表面に配置された多数のシン
ブル管接続孔の間隔に多数の冷却水貫流孔を形成した支
持基板と、該支持基板の下面の四隅に配置されて該支持
基板を支持する脚部とを有するPWR核燃料集合体の下
部ノズルにおいて、前記支持基板の下面を中央に向かっ
て高い形状に形成し、前記支持基板の厚みを中央部で薄
く、該中央部の周囲部分で厚くしたことを特徴とするP
WR核燃料集合体の下部ノズル。
1. A support substrate having a large number of cooling water through holes formed at intervals between a large number of thimble pipe connection holes arranged on the flat surface, and the support substrate arranged at four corners of the lower surface of the support substrate. In a lower nozzle of a PWR nuclear fuel assembly having a supporting leg, a lower surface of the support substrate is formed in a shape higher toward a center, and the thickness of the support substrate is thin at a central portion, and a peripheral portion of the central portion is formed. P characterized by thickening
Lower nozzle of WR nuclear fuel assembly.
【請求項2】 請求項1のPWR核燃料集合体の下部ノ
ズルにおいて、前記冷却水貫流孔の口径を複数種類と
し、口径の大きなものを前記支持基板の周囲部分に配置
し、口径の小さなものを前記支持基板の内側部分に配置
したことを特徴とするPWR核燃料集合体の下部ノズ
ル。
2. The lower nozzle of the PWR nuclear fuel assembly according to claim 1, wherein the cooling water flow-through holes have a plurality of diameters, and those having a large diameter are arranged in the peripheral portion of the support substrate, and those having a small diameter are arranged. A lower nozzle of a PWR nuclear fuel assembly, wherein the lower nozzle is disposed on an inner portion of the supporting substrate.
【請求項3】 請求項1、2いずれかのPWR核燃料集
合体の下部ノズルにおいて、前記支持基板の周囲部分に
配置された冷却水の貫流孔に、該貫流孔の開口幅を途中
で縮小させてなるトラップ構造を設けたことを特徴とす
るPWR核燃料集合体の下部ノズル。
3. The lower nozzle of the PWR nuclear fuel assembly according to claim 1, wherein the opening width of the through hole is reduced in the middle of the through hole of the cooling water arranged in the peripheral portion of the support substrate. A lower nozzle of a PWR nuclear fuel assembly, which is provided with a trap structure comprising
【請求項4】 請求項3のPWR核燃料集合体の下部ノ
ズルにおいて、前記トラップ構造は、前記支持基板の下
面側から形成したキリ孔を前記支持基板の表面側から形
成したキリ孔の複数個に接続する形式で、前記支持基板
の下面側から形成したキリ孔と前記支持基板の表面側か
ら形成したキリ孔とを前記支持基板の厚みの中間位置で
相互の中心軸をずらせて連結してなることを特徴とする
PWR核燃料集合体の下部ノズル。
4. The lower nozzle of the PWR nuclear fuel assembly according to claim 3, wherein the trap structure has a plurality of drill holes formed from a lower surface side of the support substrate and a plurality of drill holes formed from a front surface side of the support substrate. In a form of connection, a perforation hole formed from the lower surface side of the support substrate and a perforation hole formed from the front surface side of the support substrate are connected by shifting their central axes at an intermediate position of the thickness of the support substrate. A lower nozzle of a PWR nuclear fuel assembly characterized in that:
JP4201802A 1992-07-07 1992-07-07 Nozzle under nuclear fuel assembly in pressurized water reactor Withdrawn JPH0627274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4201802A JPH0627274A (en) 1992-07-07 1992-07-07 Nozzle under nuclear fuel assembly in pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4201802A JPH0627274A (en) 1992-07-07 1992-07-07 Nozzle under nuclear fuel assembly in pressurized water reactor

Publications (1)

Publication Number Publication Date
JPH0627274A true JPH0627274A (en) 1994-02-04

Family

ID=16447171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4201802A Withdrawn JPH0627274A (en) 1992-07-07 1992-07-07 Nozzle under nuclear fuel assembly in pressurized water reactor

Country Status (1)

Country Link
JP (1) JPH0627274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093487A1 (en) * 2014-12-11 2016-06-16 한전원자력연료 주식회사 Lower end fixing body for improving flow path resistance of in-core detector
WO2018098703A1 (en) * 2016-11-30 2018-06-07 中广核研究院有限公司 Fuel assembly and tube base thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093487A1 (en) * 2014-12-11 2016-06-16 한전원자력연료 주식회사 Lower end fixing body for improving flow path resistance of in-core detector
US10403406B2 (en) 2014-12-11 2019-09-03 Kepco Nuclear Fuel Co., Ltd. Lower end fixing body for improving flow path resistance of in-core detector
WO2018098703A1 (en) * 2016-11-30 2018-06-07 中广核研究院有限公司 Fuel assembly and tube base thereof

Similar Documents

Publication Publication Date Title
US6608880B2 (en) Reduced pressure drop debris filter bottom nozzle for a fuel assembly of a nuclear reactor
US4828791A (en) Nuclear fuel assembly debris resistant bottom nozzle
JP2642761B2 (en) Fuel bundles for boiling water reactors
EP0260602B1 (en) Intermediate flow mixing nonsupport grid for boiling water reactor fuel assembly
JPH0229919B2 (en)
JP7568653B2 (en) DEBRIS FILTER DEVICE FOR A BOTTOM NOZZLE OF A NUCLEAR FUEL ASSEMBLIES AND BOTTOM NOZZLE COMPRISING THE SAME - Patent application
JPH08179070A (en) Fuel assembly for pressurised water reactor
JPH0128357B2 (en)
US4659543A (en) Cross brace for stiffening a water cross in a fuel assembly
JP2010513851A (en) Bottom end piece having an anti-debris device with a baffle for a nuclear fuel assembly and the nuclear fuel assembly
US4649021A (en) BWR fuel assembly with water flow mixing chamber at fuel bundle/water cross entrance
JPS60162985A (en) Fuel aggregate
JPH0627274A (en) Nozzle under nuclear fuel assembly in pressurized water reactor
EP0319744B1 (en) Fuel-rod mini-bundle for use in a bwr fuel assembly
JP2007507700A (en) Nuclear fuel assemblies with lattice reinforcement devices and use of such devices in nuclear fuel assemblies
US4738819A (en) Boiling water nuclear reactor fuel assembly with cross-flow elimination at upper spacer locations
JPH04232895A (en) Guide-tube inserted-material assembly in in-pile structure assembly
EP0200111B1 (en) Improved boiling water nuclear reactor fuel assembly
US5483565A (en) Fuel assembly for a boiling water reactor
JP2003533683A5 (en)
JP6758307B2 (en) Fuel assembly for boiling water reactors
EP1012851B1 (en) Nuclear fuel assembly
JP2740660B2 (en) Fuel assembly
JP3977979B2 (en) Fuel assembly
JP3035276B1 (en) Reactor vessel core support structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005