JPH06272715A - Rolling member - Google Patents

Rolling member

Info

Publication number
JPH06272715A
JPH06272715A JP5085617A JP8561793A JPH06272715A JP H06272715 A JPH06272715 A JP H06272715A JP 5085617 A JP5085617 A JP 5085617A JP 8561793 A JP8561793 A JP 8561793A JP H06272715 A JPH06272715 A JP H06272715A
Authority
JP
Japan
Prior art keywords
coating
ball
rolling member
rolling
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5085617A
Other languages
Japanese (ja)
Other versions
JP3705827B2 (en
Inventor
Mitsuyoshi Koshizuka
充欣 越塚
Takeshi Saito
剛 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP08561793A priority Critical patent/JP3705827B2/en
Publication of JPH06272715A publication Critical patent/JPH06272715A/en
Application granted granted Critical
Publication of JP3705827B2 publication Critical patent/JP3705827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6696Special parts or details in view of lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Abstract

PURPOSE:To form a lubricating film on a rolling member that has a long life and has been enhanced in reliability without dispersion in the load-resisting performance. CONSTITUTION:When a lubricating film by means of molybdenum disulfide MoS2 is formed on a rolling member such as a screw spindle of a ball screw, ball nut and ball, inner or outer race and ball of a rolling bearing, a high frequency voltage is applied both to the electrode 21 of the base table 22 on which a rolling member W has been placed and to the electrode 23 arranged thereabove so as to be opposite to the electrode 21 through a high-frequency power supply 24; thereby ion bombardment is carried out, for example, for 60 minutes or more for cleaning the rolling member W. Then, the polarities of the electrodes 21 and 23 are reversed, and prespattering is carried out while inserting a shutter between the electrode 23 and the rolling member W, for cleaning a target T, and further after the shutter has been removed, regular spattering is carried out while keeping the rolling member W at a temperature below 50 deg.C, so that a film in which the molecular weight ratio S/Mo of MoS2 is 1.7 or more and is less than 2.0 and whose thickness is approximately 1mum is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、宇宙機器や、半導体製
造装置などの大気、真空、特殊環境下で用いられるころ
がり軸受や、ボールネジなどのころがり要素に適用する
転動部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to rolling bearings used in space equipment, semiconductor manufacturing equipment and the like in the atmosphere, vacuum and special environments, and rolling members such as ball screws.

【0002】[0002]

【従来の技術】従来の転動部材としてのころがり軸受と
しては、例えば本出願人が先に提案した特開平2−24
5514号公報に開示されているものがある。この従来
例は、外輪と、内輪と、その外輪及び内輪間に介装され
た複数の転動体と、該転動体を円周方向に等分に分割保
持する保持器とからなるころがり軸受において、前記外
輪、内輪、転動体のうち少なくとも転動体に二硫化モリ
ブデン(MoS2 )でなる潤滑性膜がスパッタリング手
段で形成され、保持器を直鎖ポリフェニレンサルファイ
ドをマトリックスとし少なくともフッ素樹脂を10〜6
0wt%含んで構成することにより、滑りを伴う転動体と
保持器との双方に潤滑性が付与され、十分な潤滑性能が
得られて低トルク、長寿命化を達成することができるも
のである。
2. Description of the Related Art As a conventional rolling bearing as a rolling member, for example, Japanese Patent Application Laid-Open No. 2-24 previously proposed by the present applicant.
There is one disclosed in Japanese Patent No. 5514. This conventional example is an outer ring, an inner ring, a plurality of rolling elements interposed between the outer ring and the inner ring, and a rolling bearing consisting of a cage that divides and holds the rolling elements equally in the circumferential direction, A lubricating film made of molybdenum disulfide (MoS 2 ) is formed on at least the rolling elements of the outer ring, the inner ring and the rolling elements by sputtering means, and the cage is made of linear polyphenylene sulfide as a matrix and at least the fluororesin of 10 to 6 is used.
By including 0 wt%, lubricity is imparted to both the rolling elements and the cage that are slippery, sufficient lubricating performance is obtained, and low torque and long life can be achieved. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のころがり軸受にあっては、単に二硫化モリブデンス
パッタリング法を用いて、成膜した潤滑被膜において、
スパッタの成膜条件と滑り寿命及び表面形態、組成比、
配向性等との関係については述べられてきたが、ころが
り寿命と表面形状、組成比、配向性との関係については
検討がなされていないのが現状であり、そのために最適
な被膜性状が明らかでなかったことにより耐荷重性能に
ばらつきがあり寿命及び信頼性に問題があるという未解
決の課題がある。
However, in the above-mentioned conventional rolling bearing, in the lubricating coating formed by simply using the molybdenum disulfide sputtering method,
Film forming conditions of spatter, sliding life, surface morphology, composition ratio,
Although the relationship with orientation, etc. has been described, the relationship between rolling life and surface shape, composition ratio, and orientation has not been studied at the present time. There is an unsolved problem that load bearing performance varies due to the absence of the above, and there is a problem in life and reliability.

【0004】すなわち、日本潤滑学会トライボロジー会
議(福岡)予稿集(1991)563頁、航空宇宙研究
所報告書TR−903に記載されているように、固体潤
滑膜であるMoS2 スパッタ膜の摩耗寿命は、洗浄方法
やイオンポンバード処理等により影響を受けることが記
載されているが、それらの処理方法と被膜の表面形態や
配向性については言及していない。
That is, as described in Proceedings of Tribology Conference of Japan Society of Lubrication (Fukuoka) (1991), page 563, and Aerospace Laboratory Report TR-903, the wear life of MoS 2 sputtered film which is a solid lubricating film. Is described to be affected by a cleaning method, an ion pumping treatment, etc., but those treatment methods and the surface morphology and orientation of the coating are not mentioned.

【0005】そこで、本発明は、上記従来例の未解決の
課題に着目してなされたものであり、耐荷重性能にばら
つきがなく長寿命で且つ信頼性を向上させることができ
る転動部材を提供することを目的としている。
Therefore, the present invention has been made by paying attention to the unsolved problem of the above-mentioned conventional example, and provides a rolling member which has no variation in load-carrying performance, has a long life, and can improve reliability. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る転動部材は、相手部材が転動接触する
転動面に二硫化モリブデンをコーティングして形成した
潤滑被膜を有する転動部材において、前記潤滑被膜は、
硫黄とモリブデンの分子量比S/Moが1.7以上2.
0未満に選定された組成を有する二硫化モリブデン被膜
で形成されていることを特徴としている。
In order to achieve the above object, the rolling member according to the present invention has a lubricating coating formed by coating molybdenum disulfide on the rolling surface with which the mating member makes rolling contact. In the rolling member, the lubricating coating is
1. The molecular weight ratio S / Mo of sulfur and molybdenum is 1.7 or more.
It is characterized by being formed of a molybdenum disulfide film having a composition selected to be less than 0.

【0007】[0007]

【作用】本発明においては、潤滑被膜を構成する二硫化
モリブデンの分子量比S/Moを1.7以上2.0未満
に選定しており、これによって丘状で緻密な潤滑被膜を
形成することができ、耐荷重性能が向上し、被膜寿命が
伸びて安定化して信頼性を向上させることができる。そ
して、二硫化モリブデンの分子量比S/Moを1.7未
満とすると、表面形状が丘状で緻密な被膜とはならず、
よれよれの短繊維状即ちウォーム(worm)状で粗と
なる潤滑被膜となり、耐荷重性能が低下し、寿命も短く
なり、一方現在のスパッタ法では硫黄Sが飛んでしまう
ので、二硫化モリブデンの分子量比S/Moを丁度2.
0とすることは困難であり、分子量比S/Moを限りな
く2.0に近づく程丘状で緻密な潤滑被膜を形成するこ
とができる。
In the present invention, the molecular weight ratio S / Mo of molybdenum disulfide constituting the lubricating coating is selected to be 1.7 or more and less than 2.0, whereby a hilllike and dense lubricating coating is formed. Therefore, the load bearing performance is improved, the coating life is extended and stabilized, and the reliability can be improved. When the molecular weight ratio S / Mo of molybdenum disulfide is set to less than 1.7, the surface shape does not become a hill-like dense film,
It is a wavy short fiber, that is, a worm-like and rough lubricating film, which reduces load bearing performance and shortens the service life. On the other hand, sulfur S is blown out by the current sputtering method, so the molecular weight of molybdenum disulfide is reduced. The ratio S / Mo is exactly 2.
It is difficult to set it to 0, and as the molecular weight ratio S / Mo approaches 2.0 as much as possible, a hill-shaped and dense lubricating coating can be formed.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1及び図2は本発明を適用したボールネジ1及
びころがり軸受10を夫々示し、ボールネジ1はステン
レス鋼(SUS630)で製作されたネジ軸2のネジ溝
部2aと、ステンレス鋼(SUS440C)で製作され
たボールナット3に収納されたボール4の全周に分子量
比S/Moを1.7以上2.0未満とした二硫化モリブ
デン(以下、MoS2 と称す)でなる潤滑被膜がスパッ
タリング処理によってコーティングされており、また、
ころがり軸受10は少なくとも夫々ステンレス鋼(SU
S440C)で製作された外輪11の内周側軌道面、内
輪12の外周側軌道面、外輪11及び内輪12間に介装
されたボール13の全周に夫々分子量比S/Moを1.
7以上2.0未満としたMoS2 でなる潤滑被膜がスパ
ッタリング処理によってコーティングされ、ボール13
が保持器14で所定間隔に保持されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 respectively show a ball screw 1 and a rolling bearing 10 to which the present invention is applied. The ball screw 1 is made of a stainless steel (SUS630) screw shaft 2 having a thread groove 2a and a stainless steel (SUS440C). A lubricating film made of molybdenum disulfide (hereinafter referred to as MoS 2 ) having a molecular weight ratio S / Mo of 1.7 or more and less than 2.0 is coated on the entire circumference of the ball 4 housed in the ball nut 3 by a sputtering process. Has been done,
The rolling bearings 10 are at least made of stainless steel (SU
The molecular weight ratio S / Mo is 1. on the inner circumference side raceway surface of the outer ring 11, the outer circumference side raceway surface of the inner ring 12, and the entire circumference of the ball 13 interposed between the outer ring 11 and the inner ring 12 manufactured in S440C).
A lubricating coating made of MoS 2 of 7 or more and less than 2.0 is coated by the sputtering process,
Are held by the cage 14 at predetermined intervals.

【0009】ここで、MoS2 のスパッタリング処理
は、図3に示すようにな高周波マグネトロンスパッタリ
ング装置20を用いて行った。この高周波マグネトロン
スパッタリング装置20は、電極21を備えた基台22
上に被スパッタリング部材Wを置き、これにターゲット
Tとして例えばMoS2 を備えた電極23を対置すると
共に、両電極21及び23間に例えば13.56MHz
の高周波電源24を接続し、基台22及びアノード電極
21に個別に冷却媒体が流通される冷却路25,26を
設けた構成を有する。なお、図3において、27は真空
ロータリポンプ28及びターボ分子ポンプ29を備えた
排気システム、30はアルゴンボンベ、31は真空計で
ある。
The MoS 2 sputtering process was performed using a high frequency magnetron sputtering apparatus 20 as shown in FIG. This high-frequency magnetron sputtering apparatus 20 includes a base 22 provided with an electrode 21.
A member W to be sputtered is placed on the upper surface of which an electrode 23 having, for example, MoS 2 as a target T is placed in opposition thereto, and, for example, 13.56 MHz is placed between both electrodes 21 and 23.
The high frequency power source 24 is connected to the base 22 and the anode electrode 21, and cooling passages 25 and 26 through which a cooling medium flows are individually provided. In FIG. 3, 27 is an exhaust system including a vacuum rotary pump 28 and a turbo molecular pump 29, 30 is an argon cylinder, and 31 is a vacuum gauge.

【0010】そして、上記高周波マグネトロンスパッタ
リング装置に、被スパッタリング部材Wをセットした状
態で、まず、圧力0.8Paの低圧アルゴン雰囲気中
で、電極21をカソード、電極23をアノードとして、
これら間に800Wの高周波電力を供給して低圧グロー
放電を行わせて180分のイオンボンバード(逆スパッ
タ)を行わせて被スパッタリング部材Wのクリーニング
を行い、次いで電極21及び電極23の極性を反転させ
ると共に、ターゲットTと被スパッタリング部材Wとの
間距離を70mmにセットし、0.67Paの低圧アルゴ
ン雰囲気中で、高周波電力密度を3.30w/cm2 とし且
つターゲットT及び被スパッタリング部材W間にシャッ
ターを介挿して30分間のプリスパッタを行ってターゲ
ットTをクリーニングしてから、シャッターを除去して
10分間の本スパッタを行い、被スパッタリング部材W
に膜厚0.3〜1.0μmの分子量比S/Moが1.7
以上2.0未満のMoS2 被膜を成膜した。この本スパ
ッタ時には、被スパッタリング部材Wの温度は50℃以
下に制御した。
Then, with the member W to be sputtered set in the high frequency magnetron sputtering apparatus, first, in a low pressure argon atmosphere with a pressure of 0.8 Pa, the electrode 21 is used as a cathode and the electrode 23 is used as an anode.
A high-frequency power of 800 W is supplied between them to perform low-pressure glow discharge, ion bombarding (reverse sputtering) for 180 minutes to clean the member W to be sputtered, and then reversing the polarities of the electrodes 21 and 23. In addition, the distance between the target T and the member W to be sputtered is set to 70 mm, the high frequency power density is set to 3.30 w / cm 2 in a low pressure argon atmosphere of 0.67 Pa, and the distance between the target T and the member W to be sputtered is set. After the target T is cleaned by pre-sputtering for 30 minutes by inserting a shutter into the substrate, the shutter is removed and main sputtering is performed for 10 minutes.
And the molecular weight ratio S / Mo of the film thickness 0.3 to 1.0 μm is 1.7.
A MoS 2 coating having a thickness of not less than 2.0 was formed. During this main sputtering, the temperature of the member W to be sputtered was controlled to 50 ° C. or lower.

【0011】そして、上記スパッタリング処理によって
形成されるMoS2 被膜の耐久寿命を図4に示す真空中
ボールオンディスク試験機で試験するために、材質がス
テンレス鋼(SUS440C)で、直径52mm、厚さ
10mmの円板を3つ用意し、これらの内2つに夫々上
記スパッタリング処理を行って分子量比S/Moが1.
9及び1.7で膜厚1μmのMoS2 被膜を形成した試
験片(以下、実施例1及び実施例2と称す)を形成する
と共に、分子量比S/Moが1.6で且つ本スパッタ時
の被スパッタリング部材Wとしての円板の温度を150
℃近傍に制御してMoS2 被膜を形成した試験片(以
下、比較例と称す)を形成し、これらを真空中ボールオ
ンディスク試験機40で寿命試験を行った。
Then, in order to test the durability life of the MoS 2 coating formed by the above-mentioned sputtering treatment with the ball-on-disk tester in vacuum shown in FIG. 4, the material is stainless steel (SUS440C), the diameter is 52 mm, and the thickness is 52 mm. Three 10 mm discs were prepared, and two of these were subjected to the above-mentioned sputtering treatment so that the molecular weight ratio S / Mo was 1.
Test pieces (hereinafter referred to as Example 1 and Example 2) on which a MoS 2 coating film having a thickness of 1 μm was formed at 9 and 1.7 were formed, and the molecular weight ratio S / Mo was 1.6 and during the main sputtering. The temperature of the disk as the member W to be sputtered is 150
A test piece (hereinafter referred to as a comparative example) on which a MoS 2 coating was formed was formed by controlling the temperature to around 0 ° C., and a life test was performed on this in a ball-on-disk tester 40 in vacuum.

【0012】ここで、真空中ボールオンディスク試験機
40は、図4に示すように、真空度が10-4〜10-5
aに制御された真空チャンバー41内に、回転軸42が
軸受43によって回転自在に支持された回転ワークテー
ブル44が回転自在に配設され、この回転ワークテーブ
ル44に試験片Wを載置し、この試験片Wの上面側に試
験片と同一材質の5/16インチのボール45を重り4
6及びバランス重り47で調節された垂直荷重9.8N
で押下するように構成され、回転軸42が磁性流体シー
ルユニット48を介してモータ49に連結されてボール
45に対する滑り速度が1.5m/sとなるように回転
駆動され、そのときのボール45と試験片Wとの摩擦係
数即ち接触抵抗に応じたトルクをロードセル50で検出
する。
Here, the in-vacuum ball-on-disk testing machine 40 has a vacuum degree of 10 -4 to 10 -5 P as shown in FIG.
A rotary work table 44 having a rotary shaft 42 rotatably supported by a bearing 43 is rotatably disposed in a vacuum chamber 41 controlled by a, and a test piece W is placed on the rotary work table 44. On the upper surface side of the test piece W, a 5/16 inch ball 45 made of the same material as that of the test piece is weighted 4
Vertical load adjusted by 6 and balance weight 47 9.8N
The rotary shaft 42 is connected to the motor 49 via the magnetic fluid seal unit 48 and is rotationally driven so that the sliding speed with respect to the ball 45 is 1.5 m / s. The load cell 50 detects the torque according to the friction coefficient between the test piece W and the test piece W, that is, the contact resistance.

【0013】この真空中ボールオンディスク試験機に前
記実施例1、実施例2及び比較例を夫々セットして、試
験を行い摩擦係数が0.2を超えるまでの総回転数を被
膜寿命として測定し、その測定結果を下記表1に示す。
The above-mentioned ball-on-disk tester in vacuum was set in each of Examples 1 and 2 and Comparative Example, and tests were conducted to measure the total number of revolutions until the friction coefficient exceeded 0.2 as the coating life. The measurement results are shown in Table 1 below.

【0014】[0014]

【表1】 この表1から明らかなように、実施例1及び実施例2の
被膜寿命が比較例に比べて格段に長く、特にMoS2
分子量比S/Moが2.0に近い実施例1の方が被膜寿
命が5.0×105 と分子量比S/Moが1.7である
実施例2の2.5×105 に比べてより長くなってお
り、分子量比S/Moが2.0に近い程寿命が長くなる
ことが実証された。
[Table 1] As is clear from Table 1, the coating life of Examples 1 and 2 is significantly longer than that of Comparative Example, and in particular, Example 1 has a MoS 2 molecular weight ratio S / Mo close to 2.0. The coating life is 5.0 × 10 5, and the molecular weight ratio S / Mo is 1.7, which is longer than 2.5 × 10 5 in Example 2, and the molecular weight ratio S / Mo is 2.0. It was proved that the shorter the life, the longer the life.

【0015】また、前述したスパッタリング処理におけ
るイオンボンバード時間とMoS2被膜の耐久寿命との
関係を調べるために、イオンボンバード時間を20分、
60分及び180分とした実施例と比較例とについて、
真空中ボールオンディスク試験機によって耐久寿命試験
を行った結果、図5に示すように、イオンボンバードを
60分以上行った実施例のMoS2 被膜の耐久寿命は
1.8〜2.6×105revでばらつきが少ないのに
対して、比較例被膜では最も長いもので6.3×104
rev程度であり、平均値で比べると、実施例被膜は比
較例被膜に対して6倍以上耐久寿命が向上している。ま
た、イオンボンバードについては20分程度では、寿命
のばらつきも大きく、60分以上イオンボンバードした
実施例被膜と比べて寿命が短いことから、イオンポンバ
ード時間は60分以上が好ましい。
Further, in order to investigate the relationship between the ion bombardment time in the above-mentioned sputtering process and the durability life of the MoS 2 coating, the ion bombardment time was 20 minutes,
About the example and the comparative example which were 60 minutes and 180 minutes,
As a result of performing a durability life test by a ball-on-disk tester in vacuum, as shown in FIG. 5, the durability life of the MoS 2 coating of the example subjected to ion bombardment for 60 minutes or more is 1.8 to 2.6 × 10. There is little variation at 5 rev, whereas the comparative example has the longest length of 6.3 × 10 4
It is about rev, and when compared with the average value, the durability coating of the example coating is 6 times or more that of the comparative coating. Further, when the ion bombardment is about 20 minutes, the variation of the life is large, and the life is shorter than that of the example coating which is ion bombarded for 60 minutes or more. Therefore, the ion bombardment time is preferably 60 minutes or more.

【0016】さらに、実施例1、実施例2及び比較例に
ついて、その表面形態を走査型電子顕微鏡を使用して加
速電圧15kV,20000倍で観察すると、実施例1
及び実施例2については、図6に示すように、丘状で緻
密な表面形態となっており、比較例については、図7に
示すように、よれよれの短繊維状即ちウォーム(Wor
m)状で粗となっている。
Further, the surface morphology of Examples 1 and 2 and Comparative Example was observed with a scanning electron microscope at an accelerating voltage of 15 kV and 20000 times.
As shown in FIG. 6, the hill-like and dense surface morphology of Example 2 is shown, and the comparative example is shown in FIG.
m) -like and rough.

【0017】さらに、実施例1、実施例2及び比較例に
ついて、その被膜の結晶構造を薄膜用X線回折装置を用
いて、X線の入射角を2°、X線源としてはCuKα線
を使用し、管電圧40kV、管電流300mAとして回
折した結果、実施例1のX線回折パターンは、図8に示
すように、六方晶MoS2 の(002)、(100)、
(110)で夫々回折ピークが観察され、特に(00
2)面が強く配向されていることが分かり、比較例のX
線回折パターンは、図9に示すように、(002)面の
回折ピークが小さいことが判明し、X線回折による配向
性を判断するために、(002)面と(100)面との
X線強度比(面積比)(002)/(100)を各実施
例1、実施例2及び比較例について求めた結果を前述し
た表1に示す。
Further, regarding Example 1, Example 2 and Comparative Example, the crystal structure of the film was measured by using an X-ray diffractometer for a thin film, the incident angle of X-ray was 2 °, and CuKα-ray was used as the X-ray source. As a result of using it and diffracting it with a tube voltage of 40 kV and a tube current of 300 mA, the X-ray diffraction pattern of Example 1 shows that hexagonal MoS 2 (002), (100),
Diffraction peaks were observed at (110), especially (00
2) It was found that the planes were strongly oriented, and X in the comparative example
In the line diffraction pattern, as shown in FIG. 9, it was found that the diffraction peak of the (002) plane was small, and in order to judge the orientation by X-ray diffraction, the X of the (002) plane and the (100) plane were determined. The line intensity ratio (area ratio) (002) / (100) obtained for each of Example 1, Example 2 and Comparative Example is shown in Table 1 described above.

【0018】したがって、表1で明らかなように、Mo
2 の分子量比S/Moが1.7以上2.0未満とする
ことにより、表面形態が丘状組織で且つ緻密な被膜を成
膜することができると共に、被膜寿命も格段に向上させ
ることができることが判明し、また、X線回折における
X線強度比(002)/(100)を1.0以上とし
て、(002)面を優先配向することにより、荷重方向
に対してスリップ面が垂直になる割合が多くなり耐荷重
性能が上がり被膜寿命が伸び、安定化する。
Therefore, as is clear from Table 1, Mo
By setting the molecular weight ratio S / Mo of S 2 to be 1.7 or more and less than 2.0, it is possible to form a dense coating with a hilllike surface morphology and to significantly improve the coating life. It was found that the slip plane is perpendicular to the loading direction by preferentially orienting the (002) plane with the X-ray intensity ratio (002) / (100) in X-ray diffraction of 1.0 or more. Is increased, the load-bearing performance is increased, and the coating life is extended and stabilized.

【0019】さらに、スパッタ装置での本スパッタ時の
被スパッタリング部材Wの温度を50℃以下に維持する
ことにより、表面形態が丘状で緻密となる成膜を行うこ
とができ、被スパッタリング部材Wの温度が50℃を越
えると、表面形態が崩れる影響が出始め、冷却を行わな
い通常のスパッタリング時のように、100℃以上とな
ると図7に示すようにウォーム状で粗となる。ここで、
被スパッタリング部材Wの温度は、低い程(例えば室
温)よいが、冷却装置が大型化し、冷却媒体も多く必要
とするので、製造コストが嵩むため、50℃以下が好ま
しい。
Further, by maintaining the temperature of the member W to be sputtered at the time of main sputtering in the sputtering apparatus at 50 ° C. or less, it is possible to form a film having a hill-like surface morphology and a dense member W. When the temperature exceeds 50 ° C., the surface morphology begins to be affected, and when the temperature is 100 ° C. or higher as in the case of normal sputtering without cooling, it becomes worm-like and rough. here,
The temperature of the member W to be sputtered is preferably as low as possible (for example, room temperature), but the cooling device becomes large and a large amount of cooling medium is required.

【0020】次に、上述したMoS2 被膜を成膜するス
パッタリング処理によってアンギュラ玉軸受の外輪、内
輪及び転動体に分子量比S/Moが1.7以上2.0未
満のMoS2 でなる0.5μmの潤滑被膜を成膜し、且
つ保持器としてPTFE系自己潤滑保持器を適用して、
内径8mm、外径22mm、幅7mm、接触角30°の
アンギュラ玉軸受を組立て、このアンギュラ玉軸受を図
10に示す真空中軸受試験装置を使用して、真空中にお
いて軸受の性能評価試験を行い、特に軸受のトルク変動
とそれに伴う潤滑材の挙動について調べ、MoS2 被膜
の真空中での摩耗寿命を求め、さらにMoS2 被膜の摩
耗寿命に及ぼす回転数、作動パターン、アキシァル荷重
の影響を考察した。
Next, the outer ring of the angular contact ball bearing by a sputtering process for forming the MoS 2 coating described above, the inner ring and the molecular weight ratio S / Mo in the rolling element is in MoS 2 is less than 1.7 to 2.0 0. Applying a PTFE self-lubricating cage as a cage by forming a lubricating film of 5 μm,
An inner diameter of 8 mm, an outer diameter of 22 mm, a width of 7 mm, and a contact angle of 30 ° were assembled, and this angular contact ball bearing was subjected to a bearing performance evaluation test in vacuum using the vacuum bearing test device shown in FIG. , Especially the torque fluctuation of the bearing and the behavior of the lubricant accompanying it were investigated, the wear life of the MoS 2 coating in vacuum was determined, and the influence of the rotational speed, operating pattern, and axial load on the wear life of the MoS 2 coating was examined. did.

【0021】ここで、図10の真空中軸受試験装置50
は、真空度3×10-5Pa以下とし、温度を常温とした
真空チャンバー51内に水平方向に延長する回転軸52
が軸受装置53で支持されて回転自在に配設され、この
回転軸52に2組の試験軸受54a,54bが装着され
ていると共に、これら試験軸受54a,54bに対して
スプリング55によって100Nのアキシァル荷重を作
用させ、試験軸受54a,54bの外輪に外嵌した円筒
体56に固着した回動アーム57の先端を微小荷重変換
器58に当接され、この微小荷重変換器58で、前記回
転軸42を磁性流体シールユニット59でシールして真
空チャンバー51外に延長し、その端部に取付けたプー
リ60をベルト61を介して駆動モータ62の回転軸に
固定したプーリ63に連結することにより、500rp
mで回転駆動したときの試験軸受54a,54bの外輪
に生じるトルクが検出される。
Here, the in-vacuum bearing testing device 50 shown in FIG.
Is a rotary shaft 52 extending horizontally in a vacuum chamber 51 having a vacuum degree of 3 × 10 −5 Pa or less and a temperature of room temperature.
Is supported by a bearing device 53 and is rotatably disposed. Two sets of test bearings 54a and 54b are mounted on the rotary shaft 52, and a 100N axial force is applied to the test bearings 54a and 54b by a spring 55. A tip of a rotating arm 57 fixed to a cylindrical body 56 fitted to the outer rings of the test bearings 54a, 54b is brought into contact with a minute load converter 58 by applying a load, and the minute load converter 58 causes the rotary shaft to rotate. 42 is sealed with the magnetic fluid seal unit 59 to extend to the outside of the vacuum chamber 51, and the pulley 60 attached to the end thereof is connected to the pulley 63 fixed to the rotary shaft of the drive motor 62 via the belt 61. 500 rp
The torque generated in the outer rings of the test bearings 54a and 54b when driven to rotate at m is detected.

【0022】そして、試験軸受の作動パターンとして
は、正逆回転で、800回転正転後30秒停止し、その
後800回転逆転後30秒停止し、これを1サイクルと
して繰り返した。この結果、アキシァル荷重100N,
回転数500rpmで正逆転した時の動トルクの推移は
図11に示すようになり、総回転数が6.8×10re
vまでは、トルクか1×10-3Nm程度と低く安定した
値を示し、さらに1.2×106revまでは1〜15
×10-3NM程度の大きな変動を示す、その後トルク
は、1〜2×10-3Nm程度の安定した値を示す。
As the operation pattern of the test bearing, forward and reverse rotations were carried out after 800 rotations were stopped for 30 seconds after normal rotation, and thereafter were stopped for 30 seconds after 800 rotations were reversed, which was repeated as one cycle. As a result, an axial load of 100N,
The transition of the dynamic torque at the time of normal and reverse rotation at a rotation speed of 500 rpm is as shown in FIG. 11, and the total rotation speed is 6.8 × 10re.
Up to v, it shows a stable value as low as torque or 1 × 10 −3 Nm, and 1 to 15 up to 1.2 × 10 6 rev.
It shows a large fluctuation of about × 10 -3 NM, and then the torque shows a stable value of about 1 to 2 × 10 -3 Nm.

【0023】次に、前記二硫化モリブデン被膜を施した
アンギュラ玉軸受にPTFE計自己潤滑保持器を組込み
PTFEの挙動を観察する。図11において、トルク変
動の原因がMoS2 被膜による潤滑から保持器のPTF
Eによる潤滑へ移行するものであると考え、図11中の
,,及びの矢印のところで一端試験を中断し、
ボールの表面を波長分散型のEPMA分析を行ったとこ
ろ、Mo,S,Fの特性X線強度の変化を総回転数を追
って示すと図12に示す結果が得られた。この図12に
よれば、トルクが低く安定している時の潤滑の主役はM
oS2 であり、MoS2 被膜が摩耗によりなくなるとP
TFEの転移膜潤滑が始まる。なお、,で見られる
Mo,Sのピークは、保持器材料に含まれるMoS2
起因している。PTFE転移膜潤滑の初期は、潤滑が不
十分で大きなトルク変動を起こすが、潤滑剤がボールか
ら軌道面に十分供給されると、トルクは低く安定した値
を示す。ここで、PTFE転移膜による潤滑が始まるま
での総回転数をLC とすると、この総回転数LC はMo
2 被膜の摩耗寿命を表しており、図11の場合、総回
転数LC は6.8×105 revとなることがわかる。
Next, a PTFE meter self-lubricating cage is incorporated into the angular contact ball bearing coated with the molybdenum disulfide coating, and the behavior of PTFE is observed. In FIG. 11, the cause of torque fluctuation is due to lubrication by the MoS 2 coating due to the PTF of the cage.
Considering that the lubrication by E will be performed, the test is temporarily stopped at the arrows indicated by ,, and in FIG.
When wavelength-dispersive EPMA analysis was performed on the surface of the ball, changes in the characteristic X-ray intensities of Mo, S, and F were shown along with the total number of revolutions, and the results shown in FIG. 12 were obtained. According to FIG. 12, the main character of lubrication when the torque is low and stable is M
It is oS 2 , and when the MoS 2 coating disappears due to wear, P
TFE transition film lubrication begins. In addition, the peaks of Mo and S seen at are due to MoS 2 contained in the cage material. At the initial stage of the PTFE transition film lubrication, the lubrication is insufficient and a large torque fluctuation occurs, but when the lubricant is sufficiently supplied from the balls to the raceway surface, the torque shows a low and stable value. Here, when the total number of revolutions before lubrication by the PTFE transition film starts is L C , the total number of revolutions L C is Mo.
This shows the wear life of the S 2 coating, and in the case of FIG. 11, it can be seen that the total number of revolutions L C is 6.8 × 10 5 rev.

【0024】また、アキシァル荷重100N,回転数1
00〜1000rpmで正逆転回転及び一方回転したと
きのMoS2 被膜の摩耗寿命を表す総回転数LC の変化
を図13に示す。この図13からMoS2 被膜の摩耗寿
命は回転数や作動パターンに殆ど影響されないことがわ
かる。さらに、回転数100rpmの正逆回転におい
て、アキシァル荷重を60〜500Nに変化させたとき
のMoS2 被膜の摩耗寿命を表す総回転数LC の変化
は、図14に示すように、アキシァル荷重の増加ととも
に単調に減少している。ここで、総回転数LC は軸受の
寿命を表しているわけではないので、それ以後はPTF
E転移膜潤滑により、寿命に至るまで回転することにな
る。なお、最大接触面圧880MPa(ここではアキシ
ァル荷重60Nに相当)、回転数2000rpmでの真
空中での耐久試験において、1×108 rev以上の耐
久寿命があることが試験によって確認されている。
Further, the axial load is 100 N and the rotation speed is 1
FIG. 13 shows changes in the total number of revolutions L C , which represents the wear life of the MoS 2 coating when it is rotated in the normal and reverse directions at 0 to 1000 rpm and is rotated one way. It can be seen from FIG. 13 that the wear life of the MoS 2 coating is hardly affected by the rotation speed and the operation pattern. Further, the change in the total rotational speed L C , which represents the wear life of the MoS 2 coating when the axial load was changed to 60 to 500 N, in the forward / reverse rotation of the rotational speed of 100 rpm, was changed as shown in FIG. It is decreasing monotonically with the increase. Here, since the total number of revolutions L C does not represent the life of the bearing, the PTF is not used thereafter.
Due to the E-transition film lubrication, it will rotate until the end of its life. In addition, in a durability test in vacuum at a maximum contact surface pressure of 880 MPa (corresponding to an axial load of 60 N here) and a rotation speed of 2000 rpm, it has been confirmed by a test that the durability life is 1 × 10 8 rev or more.

【0025】なお、外内輪、転動体、保持器材料は、上
記実施例に限らず、セラミックス(例えば窒素系として
Si3 4 ,ジルコニア,アルミナ,炭化物系として、
SiC又はSUS630などのステンレス鋼であっても
本願目的を達成することができる。
The outer and inner rings, rolling elements, and cage materials are not limited to those in the above embodiment, but ceramics (for example, nitrogen-based Si 3 N 4 , zirconia, alumina, carbide-based materials,
The object of the present application can be achieved even with stainless steel such as SiC or SUS630.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
相手部材が転動接触する転動面に二硫化モリブデンをコ
ーティングして形成した潤滑被膜を有する転動部材にお
いて、前記潤滑被膜を、硫黄とモリブデンの分子量比S
/Moが1.7以上2.0未満に選定された組成を有す
る二硫化モリブデン被膜で形成するようにしたので、被
膜の表面形態を緻密な丘状組織として、被膜摩耗寿命を
大幅に向上させることができ、この二硫化モリブデン被
膜をころがり軸受やボールネジの転動面に成膜すること
により、これらの寿命を向上させると共に、信頼性も向
上させることができるという効果が得られる。
As described above, according to the present invention,
In a rolling member having a lubricating coating formed by coating molybdenum disulfide on a rolling surface with which a mating member makes rolling contact, the lubricating coating is formed by using a molecular weight ratio S of sulfur and molybdenum.
Since the molybdenum disulfide coating has a composition selected from / Mo of 1.7 or more and less than 2.0, the surface morphology of the coating has a dense hill-like structure, and the coating wear life is significantly improved. By forming this molybdenum disulfide coating on the rolling surfaces of rolling bearings and ball screws, it is possible to improve the service life and reliability of the rolling bearings and ball screws.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したボールネジの一例を示す正面
図である。
FIG. 1 is a front view showing an example of a ball screw to which the present invention is applied.

【図2】本発明を適用したアンギュラ玉軸受の一例を示
す断面図である。
FIG. 2 is a sectional view showing an example of an angular ball bearing to which the present invention is applied.

【図3】本発明に適用し得るスパッタリング装置の一例
を示す模式図である。
FIG. 3 is a schematic diagram showing an example of a sputtering apparatus applicable to the present invention.

【図4】真空中ボールオンディスク試験機を示す概略構
成図である。
FIG. 4 is a schematic configuration diagram showing a ball-on-disk tester in vacuum.

【図5】実施例被膜及び比較例被膜のイオンボンバード
時間と耐久寿命との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the ion bombardment time and the durable life of the example coating and the comparative example coating.

【図6】本発明の実施例におけるMoS2 薄膜の表面形
態を示す電子顕微鏡写真である。
FIG. 6 is an electron micrograph showing the surface morphology of a MoS 2 thin film according to an example of the present invention.

【図7】比較例におけるMoS2 薄膜の表面形態を示す
電子顕微鏡写真である。
FIG. 7 is an electron micrograph showing the surface morphology of a MoS 2 thin film in a comparative example.

【図8】実施例1のX線回折パターンを示すグラフであ
る。
FIG. 8 is a graph showing an X-ray diffraction pattern of Example 1.

【図9】比較例のX線回折パターンを示すグラフであ
る。
FIG. 9 is a graph showing an X-ray diffraction pattern of a comparative example.

【図10】真空中軸受試験装置の一例を示す概略構成図
である。
FIG. 10 is a schematic configuration diagram showing an example of a bearing testing device in vacuum.

【図11】図10の試験装置を使用した試験結果を表す
総回転数に対する動トルクの関係を示す特性線図であ
る。
11 is a characteristic diagram showing the relationship between the dynamic torque and the total number of rotations, which represents the test results using the test apparatus of FIG.

【図12】図11の各点でのEPMA分析結果を示す図
である。
FIG. 12 is a diagram showing the EPMA analysis result at each point in FIG. 11.

【図13】回転速度に対する総回転数の関係を示す特性
線図である。
FIG. 13 is a characteristic diagram showing the relationship between the total rotation speed and the rotation speed.

【図14】アキシァル荷重に対する総回転数の関係を示
す特性線図である。
FIG. 14 is a characteristic diagram showing the relationship between the total load and the axial load.

【符号の説明】[Explanation of symbols]

1 ボールネジ 2 ネジ軸 3 ボールナット 4 ボール 10 ころがり軸受 11 外輪 12 内輪 13 ボール 14 保持器 20 スパッタリング装置 21,23 電極 24 高周波電源 27 排気システム 30 アルゴンボンベ 31 真空計 40 真空中ボールオンディスク試験機 50 真空中軸受試験装置 1 Ball Screw 2 Screw Shaft 3 Ball Nut 4 Ball 10 Rolling Bearing 11 Outer Ring 12 Inner Ring 13 Ball 14 Cage 20 Sputtering Equipment 21,23 Electrode 24 High Frequency Power Supply 27 Exhaust System 30 Argon Cylinder 31 Vacuum Gauge 40 Vacuum Ball-on-Disk Tester 50 Vacuum bearing test equipment

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 相手部材が転動接触する転動面に二硫化
モリブデンをコーティングして形成した潤滑被膜を有す
る転動部材において、前記潤滑被膜は、硫黄とモリブデ
ンの分子量比S/Moが1.7以上2.0未満に選定さ
れた組成を有する二硫化モリブデン被膜で形成されてい
ることを特徴とする転動部材。
1. A rolling member having a lubricating coating formed by coating molybdenum disulfide on the rolling surface with which the mating member is in rolling contact, wherein the lubricating coating has a molecular weight ratio S / Mo of sulfur to molybdenum of 1 A rolling member formed of a molybdenum disulfide coating having a composition selected from 0.7 to less than 2.0.
JP08561793A 1993-03-19 1993-03-19 Rolling bearing, ball screw, and lubricating film forming method Expired - Fee Related JP3705827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08561793A JP3705827B2 (en) 1993-03-19 1993-03-19 Rolling bearing, ball screw, and lubricating film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08561793A JP3705827B2 (en) 1993-03-19 1993-03-19 Rolling bearing, ball screw, and lubricating film forming method

Publications (2)

Publication Number Publication Date
JPH06272715A true JPH06272715A (en) 1994-09-27
JP3705827B2 JP3705827B2 (en) 2005-10-12

Family

ID=13863812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08561793A Expired - Fee Related JP3705827B2 (en) 1993-03-19 1993-03-19 Rolling bearing, ball screw, and lubricating film forming method

Country Status (1)

Country Link
JP (1) JP3705827B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044598A1 (en) * 2006-10-06 2008-04-17 Taiho Kogyo Co. Ltd. Slide member
WO2011111668A1 (en) * 2010-03-09 2011-09-15 大豊工業株式会社 Sliding member
WO2014142190A1 (en) * 2013-03-12 2014-09-18 日立ツール株式会社 Hard film, hard film covered member, and method for manufacturing hard film and hard film covered member
WO2017098886A1 (en) * 2015-12-10 2017-06-15 Ntn株式会社 Rolling bearing
CN111218646A (en) * 2020-03-04 2020-06-02 赵俊亮 Extreme environment resistant motor bearing manufacturing equipment and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044598A1 (en) * 2006-10-06 2008-04-17 Taiho Kogyo Co. Ltd. Slide member
JP2008095725A (en) * 2006-10-06 2008-04-24 Taiho Kogyo Co Ltd Sliding member
US8242064B2 (en) 2006-10-06 2012-08-14 Taiho Kogyo Co., Ltd. Sliding member
WO2011111668A1 (en) * 2010-03-09 2011-09-15 大豊工業株式会社 Sliding member
JP5391327B2 (en) * 2010-03-09 2014-01-15 大豊工業株式会社 Sliding member
US9029302B2 (en) 2010-03-09 2015-05-12 Taiho Kogyo Co., Ltd. Sliding member
WO2014142190A1 (en) * 2013-03-12 2014-09-18 日立ツール株式会社 Hard film, hard film covered member, and method for manufacturing hard film and hard film covered member
JPWO2014142190A1 (en) * 2013-03-12 2017-02-16 三菱日立ツール株式会社 Hard coating, hard coating covering member, and manufacturing method thereof
WO2017098886A1 (en) * 2015-12-10 2017-06-15 Ntn株式会社 Rolling bearing
CN111218646A (en) * 2020-03-04 2020-06-02 赵俊亮 Extreme environment resistant motor bearing manufacturing equipment and manufacturing method thereof

Also Published As

Publication number Publication date
JP3705827B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
JPH01279119A (en) Mechanical member
JP2008025728A (en) Rolling bearing
JPWO2006035947A1 (en) Rolling guide device
JPH06272715A (en) Rolling member
JP4178826B2 (en) Rolling device
EP3845769B1 (en) Double-row self-aligning roller bearing and main shaft support device for wind generation equipped with same
AU2019320358A1 (en) Rolling bearing, wheel support device, and main shaft support device for wind power generation
EP3859177A1 (en) Rolling bearing, and main shaft support device for wind power generation
CN1043366C (en) Common-sputtering solid lubricating film
JP3770221B2 (en) Sliding member
JP2007327632A (en) Rolling sliding member and rolling device
JP3379163B2 (en) Sliding member
Loewenthal et al. Evaluation of ion-sputtered molybdenum disulfide bearings for spacecraft gimbals
JP4823616B2 (en) Sliding unit and sliding method
WO2020067334A1 (en) Rolling bearing, and main shaft support device for wind power generation
JP2008050696A (en) Coating apparatus and sputtering film deposition method
JP2004092790A (en) Rolling bearing for hydraulic pump
JP2003222136A (en) Rolling element
Dadouche et al. Influence of Coating Technologies on Frictional Properties of Foil Bearings During Start/Stop Conditions
JP3598599B2 (en) Motor pivot thrust bearing system
JP2002122152A (en) Rolling member
JP4158450B2 (en) Rolling device and rotating anode X-ray tube
Takebayashi Bearings for Extreme Special Environments-Part 2− Bearings for Vacuum and Clean Environments−
JP2024014629A (en) rolling bearing
JP2002168252A (en) Touchdown bearing

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees