JPH06272504A - Three dimensional design turbine blade - Google Patents

Three dimensional design turbine blade

Info

Publication number
JPH06272504A
JPH06272504A JP8265393A JP8265393A JPH06272504A JP H06272504 A JPH06272504 A JP H06272504A JP 8265393 A JP8265393 A JP 8265393A JP 8265393 A JP8265393 A JP 8265393A JP H06272504 A JPH06272504 A JP H06272504A
Authority
JP
Japan
Prior art keywords
section
blade
gauging
cross
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8265393A
Other languages
Japanese (ja)
Other versions
JP3132944B2 (en
Inventor
Masanori Tsutsumi
雅徳 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13780394&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06272504(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05082653A priority Critical patent/JP3132944B2/en
Publication of JPH06272504A publication Critical patent/JPH06272504A/en
Application granted granted Critical
Publication of JP3132944B2 publication Critical patent/JP3132944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To maintain secondary flow loss reducing effect by three dimensional effect and to suppress increase of a profile loss in a mean cross section at the same time. CONSTITUTION:In a three dimensional design turbine blade such as an axial flow turbine and a steam turbine, a gauging distribution 7 in the blade height direction is formed into an upward projecting shape, and a gauging value takes the maximum value in a mean cross section while takes the minimum value in a tip cross section or in a base cross section. Suitably, the gauging value in the blade height direction is increased by 10-20% in the mean cross section as a relative value, while reduced by 10-20% in the tip cross section and in the base cross section in comparison to the linear distribution from the base to the tip.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軸流ガスタービン、蒸
気タービン等の3次元設計翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional design blade for axial flow gas turbines, steam turbines and the like.

【0002】[0002]

【従来の技術】図4及び図5は、それぞれ、従来の3次
元設計タービン翼の外形図及び翼高さ方向の翼後縁線ス
タッキング図である。これらの図に示すように、タービ
ン翼1の3次元設計では、半径方向に直線分布を成すラ
ジアルスタッキング2に対し、壁側3において翼1の圧
力面1aが負圧面1bに対して傾くようなバウスタッキ
ング4を実施する。
2. Description of the Related Art FIGS. 4 and 5 are an outline view of a conventional three-dimensional design turbine blade and a blade trailing edge line stacking diagram in the blade height direction, respectively. As shown in these drawings, in the three-dimensional design of the turbine blade 1, the pressure surface 1a of the blade 1 on the wall side 3 is inclined with respect to the suction surface 1b with respect to the radial stacking 2 forming a linear distribution in the radial direction. Perform bow stacking 4.

【0003】このようにバウスタッキング4においては
翼1を傾けることにより、壁側3の負圧面1aに翼力5
が作用し流れを押しつけることで、負圧面1aへの低エ
ネルギ流体の集積を抑制し、翼素性能を向上させること
ができる。
As described above, in the bow stacking 4, by tilting the blade 1, the blade force 5 is applied to the suction surface 1a on the wall side 3.
By acting to press the flow, the accumulation of the low energy fluid on the suction surface 1a can be suppressed and the blade performance can be improved.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の3次
元設計翼にあっては、図1に実線6で示すように、翼の
ゲージング分布(スロート幅/ピッチ)を翼高さ方向に
右下り分布、若しくは図示はしないが右上り分布となる
よう決定している。しかし、実際の流動においては、図
2に実線6aで示すように、3次元効果により従来翼で
はベース、チップ側でゲージング角6よりも大きくかつ
ミーンでゲージング角6より小さい流出角分布となる。
By the way, in the conventional three-dimensional design blade, as shown by the solid line 6 in FIG. 1, the blade gauging distribution (throat width / pitch) descends rightward in the blade height direction. The distribution, or the distribution not shown, is determined to be the upper right distribution. However, in the actual flow, as shown by the solid line 6a in FIG. 2, the outflow angle distribution is larger than the gauging angle 6 on the base side and tip side of the conventional blade and smaller than the gauging angle 6 on the mean side due to the three-dimensional effect.

【0005】そして、図6に翼高さ方向の損失分布を示
すが、従来翼の分布8では、壁近傍で発生する2次流れ
による渦コア8aが発達し大きな損失となり、ミーン近
傍では2次元的性能を示すプロファイル損失8bを見る
ことができる。
FIG. 6 shows the loss distribution in the blade height direction. In the distribution 8 of the conventional blade, the vortex core 8a due to the secondary flow generated near the wall develops and becomes a large loss, and two-dimensional near the mean. You can see the profile loss 8b which shows the dynamic performance.

【0006】一方、3次元設計翼の分布9では、壁近傍
の損失は減少するものの、ミーン近傍でプロファイル損
失が増加する傾向にある。そして、このプロファイル損
失の増加は、図3に示すように、翼のウェーク11が流
出角減少により1ピッチ12当りに占める割合の増加
(13b→13a)が主原因となって生じるものと考え
られる。
On the other hand, in the distribution 9 of the three-dimensional design blade, although the loss near the wall decreases, the profile loss tends to increase near the mean. It is considered that the increase in the profile loss is caused mainly by the increase in the ratio of the wing 11 of the blade to the pitch 12 per one pitch 12 (13b → 13a) as shown in FIG. .

【0007】このように従来の3次元設計タービン翼に
おいては、壁側の2次流れ損失が減少する一方、ミーン
近傍でのプロファイル損失増加が生じ、設計如何では全
体の翼列性能悪化を招くという問題があった。
As described above, in the conventional three-dimensional design turbine blade, while the secondary flow loss on the wall side is reduced, the profile loss is increased in the vicinity of the mean, and the overall blade cascade performance is deteriorated depending on the design. There was a problem.

【0008】本発明は、このような従来技術の課題を解
決するためになされたもので、3次元効果による2次流
れ損失低減の効果を保ちつつ、ミーン断面のプロファイ
ル損失増加を抑制し、これにより全体としての翼列性能
を向上できるようにした3次元設計タービン翼を提供す
ることを目的とする。
The present invention has been made in order to solve the problems of the prior art as described above, and suppresses the profile loss increase of the mean cross section while maintaining the effect of reducing the secondary flow loss due to the three-dimensional effect. It is an object of the present invention to provide a three-dimensional design turbine blade capable of improving the blade cascade performance as a whole.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、軸流タービン、蒸気タービン等の3次
元設計タービン翼において、翼高さ方向のゲージング分
布を上に凸の形状とし、そのゲージング値をミーン断面
では最大とすると共にチップ若しくはベース断面では最
小としたものである。
In order to solve the above problems, the present invention provides a three-dimensional design turbine blade such as an axial flow turbine, a steam turbine, etc., in which the gauging distribution in the blade height direction is convex upward. And the gauging value is maximized in the mean section and minimized in the tip or base section.

【0010】[0010]

【作用】上記の手段によれば、3次元設計タービン翼の
ゲージング分布をミーン断面では最大、チップ若しくは
ベース断面では最小にすることにより、3次元効果によ
るミーン断面における流出角減少に起因するプロファイ
ル損失増加を抑制し、かつチップ、ベース断面において
ゲージングを小さくすることにより、翼通路内の加速を
良好にして、2次流れ損失を低減することができる。
According to the above means, the gauging distribution of the three-dimensional design turbine blade is maximized in the mean cross section and minimized in the tip or base cross section, so that the profile loss due to the decrease of the outflow angle in the mean cross section due to the three-dimensional effect is achieved. By suppressing the increase and reducing the gauging in the tip and base cross sections, it is possible to improve the acceleration in the blade passage and reduce the secondary flow loss.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】本発明は、図1に一点鎖線7で示すよう
に、軸流タービン、蒸気タービン等の3次元設計タービ
ン翼において、翼高さ方向のゲージング分布7を上に凸
の形状とし、そのゲージング値をミーン断面では最大、
またチップ若しくはベース断面(本実施例ではチップ断
面)では最小となるようにしたものである。そして、本
実施例では、翼高さ方向のゲージング値をベースからチ
ップにかけた直線分布(従来例:制御渦設計のゲージン
グ分布)6に対し、ミーン断面では10〜20%相対値
にして大きくし、またチップ及びベース断面では逆に1
0〜20%相対値にして小さくなるようなゲージング分
布7としている。
In the present invention, as indicated by a chain line 7 in FIG. 1, in a three-dimensional design turbine blade such as an axial flow turbine or a steam turbine, the gauging distribution 7 in the blade height direction is convex upward, The gauging value is maximum in the mean section,
The cross section of the chip or the base (the cross section of the chip in this embodiment) is minimized. Then, in this embodiment, the gauge value in the blade height direction is set to a relative value of 10 to 20% relative to the straight line distribution (conventional example: gauging distribution of controlled vortex design) 6 obtained by multiplying the base from the tip to increase the relative value. , And 1 on the reverse of the tip and base cross sections
The gauging distribution 7 is set so that the relative value is reduced to 0 to 20%.

【0013】図2の一点鎖線7aは、本発明に係る3次
元設計タービン翼の流出角分布を示す。ベース、チップ
断面で従来例の流出角分布6aに比べゲージングを小さ
く、かつミーン断面で大きくすることにより、流出角分
布7aはゲージング角分布6にほぼ等しくなる。
The alternate long and short dash line 7a in FIG. 2 shows the outflow angle distribution of the three-dimensional design turbine blade according to the present invention. The outflow angle distribution 7a becomes substantially equal to the gauging angle distribution 6 by making the gauging angle distribution 6a smaller in the base and chip cross sections than in the conventional example and larger in the mean cross section.

【0014】この場合、3次元効果による壁側の2次流
れ損失低減効果を保ちつつ、ミーン断面の性能悪化を防
止するには、従来分布に対するゲージングの変化量はベ
ース、チップ断面で10〜20%(相対値)小さくし、
またミーン断面で10〜20%(相対値)大きく設計す
ることで、良い性能が得られる。
In this case, in order to prevent the deterioration of the performance of the mean cross section while maintaining the effect of reducing the secondary flow loss on the wall side due to the three-dimensional effect, the variation of gauging with respect to the conventional distribution is 10 to 20 in the base and chip cross sections. % (Relative value)
Also, good performance can be obtained by designing the mean cross section to be larger by 10 to 20% (relative value).

【0015】図6の一点鎖線10は、本発明に係る3次
元設計タービン翼における翼高さ方向の損失分布を示
す。本発明の損失分布10では、従来例の損失分布8に
対し壁近傍の2次流れ損失の低減効果があり、かつミー
ン断面においてもプロファイル性能は従来例と同じ若し
くはそれ以上の性能が得られる。
The alternate long and short dash line 10 in FIG. 6 shows the loss distribution in the height direction of the three-dimensional design turbine blade according to the present invention. The loss distribution 10 of the present invention has an effect of reducing the secondary flow loss in the vicinity of the wall as compared with the loss distribution 8 of the conventional example, and the profile performance in the mean cross section is the same as or higher than that of the conventional example.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば、軸
流タービン、蒸気タービン等の3次元設計タービン翼に
おいて、翼高さ方向のゲージング分布を上に凸の形状と
し、そのゲージング値をミーン断面では最大とすると共
にチップ若しくはベース断面では最小としたことによ
り、流出角を適正にコントロールし、3次元効果による
2次流れ損失低減効果を保ちつつ、ミーン断面のプロフ
ァイル性能低下を防止し、全体としての翼列性能が向上
する効果がある。
As described above, according to the present invention, in a three-dimensional design turbine blade such as an axial flow turbine or a steam turbine, the gauging distribution in the blade height direction is made to have an upward convex shape, and its gauging value is obtained. Is maximized in the cross section of the mean and minimized in the cross section of the tip or the base to properly control the outflow angle and maintain the secondary flow loss reduction effect due to the three-dimensional effect while preventing the profile performance of the cross section of the mean from decreasing. There is an effect that the cascade performance as a whole is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る3次元設計タービン翼
及び従来の3次元設計タービン翼のゲージング分布をそ
れぞれ示す図である。
FIG. 1 is a diagram showing gauging distributions of a three-dimensional design turbine blade according to an embodiment of the present invention and a conventional three-dimensional design turbine blade, respectively.

【図2】同じく、本発明の一実施例に係る3次元設計タ
ービン翼及び従来の3次元設計タービン翼の流出角分布
をそれぞれ示す図である。
FIG. 2 is also a diagram showing outflow angle distributions of a three-dimensional design turbine blade according to an embodiment of the present invention and a conventional three-dimensional design turbine blade, respectively.

【図3】3次元効果によるウェーク流出方向変化を示す
図である。
FIG. 3 is a diagram showing a change in a wake outflow direction due to a three-dimensional effect.

【図4】従来の3次元設計タービン翼の外形図である。FIG. 4 is an outline view of a conventional three-dimensional design turbine blade.

【図5】従来の3次元設計タービン翼の翼高さ方向翼後
縁線スタッキング図である。
FIG. 5 is a blade height direction blade trailing edge line stacking diagram of a conventional three-dimensional design turbine blade.

【図6】本発明の一実施例に係る3次元設計タービン翼
及び従来の3次元設計タービン翼の翼高さ方向損失分布
をそれぞれ示す図である。
FIG. 6 is a diagram showing blade height loss distributions of a three-dimensional design turbine blade according to an embodiment of the present invention and a conventional three-dimensional design turbine blade, respectively.

【符号の説明】[Explanation of symbols]

6 従来例のゲージング分布(直線分布) 7 本発明のゲージング分布 6 Gauging distribution of conventional example (linear distribution) 7 Gauging distribution of the present invention

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】軸流タービン、蒸気タービン等の3次元設
計タービン翼において、翼高さ方向のゲージング分布を
上に凸の形状とし、そのゲージング値をミーン断面では
最大とすると共にチップ若しくはベース断面では最小と
したことを特徴とする3次元設計タービン翼。
1. In a three-dimensional design turbine blade such as an axial flow turbine or a steam turbine, the gauging distribution in the blade height direction is made to have an upwardly convex shape, and the gauging value is maximized in the mean section, and the tip or base section is used. The three-dimensional design turbine blade is characterized by being the smallest.
【請求項2】請求項1記載の3次元設計タービン翼にお
いて、翼高さ方向のゲージング値を、ベースからチップ
にかけた直線分布に対し、相対値でミーン断面では10
〜20%大きくすると共にチップ及びベース断面では1
0〜20%小さくしたことを特徴とする3次元設計ター
ビン翼。
2. The three-dimensional design turbine blade according to claim 1, wherein a gauging value in a blade height direction is a relative value with respect to a straight line distribution from a base to a tip and is 10 in a mean section.
~ 20% larger and 1 for chip and base cross section
A three-dimensionally designed turbine blade that is 0-20% smaller.
JP05082653A 1993-03-17 1993-03-17 Three-dimensional design turbine blade Expired - Lifetime JP3132944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05082653A JP3132944B2 (en) 1993-03-17 1993-03-17 Three-dimensional design turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05082653A JP3132944B2 (en) 1993-03-17 1993-03-17 Three-dimensional design turbine blade

Publications (2)

Publication Number Publication Date
JPH06272504A true JPH06272504A (en) 1994-09-27
JP3132944B2 JP3132944B2 (en) 2001-02-05

Family

ID=13780394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05082653A Expired - Lifetime JP3132944B2 (en) 1993-03-17 1993-03-17 Three-dimensional design turbine blade

Country Status (1)

Country Link
JP (1) JP3132944B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874502A (en) * 1994-08-30 1996-03-19 Gec Alsthom Ltd Turbine blade
US6375420B1 (en) 1998-07-31 2002-04-23 Kabushiki Kaisha Toshiba High efficiency blade configuration for steam turbine
JP2002221006A (en) * 2001-01-25 2002-08-09 Ishikawajima Harima Heavy Ind Co Ltd Throat area measurement method for turbine nozzle
US7048509B2 (en) 2001-08-31 2006-05-23 Kabushiki Kaisha Toshiba Axial flow turbine
JP2006307846A (en) * 2005-03-31 2006-11-09 Toshiba Corp Axial turbine
JP2007009761A (en) * 2005-06-29 2007-01-18 Toshiba Corp Axial flow turbine
JP2008291741A (en) * 2007-05-24 2008-12-04 Toshiba Corp Nozzle vane cascade, movingblade cascade, and axial flow turbine
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
CN102588004A (en) * 2005-03-31 2012-07-18 株式会社东芝 Axial flow turbine
WO2013080795A1 (en) * 2011-11-30 2013-06-06 三菱重工業株式会社 Radial turbine
CN104246137A (en) * 2012-04-16 2014-12-24 西门子公司 Guide blade ring for an axial turbomachine and method for designing the guide blade ring
CN105298546A (en) * 2015-11-27 2016-02-03 东方电气集团东方汽轮机有限公司 Turbine blade body structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055824B4 (en) * 2007-11-09 2016-08-11 Alstom Technology Ltd. steam turbine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874502A (en) * 1994-08-30 1996-03-19 Gec Alsthom Ltd Turbine blade
US6375420B1 (en) 1998-07-31 2002-04-23 Kabushiki Kaisha Toshiba High efficiency blade configuration for steam turbine
KR100362833B1 (en) * 1998-07-31 2002-11-30 가부시끼가이샤 도시바 Turbine moving blade assembly, turbine nozzle blade assembly and steam turbine
US6769869B2 (en) 1998-07-31 2004-08-03 Kabushiki Kaisha Toshiba High efficiency blade configuration for steam turbine
JP2002221006A (en) * 2001-01-25 2002-08-09 Ishikawajima Harima Heavy Ind Co Ltd Throat area measurement method for turbine nozzle
US7048509B2 (en) 2001-08-31 2006-05-23 Kabushiki Kaisha Toshiba Axial flow turbine
CN102588004A (en) * 2005-03-31 2012-07-18 株式会社东芝 Axial flow turbine
JP2006307846A (en) * 2005-03-31 2006-11-09 Toshiba Corp Axial turbine
JP2007009761A (en) * 2005-06-29 2007-01-18 Toshiba Corp Axial flow turbine
JP2008291741A (en) * 2007-05-24 2008-12-04 Toshiba Corp Nozzle vane cascade, movingblade cascade, and axial flow turbine
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
WO2013080795A1 (en) * 2011-11-30 2013-06-06 三菱重工業株式会社 Radial turbine
JP2013137017A (en) * 2011-11-30 2013-07-11 Mitsubishi Heavy Ind Ltd Radial turbine
WO2014080889A1 (en) * 2011-11-30 2014-05-30 三菱重工業株式会社 Radial turbine
CN103946487A (en) * 2011-11-30 2014-07-23 三菱重工业株式会社 Radial turbine
US10072513B2 (en) 2011-11-30 2018-09-11 Mitsubishi Heavy Industries, Ltd. Radial turbine
CN104246137A (en) * 2012-04-16 2014-12-24 西门子公司 Guide blade ring for an axial turbomachine and method for designing the guide blade ring
US9951648B2 (en) 2012-04-16 2018-04-24 Siemens Aktiengesellschaft Guide blade ring for an axial turbomachine and method for designing the guide blade ring
CN105298546A (en) * 2015-11-27 2016-02-03 东方电气集团东方汽轮机有限公司 Turbine blade body structure

Also Published As

Publication number Publication date
JP3132944B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
JPH06272504A (en) Three dimensional design turbine blade
US5779443A (en) Turbine blade
JP5314851B2 (en) Rotor blade for the second phase of the compressor
US5816210A (en) Structure of an exhaust port in an internal combustion engine
US6079948A (en) Blade for axial fluid machine having projecting portion at the tip and root of the blade
Brennan et al. Improving the efficiency of the Trent 500 HP turbine using non-axisymmetric end walls: Part 1—Turbine design
US11808175B2 (en) Gas turbine engine airfoils having multimodal thickness distributions
US7686567B2 (en) Airfoil embodying mixed loading conventions
JP5629177B2 (en) Turbine airfoil
JP4315597B2 (en) Turbine nozzle blade
US7063508B2 (en) Turbine rotor blade
US20020094270A1 (en) Blade structure in a gas turbine
US6666654B2 (en) Turbine blade airfoil and turbine blade for axial-flow turbine
WO2007108232A1 (en) Turbine cascade end wall
US6638021B2 (en) Turbine blade airfoil, turbine blade and turbine blade cascade for axial-flow turbine
US7052237B2 (en) Turbine blade and turbine
US20030031564A1 (en) Stationary vanes for turbines and method for making the same
CN107762973B (en) Compressor corner region stability-expanding blade and trailing edge groove forming method thereof
US9670783B2 (en) Blade of a turbomachine, having passive boundary layer control
JPH05187202A (en) Blade for turbine machine for subsonic state
CN116090129A (en) Turbine modeling method for coupling non-axisymmetric endwall and blade bending
CN108487943A (en) The casing and leaf top groove design method moved based on bimodal function control room clearance flow
CN103806946A (en) Variable speed industrial steam turbine low-pressure stage group last stage blade with steam exhaust area of 2.1 m<2>
JPH05222901A (en) Structure of stationary blade of turbine
JP2010203259A (en) Blade structure and axial flow turbo-machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001017