JPH06272502A - Rotary type low differential pressure steam power plant and its heat cycle - Google Patents

Rotary type low differential pressure steam power plant and its heat cycle

Info

Publication number
JPH06272502A
JPH06272502A JP12925292A JP12925292A JPH06272502A JP H06272502 A JPH06272502 A JP H06272502A JP 12925292 A JP12925292 A JP 12925292A JP 12925292 A JP12925292 A JP 12925292A JP H06272502 A JPH06272502 A JP H06272502A
Authority
JP
Japan
Prior art keywords
steam
pressure
rotor
water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12925292A
Other languages
Japanese (ja)
Inventor
Toshihiko Yatsuhan
敏彦 八反
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12925292A priority Critical patent/JPH06272502A/en
Publication of JPH06272502A publication Critical patent/JPH06272502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To provide a steam power plant of high conversion efficiency to work even in the case of a small differential pressure by synchronizing twin rotors of cycloidal gears by gears in the inside of a cocoon-shaped casing, rotating them on the surface of each other without any contact with each other, and converting a pressure difference into rotational motive power so as to enable high speed rotation. CONSTITUTION:Twin rotors 2 having equal shapes are formed into cycloidal gear shapes and are synchronized by the gear so as to rotate with rolling on the surface of each other at a gearing contact point without any collision. Torque 6 due to a pressure difference between inlet steam 4 and outlet steam is generated by rotation to drive the rotor 2. As there is a clearance between a casing 1 and the rotor 2 and a boundary layer between steam and water is formed there, leakage of steam pressure is prevented, so that the pressure is maintained. The rotor is non-contact, has high durability, and rotates at high speed, so that a high efficiency steam motor is obtained. A heat cycle using this can dispense with a liquid supplying pump if a head drop is utilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕身じかの温泉脈などの自然の熱源
を利用してエネルギーを取り出す際、最も熱効率がよ
く、可動部が少なくて耐久性のある熱サイクルで、なお
かつ環境にも人体にも優れた発電エネルギーの分野に関
する。 〔従来の技術〕比較的低圧力の蒸気を有効に仕事に変え
る方法は産業上においては、蒸気タービンのみである。
しかしながら、低圧段においては、蒸気温度は下がり凝
縮しやすくなるので速度のある蒸気の割合は減り、また
凝縮後の液の排液処理法が必要であり、高圧段に比し低
圧段、特に最終段は効率よく仕事に変換されてはいな
い。また閉じた熱サイクルでは給水ポンプに外からエネ
ルギーを与えねばならずこの分実際の仕事は減ずること
となる。 〔発明が解決しようとする課題〕温度の低い飽和蒸気の
状態でも効率よく仕事に変えるには、容積型の熱機関で
きわめて高速度に動かねばならない。噛み合う双子の回
転子をもつ容積型の機関であればこれが達成される。ま
た熱水で作動流体を熱交換器を用いて加熱すれば、その
熱サイクルは閉じたものとなり、これには給液を圧送す
るポンプが必要となるが、落差を利用し作動流体の自重
によって圧送すれば不要となり、その分だけ熱効率はよ
くなる。しかもこの落差は小さいほど建設上有利とな
る。したがって、本発明では、小さな差圧でも効率よく
仕事に変えられる蒸気原動機とその熱サイクルを目的と
する。 〔課題を解決するための手段〕全く同一の形状の双子の
回転子(2)は、サイクロイド歯形で基礎円の内と外に
置かれた所定半径の小円が転がりながら描く軌跡として
与えられる。この基礎円の重なり会う部分では、二つの
回転子(2)を歯車で同期させておくと、噛み合う接触
点上では、そこを中心に互いにぶつからず表面上を転が
りながら回転する事になり、圧力差による回転モーメン
ト(6)を生じ回転子(2)を駆動することになる。こ
こで、ケーシング(1)と回転子(2)、回転子(2)
どうしの間にはすき間(3)があり、そこには第1図
(c)に示すように水蒸気と水の境界層(15)がで
き、蒸気圧の漏れを防止するので圧力が保持される。ま
た回転子(2)は、どことも非接触であるので耐久性が
あり、きわめて高速に回転し効率のよいものとなる。飽
和蒸気の性質である水滴が混じっていても、タービンと
は異なり原理上は容積型であるのでその影響は少なく、
2ないし3段の多段化をすれば効率のよい蒸気原動機と
なる。これを用いた熱サイクルは、通常閉じたものとな
り、給液ポンプが必要だが、落差(10)を利用すれば
ことたりる。第2図(a)に示すように、復水器(8)
と蒸発器(13)との間に、6m以上で、作動流体の自
重が、蒸発器内の飽和圧にまさる落差(10)をもうけ
れば復水器を真空に保ち自らを圧送することになる。第
3図(a)と第4図(a)に示すように蒸発装置(7)
は、断熱容器(9)と自然循環式蒸発器(13)、気液
分離器(25)、管よせ(26)、給液加熱器(1
6),過熱器(17)などからなり、入ってきた熱水
は、遮板(11)により高温側から低温側へとそれぞれ
を加熱する。給液量の調整はバルブ(12)の操作のみ
ですむことになる。第2図(b)に示すのは、熱機関と
して低圧水車(14)をもちいた,熱サイクルでこの場
合の落差(10)は、水車の有効落差となり、復水器
(8)と蒸発器(13)の飽和圧は等しいので作動流体
は同時に蒸発器(13)へ圧送される。第3図(b)と
第4図(b)にその実際の例を示し、前述の蒸気原動機
のサイクルとは、サイクル上での水車の位置だけが異な
り、給液管側に設置する。落差(10)が小さくて水車
の動翼内と管内でキャビテイションが起きなければ水車
を復水器(8)の位置に設置してもよい。タービンや蒸
気原動機に比し、実際の仕事への変換効率はよく、可動
部は単純で耐久性にとむ。プロペラ型のような反動水車
が小さい落差(10)でも有効で低圧水車(14)とし
て適切である。 〔作用〕2つの回転子(2)が噛み令うことによって、
やや圧力のある入口蒸気( 4)ときわめて低圧の出口
蒸気( 5)の圧力差が保持され、その接触点において
は、そこを境に片方の回転子では圧力差による力のバラ
ンスがこわれ、回転モーメント(6)が生じ、互いに外
回りに回転することとなる。蒸気は、回転子(2)とケ
ーシング(1)との間の空間に、閉じ込められ出口側に
運ばれる。これを用いる熱サイクルでは、蒸発器への給
液のためのポンプを排し復水器との間に落差(10)を
設け給液の作動流体の自重が蒸発器内の飽和圧力を上回
るときの圧力で圧送される。低圧水車(14)を用いる
熱サイクルでは、蒸発器(13)内の飽和圧力が、復水
器(8)のきわめて低い圧力に等しく蒸発は大量に行わ
れる。したがって、給液管側に落差(10)を設けれ
ば、大量の作動流体が圧送され水車をまわし、その出口
からは、同時に給液もおこなわれる。 〔実施例〕第3図と第4図に示すのは、実際にこの熱サ
イクルを行った熱水加熱プラントの例で、円筒型地下の
中に断熱容器(9)がすっぽりはいり、落差(10)を
設けている。第3図は、加熱用の熱水の温度が低いとき
で、すなわち容器には大量に熱水が満たされ、保温効果
を上げる。第4図は、温度が高い場合で容器は、地下に
おさまり落差(10)を大きくとっている。断熱容器
(9)は、容易に引き上げられるようにフック(18)
とガイドレール(19)をもつ。発電エネルギーをとり
だすために、それぞれに、蒸気原動機と低圧水車が、所
定の位置で働いている。実際の、蒸気原動機は、第1図
(b)に示すような低圧段と高圧段をもつ2段式とし蒸
気を完全に膨張させている。 〔発明の効果〕回転子(2)と回転子(2)との間、ま
た回転子(2)とケーシングとの間には、わずかのすき
間ができ、ここに水と水蒸気の境界層(15)が生じ、
圧力を保持するので、シリンダーピストン型と似た効果
を発揮する。凝縮した水滴は回転子とともに運ばれてい
くので速度型ほどの影響は受けず、かつ互いに接触しな
いので、高速に回転ができ、耐久性があり、入口圧と出
口圧の差圧が小さいときにも仕事への変換効率はよくな
る。この型は、したがって、熱サイクル上での給液を圧
送するための落差(10)を小さくできる。この熱サイ
クル上での、できるだけ小さい落差(10)というのは
構造上も有利で、取り替えにも便利である。給液のため
のポンプを排することの利点はきりがないが、熱効率改
善と耐久性である。
[Detailed Description of the Invention] [Industrial field of application] When taking out energy using natural heat sources such as natural hot spring veins, a thermal cycle with the highest thermal efficiency and few moving parts, which is durable. In addition, it relates to the field of power generation energy that is excellent for both the environment and the human body. [Prior Art] In the industry, the steam turbine is the only method that effectively converts relatively low-pressure steam into work.
However, in the low-pressure stage, the temperature of the steam decreases and it becomes easier to condense, so the rate of vapor with a high velocity decreases, and a liquid drainage treatment method after condensation is required. Dan is not efficiently converted to work. Also, in the closed heat cycle, the water supply pump must be externally supplied with energy, which reduces the actual work. [Problems to be Solved by the Invention] In order to efficiently convert into work even in the state of saturated steam having a low temperature, a positive displacement heat engine must move at an extremely high speed. This is achieved in positive displacement engines with intermeshing twin rotors. Also, if the working fluid is heated with hot water using a heat exchanger, the heat cycle will be closed, and a pump for pumping the supply liquid is required for this. If it is sent under pressure, it becomes unnecessary and the thermal efficiency will improve accordingly. Moreover, the smaller this head, the more advantageous in construction. Therefore, it is an object of the present invention to provide a steam engine and a heat cycle thereof that can efficiently convert work even with a small differential pressure. [Means for Solving the Problem] The twin rotors (2) having exactly the same shape are provided as a locus of cycloidal tooth shapes drawn by rolling small circles having a predetermined radius placed inside and outside the basic circle. When the two rotors (2) are synchronized with each other by gears in the overlapping part of the basic circles, at the contact points where they mesh, they will rotate while rolling on the surface without hitting each other around them. A rotational moment (6) is generated due to the difference and drives the rotor (2). Here, the casing (1) and the rotor (2), the rotor (2)
There is a gap (3) between them, and as shown in FIG. 1 (c), a boundary layer (15) of water vapor and water is formed, which prevents leakage of the vapor pressure and thus maintains the pressure. . Further, since the rotor (2) is not in contact with any part, it is durable and can rotate at an extremely high speed to be efficient. Even if water droplets, which are the properties of saturated steam, are mixed, unlike a turbine, since it is a volumetric type in principle, its effect is small,
If two or three stages are used, it will become an efficient steam engine. The heat cycle using this is normally closed and requires a liquid feed pump, which can be saved if the head (10) is used. As shown in Fig. 2 (a), the condenser (8)
If the self-weight of the working fluid is more than 6 m between the evaporator and the evaporator (13) and there is a drop (10) more than the saturation pressure in the evaporator, the condenser is kept in a vacuum to pump itself. Become. As shown in FIGS. 3 (a) and 4 (a), an evaporator (7)
Is an adiabatic container (9) and a natural circulation evaporator (13), a gas-liquid separator (25), a pipe strainer (26), and a liquid supply heater (1).
6), a superheater (17), etc., and the incoming hot water heats each from the high temperature side to the low temperature side by the shield plate (11). The adjustment of the liquid supply amount only needs to operate the valve (12). FIG. 2 (b) shows a low-pressure water turbine (14) used as a heat engine. In the heat cycle, the head (10) in this case is an effective head of the water turbine, and the condenser (8) and the evaporator are shown. Since the saturation pressures of (13) are equal, the working fluid is simultaneously pumped to the evaporator (13). The actual example is shown in FIG. 3 (b) and FIG. 4 (b). It differs from the above-described steam engine cycle only in the position of the water turbine on the cycle, and is installed on the liquid supply pipe side. If the head (10) is small and cavitation does not occur in the rotor blades and pipes of the water turbine, the water turbine may be installed at the position of the condenser (8). Compared to turbines and steam engines, the efficiency of conversion to actual work is good, and the moving parts are simple and durable. A reaction turbine such as a propeller type is effective even with a small head (10) and is suitable as a low-pressure turbine (14). [Operation] By the two rotors (2) biting,
The pressure difference between the slightly pressurized inlet steam (4) and the extremely low pressure outlet steam (5) is maintained, and at the contact point, one rotor breaks the balance of the force due to the pressure difference and the rotor rotates. A moment (6) is created, which causes them to rotate outward. The steam is trapped in the space between the rotor (2) and the casing (1) and is carried to the outlet side. In the heat cycle using this, when the pump for supplying the liquid to the evaporator is discharged and a head (10) is provided between the pump and the condenser, when the dead weight of the working fluid of the supplying liquid exceeds the saturation pressure in the evaporator. It is pumped at the pressure of. In the thermal cycle using the low-pressure water turbine (14), the saturation pressure in the evaporator (13) is equal to the extremely low pressure in the condenser (8), and a large amount of evaporation is performed. Therefore, if the head (10) is provided on the liquid supply pipe side, a large amount of working fluid is pumped to rotate the water turbine, and liquid is simultaneously supplied from its outlet. [Embodiment] FIGS. 3 and 4 show an example of a hot water heating plant in which this heat cycle was actually carried out, in which a heat insulating container (9) was completely inserted in a cylindrical underground and a head (10) ) Is provided. FIG. 3 shows that when the temperature of the hot water for heating is low, that is, the container is filled with a large amount of hot water and the heat retaining effect is enhanced. FIG. 4 shows that when the temperature is high, the container stays underground and has a large head (10). The insulated container (9) has a hook (18) so that it can be easily pulled up.
And a guide rail (19). A steam engine and a low-pressure turbine, respectively, work in place to extract the generated energy. An actual steam engine is a two-stage type having a low-pressure stage and a high-pressure stage as shown in FIG. 1 (b) to completely expand the steam. [Advantages of the Invention] A small gap is formed between the rotor (2) and the rotor (2), and between the rotor (2) and the casing, where a boundary layer (15) of water and water vapor is formed. ) Occurs,
Since it holds the pressure, it has an effect similar to the cylinder piston type. Condensed water drops are carried along with the rotor, so they are not affected as much as the speed type and do not contact each other, so they can rotate at high speed and have durability, and when the differential pressure between the inlet pressure and the outlet pressure is small. Also, the efficiency of conversion to work is improved. This mold therefore allows a small drop (10) for pumping the feed on the thermal cycle. The smallest possible drop (10) on this heat cycle is structurally advantageous and convenient for replacement. The advantages of draining the pump for liquid supply are endless, but improved thermal efficiency and durability.

【図面の簡単な説明】 第1図(a)は回転式低差圧蒸気原動機の断面図、第1
図(b)は2段式の全体図、第1図(c)は境界層の説
明図。第2図(a)は、この蒸気原動機の熱サイクル原
理図、同(b)は低圧水車の熱サイクル原理図。第3
図、第4図は実際的な実用プラント例を示した図。 1.ケーシング、2.回転子、3.すき間、4.入口蒸
気、5.出口蒸気、6.回転モーメント 7.蒸発装
置、8.復水器、9.断熱容器、 10.落差、11.
遮板、12.給液調整バルブ 13.蒸発器、14.低
圧水車、15.境界層 16.給液加熱器、17.過熱
器、18.吊り上げフック、 19.ガイドレール、2
0.発電機、21.高圧段 、22低圧段 、23.蒸
気入口管、24.蒸気出口管 、25.気液分離器 2
6.管よせ、27.回転軸、28.歯車同期装置、2
9.高熱源、30.低熱源、31.蒸気原動機、32.
低圧水車、33.熱水入口菅、34.熱水出口管、3
5.冷却塔
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a sectional view of a rotary low differential pressure steam engine, FIG.
FIG. 1B is an overall view of the two-stage type, and FIG. 1C is an explanatory view of the boundary layer. FIG. 2 (a) is a heat cycle principle diagram of this steam engine, and FIG. 2 (b) is a heat cycle principle diagram of the low-pressure turbine. Third
Figures and 4 are diagrams showing examples of practical practical plants. 1. Casing, 2. Rotor, 3. Clearance 4. Inlet steam, 5. Outlet steam, 6. Rotational moment 7. Evaporator, 8. Condenser, 9. Heat-insulating container, 10. Head, 11.
Shield plate, 12. Liquid supply adjusting valve 13. Evaporator, 14. Low-pressure water turbine, 15. Boundary layer 16. Liquid feed heater, 17. Superheater, 18. Lifting hook, 19. Guide rails, 2
0. Generator, 21. High pressure stage, 22 low pressure stage, 23. Steam inlet tube, 24. Steam outlet pipe, 25. Gas-liquid separator 2
6. Tube stop, 27. Rotating shaft, 28. Gear synchronizer, 2
9. High heat source, 30. Low heat source, 31. Steam engine, 32.
Low-pressure water turbine, 33. Hot water inlet tube, 34. Hot water outlet pipe, 3
5. cooling tower

Claims (1)

【特許請求の範囲】 1.まゆ形のケーシング(1)の中にサイクロイド歯形
の双子の回転子(2)がわずかのすき間(3)を残し噛
み合う軸位置に置かれ、互いの接点ではぶつからず、ま
た接触もせず表面上を転がるように回転し圧力差を回転
運動に変える蒸気原動機。 2.歯車で同期させた双子の回転子(2)は、それぞれ
の表面上をわずかに離れて回転するので、そのすき間
(3)は水と水蒸気の境界層ができ圧力漏れ防止と潤滑
の役目をはたすために、入口蒸気(4)と出口蒸気
(5)の圧力差が保たれ回転モーメント(6)による回
転力を生じ、かつ高速でそれが行われる蒸気原動機。 3.蒸発装置(7)は、復水器(8)より低い地下もし
くは低所に設置された大口径の断熱容器(9)の底に据
えられた自然循環式蒸発器(13)から成り、それは復
水器(8)より6m以上の落差(10)をもつ位置にお
かれ、遮板(11)で流れを変化させられた40度C以
上の熱水で作動流体を沸騰させ、その際この落差(1
0)を利用し、その蒸発器(13)へは、作動流体の飽
和圧に抗して自重により給液がなされ、かつ復水器
(8)を真空に保ち、バルブ(12)のみの操作によっ
て給液量を調整できる閉じた熱サイクル。 4.蒸発装置(7)の置かれた位置に、低圧水車(1
4)を設置し、出口蒸気管にはタービンなどの蒸気原動
機を排し、そのまま復水器(8)へ流入させ、この落差
(10)を利用した作動流体の重力差によって低圧水車
(14)を回転させ仕事に変え、同時に出口管から自然
循環式蒸発器(13)へ給液を行い系全体をも真空に保
ち、バルブ(12)のみ操作によって給液量を調整でき
る閉じた熱サイクル。
[Claims] 1. The cycloid tooth-shaped twin rotor (2) is placed in the meshing axial position in the eyebrows casing (1), leaving a slight gap (3), so that it does not collide with each other's contact points or contact with each other on the surface. A steam engine that rotates like a roll and changes the pressure difference into a rotary motion. 2. The twin rotors (2) synchronized by gears rotate slightly apart on their respective surfaces, so that the gap (3) forms a boundary layer between water and water vapor, which serves as a pressure leakage prevention and lubrication function. Therefore, a pressure difference between the inlet steam (4) and the outlet steam (5) is maintained, a rotational force is generated by a rotational moment (6), and the motor is operated at high speed. 3. The evaporator (7) consists of a natural circulation evaporator (13) placed at the bottom of a large diameter insulated container (9) installed underground or at a lower place than the condenser (8), which is The working fluid is boiled with hot water of 40 ° C or more, which is placed at a position having a head (6) of 6 m or more from the water vessel (8) and whose flow is changed by the shield plate (11), and at this time, the head is dropped. (1
0), the evaporator (13) is supplied with its own weight against the saturated pressure of the working fluid, and the condenser (8) is kept in vacuum, and only the valve (12) is operated. Closed heat cycle with adjustable liquid supply. 4. The low-pressure water turbine (1
4) is installed, the steam generator such as a turbine is discharged to the outlet steam pipe, and it is allowed to flow into the condenser (8) as it is, and the low pressure turbine (14) is caused by the gravity difference of the working fluid using this head (10). A closed thermal cycle in which the liquid is supplied to the natural circulation type evaporator (13) from the outlet pipe at the same time to change to the work, the whole system is kept in vacuum, and the liquid supply amount can be adjusted only by operating the valve (12).
JP12925292A 1992-04-06 1992-04-06 Rotary type low differential pressure steam power plant and its heat cycle Pending JPH06272502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12925292A JPH06272502A (en) 1992-04-06 1992-04-06 Rotary type low differential pressure steam power plant and its heat cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12925292A JPH06272502A (en) 1992-04-06 1992-04-06 Rotary type low differential pressure steam power plant and its heat cycle

Publications (1)

Publication Number Publication Date
JPH06272502A true JPH06272502A (en) 1994-09-27

Family

ID=15004975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12925292A Pending JPH06272502A (en) 1992-04-06 1992-04-06 Rotary type low differential pressure steam power plant and its heat cycle

Country Status (1)

Country Link
JP (1) JPH06272502A (en)

Similar Documents

Publication Publication Date Title
CA2937831C (en) A drive unit with its drive transmission system and connected operating heat cycles and functional configurations
US4738111A (en) Power unit for converting heat to power
JP3771561B2 (en) Scroll expander having heating structure, and scroll-type heat exchange system using the same
US20090260361A1 (en) Isothermal power system
US7913493B2 (en) Rotary displacement steam engine
JPS5818562B2 (en) Method and apparatus for producing steam from salt water
WO1992005342A1 (en) Method for securing the lubrication of bearings in a hermetic high-speed machine
JP2013521433A (en) Rotary compressor-expander system and related uses and manufacturing methods
KR101539790B1 (en) Method for converting thermal energy at a low temperature into thermal energy at a relatively high temperature by means of mechanical energy, and vice versa
US6357235B1 (en) Power generation system and method
US9970293B2 (en) Liquid ring rotating casing steam turbine and method of use thereof
US20140260245A1 (en) Volumetric energy recovery device with variable speed drive
EP3532708B1 (en) Heat machine configured for realizing heat cycles and method for realizing heat cycles by means of such heat machine
JPH06272502A (en) Rotary type low differential pressure steam power plant and its heat cycle
RU2636638C2 (en) Method and device for supply of working body to engine heater
CN207879396U (en) A kind of full stream circulation electric generating apparatus for geothermal energy
US20140325986A1 (en) Rotary engine and process
RU2768138C1 (en) Method of converting thermal energy into mechanical energy of rotational movement and device for its implementation
WO2022225485A2 (en) A screwed generator which uses heat transfer method for generating energy
CN206017070U (en) A kind of claw electrisity generator of engine for geothermal power generation
SU48358A1 (en) Steam machine with rotating spiral cylinders
RU2108466C1 (en) Power plant
RU2094650C1 (en) Hydraulic motor
RU2358113C2 (en) Impeller machine
RU2053378C1 (en) Steam-gas power plant