JPH06271954A - Operation of reduction furnace for smelting zinc and/or lead - Google Patents

Operation of reduction furnace for smelting zinc and/or lead

Info

Publication number
JPH06271954A
JPH06271954A JP8383093A JP8383093A JPH06271954A JP H06271954 A JPH06271954 A JP H06271954A JP 8383093 A JP8383093 A JP 8383093A JP 8383093 A JP8383093 A JP 8383093A JP H06271954 A JPH06271954 A JP H06271954A
Authority
JP
Japan
Prior art keywords
slag
furnace
coke
zinc
settler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8383093A
Other languages
Japanese (ja)
Inventor
Nobumasa Iemori
伸正 家守
Kimiaki Utsunomiya
公昭 宇都宮
Keiji Fujita
敬二 藤田
Hitoshi Takano
斉 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8383093A priority Critical patent/JPH06271954A/en
Publication of JPH06271954A publication Critical patent/JPH06271954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To promote the slag formation of ash content in the settled coke and to prevent the production of metallic iron with unburning carbon by blowing a gas into the slag in a settler of a reduction furnace for smelting zinc or lead through a lance with its tip part dipped into the slag. CONSTITUTION:In the reduction furnace for smelting the zinc and/or the lead composed of a shaft 1, settler 2 and uptake 3, powdery coke, oxygen and raw material are supplied from each of charging holes 7-9, and the raw materials are reduced with a reducing gas produced by oxidation of coke to recover the zinc, lead, etc., as their metallic vapor. In the operation method of reduction furnace, one or more kinds of nitrogen, air, oxygen-enriched air and industrial oxygen are blown into the slag in the settler 2 through the lance 6 arranged at a setter roof and dipped into the slag 4 at its tip part. By this method, the molten slag is intensely stirred with a little quantity of the gas, and the slag layer and the ash content in the powdery coke or the unburning carbon are uniformly and sufficiently mixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化亜鉛を含む原料を処
理する亜鉛及び/又は鉛製錬用還元炉の操業方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a zinc and / or lead smelting reduction furnace for treating a raw material containing zinc oxide.

【0002】[0002]

【従来の技術】酸化亜鉛原料からの亜鉛の還元揮発製錬
法には熔鉱炉法、吹込み熔錬法、フラッシュ熔錬法、ス
ラグヒューミング法など各種あるが、その中でもフラッ
シュ熔錬法すなわち粉コークスを酸化性ガス中で燃焼
し、還元性ガスを得ると共に、その際に形成される高温
域に粉状酸化亜鉛を分散させて瞬時に熔融還元して金属
亜鉛蒸気を得る方法(例えば特願平4−36918号出
願参照)は安価な粉コークスを利用でき、かつ生産性の
高い優れた熔錬法である。
2. Description of the Related Art There are various methods for reducing and volatilizing zinc from a zinc oxide raw material, such as a blast furnace method, a blow smelting method, a flash smelting method and a slag fuming method. Among them, the flash smelting method. That is, a method in which powdered coke is burned in an oxidizing gas to obtain a reducing gas, and powdered zinc oxide is dispersed in a high temperature region formed at that time to instantaneously perform melt reduction to obtain metallic zinc vapor (for example, Japanese Patent Application No. 4-36918) is an excellent smelting method that can use inexpensive coke powder and has high productivity.

【0003】しかしながらこのフラッシュ熔錬法にも、
還元炉の操業において良好な炉況の確保及び維持を行な
う上で、以下に示す2点が問題となっている。第1は、
粉コークスの燃焼後に残存する灰分の内、炉内沈降分が
原因となり生ずる問題である。粉コークス中には約15
%程度の灰分が存在するが、粉コークス燃焼後残存する
灰分の内、粒径の比較的大きいものは炉内でスラグ上に
沈降し、それ以外は排ガスと伴に炉外に排出される。こ
の炉内に沈降した灰分は、熔融スラグに比べて比重が小
さく、またアルミナ、シリカを主成分とする為に高融点
物質であるので、炉内ではスラグ湯面上に半固体状で浮
遊して存在する。また灰分と熔融スラグの境界にあたる
中間層はアルミナ、シリカ品位が高く、粘性の高い性状
となる。このように半固体状の灰分がスラグ湯面上に存
在すると、炉壁に付着して湯浴を狭くするばかりではな
く、スラグ抜き出時にはタップ孔を閉塞させる原因とな
りスラグ抜き出しが非常に困難となる。
However, even in this flash smelting method,
In securing and maintaining a good furnace condition in the operation of the reduction furnace, the following two points are problems. The first is
This is a problem caused by the sedimentation in the furnace of the ash remaining after the combustion of powder coke. About 15 in powder coke
% Ash exists, but among the ash remaining after combustion of powder coke, those with a relatively large particle size settle on the slag in the furnace, and the other ash is discharged outside the furnace along with the exhaust gas. The ash that settled in the furnace has a smaller specific gravity than the molten slag, and since it is a high melting point substance because it contains alumina and silica as the main components, it floats in a semi-solid state on the molten slag surface in the furnace. Exists. Further, the intermediate layer, which is the boundary between the ash and the molten slag, has high quality of alumina and silica, and has a high viscosity. When semi-solid ash is present on the molten slag surface in this way, it not only adheres to the furnace wall and narrows the bath, but also causes tap holes to be blocked when extracting slag, making slag extraction very difficult. Become.

【0004】次に未燃カーボンの炉内沈降分が原因とな
り生じる問題がある。粉コークスの内、ガス化に寄与し
ないものは未燃分として残留するが、そのうち粒径の比
較的大きいものは炉内でスラグ上に沈降し、それ以外は
排ガスと伴に炉外に排出される。この炉内に沈降したカ
ーボンは、熔融スラグ表面を覆い局部的に強還元反応を
おこして、スラグ中の鉄酸化物をも過剰に還元する場合
があり、メタル鉄の析出が生じると、これが炉内に蓄積
して操炉に大きな支障をきたすことになる。
Next, there is a problem caused by the unburned carbon settling in the furnace. Of the coke dust, those that do not contribute to gasification remain as unburned components, but those with a relatively large particle size settle on the slag in the furnace, and the others are discharged outside the furnace along with the exhaust gas. It The carbon that has settled in this furnace may cover the surface of the molten slag and cause a strong strong reduction reaction locally to excessively reduce the iron oxides in the slag. It accumulates in the inside and causes a big trouble in the furnace operation.

【0005】以上に述べたように、炉内に沈降した粉コ
ークスの灰分の滓化促進と未燃カーボンによるメタル鉄
生成の防止が、フラッシュ熔錬法における還元炉操業上
の解決すべき重要な課題であるが、これらの課題を解決
する有効な方法の開発が以前より望まれていた。
As described above, it is important to solve the reduction furnace operation in the flash smelting process in order to promote the ashing of the ash of the powder coke that has settled in the furnace and the prevention of the production of metal iron due to unburned carbon. Although it is a problem, it has long been desired to develop an effective method for solving these problems.

【0006】[0006]

【発明が解決しようとする課題】炉内に沈降した粉コー
クス灰分の滓化促進と未燃カーボンによるメタル鉄生成
の防止が可能な亜鉛及び/又は鉛製錬用還元炉の操業方
法を提案することを目的とする。
A method of operating a reduction furnace for zinc and / or lead smelting is proposed which is capable of promoting slag formation of powdered coke ash settled in the furnace and preventing generation of metal iron due to unburned carbon. The purpose is to

【0007】[0007]

【課題を解決するための手段】シャフト、セトラー及び
アップテイクからなる亜鉛及び/又は鉛製錬用還元炉の
操業において、セトラー天井よりセトラーのスラグ中に
窒素、空気、酸素富化空気および工業用酸素から成る群
から選らばれた1種以上をその先端がスラグ中に浸漬さ
れたランスを介して吹込む点に特徴がある。
In the operation of a zinc and / or lead smelting reduction furnace consisting of a shaft, a settler and an uptake, nitrogen, air, oxygen-enriched air and industrial air in the slag of the settler from the settler ceiling are used. It is characterized in that at least one selected from the group consisting of oxygen is blown through a lance whose tip is immersed in slag.

【0008】[0008]

【作用】ランス先端をスラグ熔体内に浸漬してガスを吹
込めば、ガス量が少なくても熔体の強攪拌を得ることが
できる。この効果によりスラグ層と粉コークスの灰分又
は未燃カーボンとの混合が均一にかつ十分に行なわれる
ため、粉コークス灰分の滓化の促進とスラグの還元度を
均一に保持することが出来、これらによって固着物によ
るタップ孔の閉塞及びスラグ表面の局部強還元によるメ
タル鉄析出の問題を解決できる。
If the lance tip is immersed in the slag melt and gas is blown into it, strong stirring of the melt can be obtained even if the amount of gas is small. Due to this effect, the ash content of the slag layer and the powdered coke or the unburned carbon is uniformly and sufficiently mixed, so that the promotion of the slag of the powdered coke ash and the reduction degree of the slag can be uniformly maintained. This can solve the problems of clogging of tap holes due to adhered substances and metal iron deposition due to local strong reduction of the slag surface.

【0009】また強攪拌によるスラグ熔体の深さ方向の
温度勾配がなくなり炉底に熱をかけることが出来る為、
炉底のビルドアップの抑制も達成できる。
Furthermore, since there is no temperature gradient in the depth direction of the slag melt due to strong stirring, heat can be applied to the furnace bottom,
It is also possible to suppress buildup of the furnace bottom.

【0010】その他に吹込みガス量が少なくても済むの
で排ガス量が急激に増加する心配もなく、スラグ熔体の
ヒートバランスに大きく影響することもない。またエア
ー等の酸化性ガスを吹込んでも、少量であれば熔体スラ
グや排ガスの還元度を大きく変化させるには至らない。
ただし熔体スラグや排ガスの還元度を厳密に保持する必
要があるのであれば窒素のような不活性ガスを使用する
のが好ましい。
In addition, since the amount of injected gas can be small, there is no concern that the amount of exhaust gas will suddenly increase and the heat balance of the slag melt will not be significantly affected. Even if an oxidizing gas such as air is blown in, if the amount is small, the degree of reduction of the molten slag and the exhaust gas will not be significantly changed.
However, if it is necessary to strictly maintain the degree of reduction of the molten slag and the exhaust gas, it is preferable to use an inert gas such as nitrogen.

【0011】特に、空気,酸素系富化空気、工業用酸素
を使用する場合は、窒素ガスと適宜併用したり、排ガス
のCO2 /CO比に影響を及ぼさず、スラグを過酸化に
しない程度とするため、吹き込み量を少量に限るのが好
ましい。
In particular, when air, oxygen-enriched air, or industrial oxygen is used, it is appropriately used together with nitrogen gas, does not affect the CO 2 / CO ratio of exhaust gas, and does not peroxidize the slag. Therefore, it is preferable to limit the blowing amount to a small amount.

【0012】スラグ上の粉コークス灰分の量、未燃コー
クスの量、およびアルミナ,シリカを主成分とする高融
点の半固体状の浮遊物の量,炉底量に析出成長するメタ
ル鉄の量および吹込ガス量、スピードにもよるが、ラン
スのスラグ中への浸漬深さが小さ過ぎると局部的にスラ
グ層を攪拌するのみなので効果がないので、ランスで吹
込みながら及び終了後に炉内状況を観察しながら浸漬深
さを決めるのが好ましい。後記する実施例の如く浸漬深
さを50mmとした場合に直径1500mmの範囲に効
果が有ったのが確認出来たので、浸漬深さは50mm以
上とするのが望ましい。又、使用するランスは1本のみ
とは限らず、前記の効果を確認した後にその本数を決め
るのが望ましい。
Amount of powdered coke ash on slag, amount of unburned coke, amount of high-melting semi-solid suspended matter containing alumina and silica as main components, amount of metal iron deposited and grown on bottom of furnace Although it depends on the amount of gas to be blown and the speed at which it is blown, if the lance is immersed in the slag too deeply, the slag layer will be agitated only locally, so there is no effect. It is preferable to determine the immersion depth while observing. It was confirmed that when the immersion depth was 50 mm as in Examples described later, the effect was obtained in the range of the diameter of 1500 mm, so the immersion depth is preferably 50 mm or more. Further, the number of lances used is not limited to one, and it is desirable to determine the number of lances after confirming the above effects.

【0013】さらに本設備はランスとガス流送用配管の
みから成る非常に簡単なものであるため、大規模な還元
炉であってもセトラー天井部に数ケ所の孔を有すれば、
局所的な炉況の回復を目的として設備を移設する場合で
もガス流送配管の延長のみで済み、移設が非常に簡便で
ある。
Furthermore, since this equipment is a very simple one consisting only of lances and gas flow pipes, even if it is a large-scale reduction furnace, if the settler ceiling has several holes,
Even when the equipment is relocated for the purpose of local recovery of the furnace condition, it is only necessary to extend the gas flow pipes, and the relocation is very simple.

【0014】[0014]

【実施例】本発明の効果を確認するため、図1に示した
シャフト1内径1.5m、高さ2.5m、セトラー2内
径1.5m、長さ5.25m、酸化亜鉛原料処理量10
t/日の中規模試験炉を用いて酸化亜鉛原料からの亜鉛
の還元揮発試験を行なった。
EXAMPLE In order to confirm the effect of the present invention, the shaft 1 shown in FIG. 1 has an inner diameter of 1.5 m, a height of 2.5 m, a settler 2 an inner diameter of 1.5 m, a length of 5.25 m, and a zinc oxide raw material treatment amount of 10
A reduction volatilization test of zinc from a zinc oxide raw material was performed using a t / day medium-scale test furnace.

【0015】ここで酸化亜鉛原料としては硫化亜鉛精鉱
を酸化焙焼して得られた焼鉱(Zn:60.1重量%、
Pb:6.59重量%、S:0.5重量%)と銅製錬の
転炉スラグを選鉱して得られた鉄精粉(Zn:2.71
重量%、Pb:2.72重量%)とを4対1の比率で調
合したものを使用し流送エアーにより原料装入口9より
装入した。又、シャフト1の粉コークス装入口7より流
送エアーにて装入する粉コークスは、コークス製造工程
で副生するCDQダスト(C:80.96重量%、F
e:1.48重量%、CaO:1.84重量%、SiO
2 :6.29重量%、平均粒子径22μm)を使用し
た。又、酸素装入口8より90%O2 を装入し、生成す
る排ガス、金属亜鉛蒸気およびダストはアップテイク3
より炉外に導出される。
Here, as the zinc oxide raw material, a calcined ore obtained by oxidizing and roasting zinc sulfide concentrate (Zn: 60.1% by weight,
Pb: 6.59 wt%, S: 0.5 wt%) and iron refined powder (Zn: 2.71) obtained by beneficiating the converter slag of copper smelting
% By weight, Pb: 2.72% by weight) were mixed at a ratio of 4 to 1, and the mixture was charged from the raw material charging port 9 by the flow air. Further, the powder coke charged from the powder coke charging port 7 of the shaft 1 by the flow air is CDQ dust (C: 80.96% by weight, F
e: 1.48% by weight, CaO: 1.84% by weight, SiO
2 : 6.29% by weight, average particle diameter 22 μm) was used. Also, 90% O 2 is charged from the oxygen charging port 8 to generate exhaust gas, metallic zinc vapor and dust which are taken up by 3
It is led out of the furnace.

【0016】内径10mm、外径16mmのステンレス
製のパイプを用いたランス6を図1に示すセトラー天井
の位置に設置して1kg/cm2 の圧力で20Nm3
時の窒素ガスを吹込んだ。スラグ4熔体中へのランスの
浸漬深さは50mm程度となるように調整した(スラグ
の深さは約300mmであった)。また炉底レベルの検
尺はランス挿入孔から700mmだけ離れた距離にある
検尺孔10を用いて行なった。
A lance 6 using a stainless steel pipe having an inner diameter of 10 mm and an outer diameter of 16 mm is installed at the position of the settler ceiling shown in FIG. 1 and 20 Nm 3 / at a pressure of 1 kg / cm 2.
The nitrogen gas of the time was blown. The immersion depth of the lance in the molten slag 4 was adjusted to be about 50 mm (the slag depth was about 300 mm). Further, the measurement at the furnace bottom level was performed using the measurement hole 10 located at a distance of 700 mm from the lance insertion hole.

【0017】試験条件及び結果を表1に示す。また試験
炉の略図を図1に示す。表1において、スラグ組成およ
びタップ状況はスラグホール5より抜きだしたスラグに
ついてのものである。ガス組成はアップテイク3での値
である。又、未燃カーボン率はフラッシュ還元炉出口部
で測定したCO,CO2 ,O2 濃度と装入条件である粉
コークス量、酸化性ガス量より粉コークスのガス化率を
算出し、未燃カーボン率(%)=100−ガス化率
(%)の式より算出した値である。
Table 1 shows the test conditions and the results. A schematic diagram of the test furnace is shown in FIG. In Table 1, the slag composition and tap condition are for the slag extracted from the slag hole 5. The gas composition is the value at uptake 3. The unburned carbon rate is calculated by calculating the gasification rate of the powder coke from the CO, CO 2 , O 2 concentrations measured at the outlet of the flash reduction furnace and the amounts of powder coke and oxidizing gas that are charging conditions. It is a value calculated from the formula of carbon rate (%) = 100−gasification rate (%).

【0018】[0018]

【表1】 [Table 1]

【0019】表1において、ケース1(比較例)に示す
従来どおりの操業を実施した場合、粘性の高いスラグの
流出と粉コークス灰分によるタップ孔の閉塞によりスラ
グ抜き出しが非常に困難で、かき出しにより固着物を炉
外に排出することも完全にはできなかった。そこでスラ
グ浴へのガスの吹込みにより湯を攪拌したところケース
2(実施例)に示すように粉コークス灰分が十分に滓化
された為、スラグ抜き出しは非常にスムーズに実施出来
た。表1に示すスラグ抜き量はスラグの流動性を示す1
つの指標となるが、ケース2(実施例)で急激に抜き量
が増加し炉況が回復したことが判かる。またスラグ中の
鉄メタル品位は低下し、炉鉄生成の心配もなく、さらに
炉底レベルを低く抑えられており、良好な結果を得た。
In Table 1, when the conventional operation shown in Case 1 (Comparative Example) is carried out, it is very difficult to extract the slag due to the outflow of the highly viscous slag and the clogging of the tap holes due to the coke ash content. It was not possible to completely discharge the adhered substances to the outside of the furnace. Then, when hot water was stirred by blowing gas into the slag bath, the coke ash content in the powder was sufficiently slagged as shown in Case 2 (Example), so that the slag could be extracted very smoothly. The slag removal amount shown in Table 1 shows the fluidity of slag 1
Although it is one of the indicators, it can be seen that in Case 2 (Example), the extraction amount increased sharply and the furnace condition recovered. In addition, the quality of iron metal in the slag was lowered, there was no concern about the generation of iron in the furnace, and the furnace bottom level was kept low, and good results were obtained.

【0020】ガス吹込みの冶金性能に及ぼす影響を調べ
たところ、全排ガス量に対する吹込みガス量の割合がわ
ずかである為、蒸気Zn分圧はガス吹込みを行なっても
ほとんど変化しなかった。また未燃カーボン率について
はガス吹込みにより低下する良好な結果を得た。これは
ガス吹込みによりスプラッシュされた熔体スラグが排ガ
スと接触した際に、一部の未燃カーボンを補集する働き
をしている為と考えられる。
When the effect of gas injection on the metallurgical performance was examined, the ratio of the amount of injected gas to the total amount of exhaust gas was small, so that the partial pressure of Zn vapor hardly changed even when the gas was injected. . Further, the unburned carbon rate was reduced by gas injection, and good results were obtained. It is considered that this is because when the molten slag splashed by the gas injection comes into contact with the exhaust gas, it works to collect a part of the unburned carbon.

【0021】[0021]

【発明の効果】本発明によれば、簡易的な方法により炉
内に沈降した粉コークス灰分の滓化の促進と未燃カーボ
ンによるメタル鉄生成の防止がはかれ、還元炉操業にお
ける良好な炉況の確保及びその維持が可能である。
EFFECTS OF THE INVENTION According to the present invention, by a simple method, promotion of slag formation of powdered coke ash settled in the furnace and prevention of metal iron production by unburned carbon are achieved, and a good furnace in a reduction furnace operation is achieved. The situation can be secured and maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する還元炉の概略図であ
る。
FIG. 1 is a schematic view of a reduction furnace for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 シャフト 2 セトラー 3 アップテイク 4 スラグ 5 スラグホール 6 ランス 7 粉コークス装入口 8 酸素装入口 9 原料装入口 10 検尺孔 1 Shaft 2 Settler 3 Uptake 4 Slag 5 Slag hole 6 Lance 7 Powder coke charging port 8 Oxygen charging port 9 Raw material charging port 10 Measuring hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シャフト、セトラー及びアップテイクか
らなる亜鉛及び/又は鉛製錬用還元炉の操業において、
セトラー天井よりセトラーのスラグ中に窒素、空気、酸
素富化空気および工業用酸素から成る群から選らばれた
1種以上をその先端がスラグ中に浸漬されたランスを介
して吹込むことを特徴とする亜鉛及び/又は鉛製錬用還
元炉の操業方法。
1. In the operation of a zinc and / or lead smelting reduction furnace comprising a shaft, a settler and an uptake,
Characterized by blowing at least one selected from the group consisting of nitrogen, air, oxygen-enriched air and industrial oxygen into the slag of the settler from the settler ceiling through a lance whose tip is immersed in the slag. A method for operating a reducing furnace for smelting zinc and / or lead.
JP8383093A 1993-03-19 1993-03-19 Operation of reduction furnace for smelting zinc and/or lead Pending JPH06271954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8383093A JPH06271954A (en) 1993-03-19 1993-03-19 Operation of reduction furnace for smelting zinc and/or lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8383093A JPH06271954A (en) 1993-03-19 1993-03-19 Operation of reduction furnace for smelting zinc and/or lead

Publications (1)

Publication Number Publication Date
JPH06271954A true JPH06271954A (en) 1994-09-27

Family

ID=13813620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8383093A Pending JPH06271954A (en) 1993-03-19 1993-03-19 Operation of reduction furnace for smelting zinc and/or lead

Country Status (1)

Country Link
JP (1) JPH06271954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006380A1 (en) * 1987-12-25 1989-07-13 Fuji Photo Film Co., Ltd. Process for processing silver halide color photographic materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006380A1 (en) * 1987-12-25 1989-07-13 Fuji Photo Film Co., Ltd. Process for processing silver halide color photographic materials

Similar Documents

Publication Publication Date Title
KR101276921B1 (en) Method for removing copper in steel scraps
JP3529317B2 (en) Operating method of copper smelting furnace
JPH10502127A (en) Copper conversion
US4489046A (en) Method for working-up arsenic-containing waste
JP2001004279A (en) Direct refining container
JPH0136539B2 (en)
MX2009001285A (en) Lead slag reduction.
US4294433A (en) Pyrometallurgical method and furnace for processing heavy nonferrous metal raw materials
CA1110078A (en) Method and apparatus for the refining of melts by means of a pulverous solid material and/or a gas
Toguri et al. A review of recent studies on copper smelting
JP2009041052A (en) Method for smelting copper-containing dross by using slag-fuming furnace
JP6516264B2 (en) Method of treating copper smelting slag
GB2054657A (en) Process and installation for the treatment of dust and sludge from blast furnaces, and electric furnaces and converters of steel works
EP0214268A1 (en) A method for working-up waste products containing valuable metals.
JPH06271954A (en) Operation of reduction furnace for smelting zinc and/or lead
CN112746184B (en) Copper smelting furnace, copper smelting equipment and copper smelting method
JP6954481B2 (en) Charcoal material and charcoal method using it
JP4525453B2 (en) Slag fuming method
JP4422305B2 (en) Operation method of copper smelting furnace and blower lance used therefor
JP3969522B2 (en) Operation method of copper smelting furnace
JP5581760B2 (en) Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source
EP0216618A2 (en) Recovery of volatile metal values from metallurgical slags
JP2009167469A (en) Method for treating copper-containing dross
JP4096825B2 (en) Operation method of copper smelting furnace
JP2712877B2 (en) Operating method of flash smelting furnace