JPH06271662A - Method for drying polycarbonate powder - Google Patents

Method for drying polycarbonate powder

Info

Publication number
JPH06271662A
JPH06271662A JP6392093A JP6392093A JPH06271662A JP H06271662 A JPH06271662 A JP H06271662A JP 6392093 A JP6392093 A JP 6392093A JP 6392093 A JP6392093 A JP 6392093A JP H06271662 A JPH06271662 A JP H06271662A
Authority
JP
Japan
Prior art keywords
polycarbonate
solvent
organic solvent
powder
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6392093A
Other languages
Japanese (ja)
Inventor
Noboru Yamanishi
昇 山西
Koji Hashimoto
幸司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP6392093A priority Critical patent/JPH06271662A/en
Publication of JPH06271662A publication Critical patent/JPH06271662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain a method for removing residual solvent, effective for remarkably decreasing the residual organic solvent in granular polycarbonate, enabling the elimination or remarkable shortening of drying process and useful for improving the quality, decreasing the labor and reducing the production cost. CONSTITUTION:A granular polycarbonate containing an organic solvent is heated to a temperature above the glass transition point of the polycarbonate by internal heating to evaporate the organic solvent and obtain dried polycarbonate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機溶媒を含有するポリ
カーボネート粉粒体の乾燥方法に関する。更に詳しく
は、有機溶媒を含有するポリカーボネート粉粒体から有
機溶媒を効率よく且つ充分に除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for drying polycarbonate powder granules containing an organic solvent. More specifically, it relates to a method for efficiently and sufficiently removing an organic solvent from a polycarbonate powder containing an organic solvent.

【0002】[0002]

【従来の技術】ポリカーボネートは、通常二価フェノー
ルのアルカリ水溶液とホスゲンを、塩化メチレン等の溶
媒の存在下反応させるいわゆる溶液法により製造され、
得られるポリカーボネートの溶媒溶液から溶媒を除去し
て粉粒体にする粉粒化工程を経た後乾燥工程に供され
る。ポリカーボネートの溶媒溶液から溶媒を除去して粉
粒体を得る方法としては、例えばポリカーボネートの溶
媒溶液を熱水と接触させて粉粒化する方法、濃縮や冷却
によってゲル化して粉粒化する方法等が知られている。
しかしながら、これらの方法により得られる粉粒体に
は、なお多くの溶媒が残留し、この残留溶媒はポリカー
ボネートのガラス転移点以下の温度に加熱する通常の乾
燥によっては充分に除去することは困難である。乾燥温
度をポリカーボネートのガラス転移点以上の雰囲気で乾
燥する方法(特開平4−189834号公報)も知られ
ている。しかしながら、このような外部加熱方式による
高温乾燥方法では、ポリカーボネート粉粒体の温度をそ
のガラス転移点以上にするには多量の熱量が必要にな
り、また熱媒の温度をあげると乾燥機壁面でポリカーボ
ネート粉粒体の融着が起りトラブルが発生し易い。この
ため実際には乾燥温度には限界があり、かかる方法によ
っても溶媒除去に非常に長時間を必要とし且つ残留溶媒
を充分に除去することは困難である。しかも、このよう
に乾燥を強化すると運転上のトラブルを発生したり、製
品の分子量低下、色相の悪化、異物の混入等が発生する
ようになる。
2. Description of the Related Art Polycarbonate is usually produced by a so-called solution method in which an alkaline aqueous solution of a dihydric phenol and phosgene are reacted in the presence of a solvent such as methylene chloride.
The solvent is removed from the obtained polycarbonate solvent solution, and the powder is subjected to a granulation process to obtain a powder, and then subjected to a drying process. As a method of removing the solvent from the solvent solution of the polycarbonate to obtain a granular material, for example, a method of contacting the solvent solution of the polycarbonate with hot water to granulate, a method of gelling into particles by concentrating or cooling, etc. It has been known.
However, many solvents still remain in the powders and granules obtained by these methods, and this residual solvent cannot be sufficiently removed by ordinary drying by heating to a temperature below the glass transition point of polycarbonate. is there. There is also known a method (Japanese Patent Laid-Open No. 4-189834) for drying in an atmosphere having a drying temperature of not less than the glass transition point of polycarbonate. However, in such a high-temperature drying method using an external heating method, a large amount of heat is required to bring the temperature of the polycarbonate powder or above to its glass transition point, and if the temperature of the heating medium is raised, the wall surface of the dryer is increased. Trouble is likely to occur due to fusion of polycarbonate powder particles. Therefore, the drying temperature is actually limited, and even with such a method, it takes a very long time to remove the solvent and it is difficult to sufficiently remove the residual solvent. Moreover, if the drying is strengthened in this way, operational troubles will occur, the molecular weight of the product will decrease, the hue will deteriorate, and foreign matter will be mixed.

【0003】残留溶媒の少ないポリカーボネート粉粒体
の製造法として、反応により得られるポリカーボネート
の溶媒溶液や溶媒が残留するポリカーボネート粉粒体の
スラリーに非溶媒や貧溶媒を添加後、乾燥処理する方
法、又は溶媒が残留するポリカーボネート粉粒体を貧溶
媒で抽出処理する方法が提案されている。これら方法で
は溶媒は充分に除去されるものの非溶媒や貧溶媒が多量
残留し、この残留非溶媒や貧溶媒は通常の乾燥では勿論
のこと、高温で長時間の乾燥によっても充分に除去する
ことは困難である。また、固相重合反応の製造工程では
前縮合反応したプレポリマーを非溶媒又は貧溶媒に投入
し結晶化させた後縮合反応する方法が行われており、こ
の場合も使用した非溶媒や貧溶媒を充分に除去すること
は困難である。
As a method for producing a polycarbonate powder granule having a small amount of residual solvent, a method of adding a non-solvent or a poor solvent to a solvent solution of the polycarbonate powder obtained by the reaction or a slurry of the polycarbonate powder granule in which the solvent remains, followed by a drying treatment, Alternatively, a method has been proposed in which a polycarbonate powder or granular material in which a solvent remains is subjected to an extraction treatment with a poor solvent. In these methods, the solvent is sufficiently removed, but a large amount of the non-solvent and the poor solvent remain, and the residual non-solvent and the poor solvent should be sufficiently removed not only by ordinary drying but also by drying at high temperature for a long time. It is difficult. Further, in the manufacturing process of the solid-state polymerization reaction, a method of introducing the pre-condensed prepolymer into a non-solvent or a poor solvent to crystallize it and then conducting the condensation reaction is used. Is difficult to remove sufficiently.

【0004】[0004]

【発明が解決しようとする課題】本発明はの目的は、有
機溶媒を含有するポリカーボネート粉粒体から有機溶媒
を効率よく且つ充分に除去する方法を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for efficiently and sufficiently removing an organic solvent from a polycarbonate powder granule containing the organic solvent.

【0005】本発明者は、上記目的を達成せんとしてポ
リカーボネート粉粒体の加熱方法について鋭意検討した
結果、加熱方法としてマイクロ波照射による内部発熱方
式を用いれば、ポリカーボネート粉粒体をそのガラス転
移点以上の高温に容易にすることができ、かかる高温に
しても融着を起こさず、乾燥時間を大幅に短縮すること
ができ、またポリカーボネート中に残留する有機溶媒も
大幅に低減し得ることを見出し、本発明を完成した。
The inventors of the present invention have made extensive studies as to how to heat the polycarbonate powder granules in order to achieve the above object. As a result, if the internal heating method by microwave irradiation is used as the heating method, the polycarbonate powder granules have a glass transition point. It was found that the temperature can be easily increased to the above high temperature, fusion does not occur even at such high temperature, the drying time can be significantly shortened, and the organic solvent remaining in the polycarbonate can be significantly reduced. The present invention has been completed.

【0006】[0006]

【課題を解決するための手段】本発明は、有機溶媒を含
有するポリカーボネート粉粒体を内部発熱方式によって
該ポリカーボネートのガラス転移点以上の温度に発熱さ
せて有機溶媒を除去することを特徴とするポリカーボネ
ート粉粒体の乾燥方法である。
The present invention is characterized in that a polycarbonate powder containing an organic solvent is heated to a temperature not lower than the glass transition point of the polycarbonate by an internal heating method to remove the organic solvent. It is a method for drying a polycarbonate powder.

【0007】本発明でいうポリカーボネートは、二価フ
ェノールのアルカリ水溶液(例えば水酸化ナトリウムや
水酸化カリウム等の強塩基性水酸化物の水溶液)とホス
ゲンを溶媒の存在下で反応させて製造されるものを主と
し、これに芳香族または脂肪族ジカルボン酸成分を共重
合させたポリエステルカーボネートであっても、例えば
三官能以上の多官能性芳香族化合物を共重合させた分岐
ポリカーボネートであってもよく、通常の分子量のポリ
カーボネートと超高分子量のポリカーボネートとの混合
物であってもよい。その分子量は特に限定する必要はな
く、粘度平均分子量で12,000〜50,000の通
常のポリカーボネートや粘度平均分子量が80,000
以上の超高分子量のポリカーボネートであっても、ハロ
ゲン化二価フェノールから得られる平均重合度2以上の
難燃剤として用いられるハロゲン化カーボネートオリゴ
マーや固相重合法に用いられるプレポリマー等も含む。
また、例えば二価フェノールとジフェニルカーボネート
を溶融状態で反応させるいわゆるエステル交換法により
得られたプレポリマーを固相重合に供する前に非溶媒又
は貧溶媒に投入し結晶化させたものも包含する。
The polycarbonate as referred to in the present invention is produced by reacting an alkaline aqueous solution of a dihydric phenol (for example, an aqueous solution of a strongly basic hydroxide such as sodium hydroxide or potassium hydroxide) with phosgene in the presence of a solvent. It may be a polyester carbonate mainly composed of a copolymer of aromatic or aliphatic dicarboxylic acid components, or a branched polycarbonate prepared by copolymerizing a trifunctional or higher polyfunctional aromatic compound. It may be a mixture of a normal molecular weight polycarbonate and an ultrahigh molecular weight polycarbonate. The molecular weight thereof is not particularly limited, and a usual polycarbonate having a viscosity average molecular weight of 12,000 to 50,000 or a viscosity average molecular weight of 80,000 is used.
Even the above-mentioned ultra-high molecular weight polycarbonates include halogenated carbonate oligomers obtained from halogenated dihydric phenols and used as flame retardants having an average degree of polymerization of 2 or more, and prepolymers used in the solid-state polymerization method.
In addition, for example, a prepolymer obtained by a so-called transesterification method in which a dihydric phenol and diphenyl carbonate are reacted in a molten state is put into a non-solvent or a poor solvent to be crystallized before being subjected to solid phase polymerization.

【0008】ここで用いる二価フェノールとしては、
2,2−ビス(4−ヒドロキシフェニル)プロパンが主
として用いられるが、その一部又は全部を他の二価フェ
ノールで置換えてもよい。他の二価フェノールとしては
例えばビス(4−ヒドロキシフェニル)メタン、1,1
−ビス(4−ヒドロキシフェニル)エタン、1,1−ビ
ス(4−ヒドロキシフェニル)シクロヘキサン、2,2
−ビス(4−ヒドロキシ−3−メチルフェニル)プロパ
ン、2,2−ビス(4−ヒドロキシフェニル)ブタン、
ビス(4−ヒドロキシフェニル)スルホン、ビス(4−
ヒドロキシフェニル)エ−テル、ビス(4−ヒドロキシ
フェニル)ケトン、4,4′−ジヒドロキシジフェニ
ル、ハイドロキノン、2,6−ジヒドロキシナフタレン
等があげられる。またフェニル基に低級アルキル基やハ
ロゲン原子が置換された二価フェノールであってもよ
い。
As the dihydric phenol used here,
2,2-bis (4-hydroxyphenyl) propane is mainly used, but some or all of it may be replaced with other dihydric phenol. Other dihydric phenols include, for example, bis (4-hydroxyphenyl) methane, 1,1
-Bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2
-Bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane,
Bis (4-hydroxyphenyl) sulfone, bis (4-
Examples thereof include hydroxyphenyl) ether, bis (4-hydroxyphenyl) ketone, 4,4'-dihydroxydiphenyl, hydroquinone, and 2,6-dihydroxynaphthalene. Further, it may be a divalent phenol in which a phenyl group is substituted with a lower alkyl group or a halogen atom.

【0009】本発明で対象にする上記ポリカーボネート
の粉粒体は、任意の方法で製造されたものでよく、その
形状は任意であり、その大きさも通常粉粒体と言われる
程度の大きさであれば何等制限する必要はなく、有機溶
媒の一種又は二種以上を含有するポリカーボネート粉粒
体である。有機溶媒の含有量は、特に限定する必要はな
いが、50重量%以下が好ましく、特に0.1〜50重
量%の範囲が本発明のの効果が大きいので好ましい。
The above-mentioned polycarbonate powder or granule to be used in the present invention may be produced by any method, its shape is arbitrary, and its size is such a size that is usually called a powder or granule. There is no need to limit it in any way, and it is a polycarbonate powder containing one or more organic solvents. The content of the organic solvent is not particularly limited, but is preferably 50% by weight or less, and particularly preferably in the range of 0.1 to 50% by weight because the effect of the present invention is great.

【0010】本発明でいう有機溶媒は、ポリカーボネー
トの製造に使用する良溶媒、粉粒化工程や結晶化工程等
で使用する非溶媒や貧溶媒であり、良溶媒としては例え
ば塩化メチレン、クロロホルム、1,2−ジクロロエタ
ン、1,1,2−トリクロロエタン、テトラクロロエタ
ン、クロルベンゼン等のハロゲン化脂肪族炭化水素があ
げられ、非溶媒及び貧溶媒としては例えば n−ヘプタ
ン、 n−ヘキサン、シクロヘキサン等の脂肪族炭化水素
類、ベンゼン、トルエン、キシレン等の芳香族炭化水素
類、酢酸ブチル等のエステル類、アセトン、メチルイソ
ブチルケトン等のケトン類等があげられる。
The organic solvent referred to in the present invention is a good solvent used in the production of polycarbonate, a non-solvent or a poor solvent used in a powder granulation process, a crystallization process, etc. Examples of the good solvent include methylene chloride, chloroform, Examples thereof include halogenated aliphatic hydrocarbons such as 1,2-dichloroethane, 1,1,2-trichloroethane, tetrachloroethane, and chlorobenzene, and nonsolvents and poor solvents include, for example, n-heptane, n-hexane, and cyclohexane. Examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene, esters such as butyl acetate, ketones such as acetone and methyl isobutyl ketone.

【0011】本発明で使用する内部発熱方式の代表的な
ものとしてマイクロ波照射による加熱方式があげられ
る。マイクロ波は300〜30,000MHz の周波数を
有するものであり、通常2,450MHz のマイクロ波が
使用される。マイクロ波照射による発熱温度はポリカー
ボネートのガラス転移点以上である。ガラス転移点より
低い温度では脱溶媒の効果が小さく、本発明の目的が達
成し得ない。また、あまりに高温にするとポリカーボネ
ート粉粒体が溶融するようになるので、ポリカーボネー
トのガラス転移点より10〜40℃高い温度が好まし
く、ガラス転移点より15〜20℃高い温度が特に好ま
しい。マイクロ波による照射時間は、ポリカーボネート
粉粒体に含有されている有機溶媒の量や種類、更には水
分の量によって異なり一概に制限できないが、通常6時
間程度行えば充分である。マイクロ波照射によれば、ポ
リカーボネート粉粒体自体が発熱するため効率よくに昇
温でき、またポリカーボネート粉粒体をそのガラス転移
点以上に昇温しても乾燥機内の雰囲気や壁面の温度はポ
リカーボネート粉粒体の温度以上にならないため、壁面
等での融着は起り難いが、壁面を外部から適当な温度に
冷却してもよい。
As a typical internal heating method used in the present invention, there is a heating method using microwave irradiation. The microwave has a frequency of 300 to 30,000 MHz, and a microwave of 2,450 MHz is usually used. The temperature of heat generated by microwave irradiation is above the glass transition point of polycarbonate. At a temperature lower than the glass transition point, the effect of desolvation is small and the object of the present invention cannot be achieved. Further, if the temperature is too high, the polycarbonate powder particles will be melted, so a temperature higher by 10 to 40 ° C. than the glass transition point of the polycarbonate is preferable, and a temperature higher by 15 to 20 ° C. than the glass transition point is particularly preferable. The microwave irradiation time varies depending on the amount and type of the organic solvent contained in the polycarbonate powder and the amount of water, and cannot be unconditionally limited, but usually about 6 hours is sufficient. According to the microwave irradiation, the polycarbonate powder granules themselves generate heat so that the temperature can be raised efficiently, and even if the temperature of the polycarbonate powder granules is raised above its glass transition point, the atmosphere in the dryer and the temperature of the wall surface are Since the temperature does not exceed the temperature of the granular material, fusion on the wall surface or the like is unlikely to occur, but the wall surface may be cooled to an appropriate temperature from the outside.

【0012】マイクロ波照射を行う箇所及び方法は特に
限定されない。例えば有機溶媒を含有するポリカーボネ
ート粉粒体に、マイクロ波を照射してそのガラス転移点
以上の温度に発熱させて溶媒を除去した後、従来の乾燥
工程で溶媒除去を行う方法、従来の乾燥工程の後にマイ
クロ波照射する方法、通常の乾燥装置と同一工程でマイ
クロ波照射する方法等があげられる。これらは回分式又
は連続式で1回又は2回以上行うことができる。また、
マイクロ波照射を効率よく行うために、必要に応じて数
箇所からポリカーボネート粉粒体にマイクロ波を照射し
たり、ポリカーボネート粉粒体を撹拌、流動させながら
照射することにより均一な乾燥が可能である。マイクロ
波照射によりポリカーボネート粉粒体の温度をガラス転
移点以上にして乾燥すると、通常の乾燥工程のみの場合
に比べて脱溶媒時間が大幅に短縮でき、しかも粉粒体に
残留する有機溶媒量も大幅に低減することができる。
The location and method of microwave irradiation are not particularly limited. For example, a polycarbonate powder containing an organic solvent is irradiated with microwaves to generate heat at a temperature above its glass transition point to remove the solvent, and then the solvent is removed in a conventional drying step, a conventional drying step. After that, a method of irradiating with microwaves, a method of irradiating with microwaves in the same step as an ordinary drying device, etc. These can be performed once or twice or more in a batch system or a continuous system. Also,
In order to efficiently perform microwave irradiation, it is possible to uniformly irradiate the polycarbonate powder or granules with microwaves from several locations, or by irradiating the polycarbonate powder or granules while stirring and flowing the microwaves. . When the temperature of the polycarbonate granules is raised above the glass transition point by microwave irradiation and dried, the desolvation time can be significantly shortened compared to the case of only a normal drying step, and the amount of organic solvent remaining in the granules is also reduced. It can be significantly reduced.

【0013】[0013]

【実施例】以下に実施例をあげて本発明を更に説明す
る。なお、%は重量%であり、残留溶媒の定量分析はガ
スクロマトグラフ[(株)日立製作所製263型]を用
い、検出器には FID又はTCD を用いた。
EXAMPLES The present invention will be further described with reference to the following examples. In addition,% is% by weight, quantitative analysis of residual solvent was carried out using a gas chromatograph [Type 263 manufactured by Hitachi, Ltd.], and FID or TCD was used as a detector.

【0014】[0014]

【実施例1】ビスフェノールAと末端停止剤としてビス
フェノールAに対して0.030のモル比の量の p−te
rt−ブチルフェノールの水酸化ナトリウム水溶液及びホ
スゲンを、塩化メチレンとトリエチルアミンの存在下常
法により反応させた。反応終了後塩化メチレン層を分離
し、分離した塩化メチレン溶液を充分に水洗し、次に塩
化メチレン溶液を温水中に投入し、大部分の塩化メチレ
ンを除去してポリカーボネート粉粒体を得た。得られた
粉粒体中の塩化メチレン量は26.2%、粘度平均分子
量は23,700であった。この粉粒体を周波数2,4
50MHz のマイクロ波により165℃に昇温し5時間照
射した。得られたポリカーボネート粉粒体中の塩化メチ
レンの量は0.0003%であった。
Example 1 p-te in an amount of 0.030 molar ratio with bisphenol A and bisphenol A as end-capping agent.
An aqueous sodium hydroxide solution of rt-butylphenol and phosgene were reacted by a conventional method in the presence of methylene chloride and triethylamine. After completion of the reaction, the methylene chloride layer was separated, the separated methylene chloride solution was thoroughly washed with water, and then the methylene chloride solution was poured into warm water to remove most of the methylene chloride to obtain a polycarbonate powder. The amount of methylene chloride in the obtained granules was 26.2%, and the viscosity average molecular weight was 23,700. The frequency of this powder is 2, 4
The temperature was raised to 165 ° C. by a microwave of 50 MHz and irradiation was performed for 5 hours. The amount of methylene chloride in the obtained polycarbonate powder was 0.0003%.

【0015】[0015]

【実施例2】マイクロ波の照射条件を155℃、5時間
とする以外は実施例1と同様に行った。得られたポリカ
ーボネート粉粒体中の塩化メチレンの量は0.0007
%であった。
Example 2 Example 1 was repeated except that the microwave irradiation conditions were 155 ° C. and 5 hours. The amount of methylene chloride in the obtained polycarbonate powder is 0.0007.
%Met.

【0016】[0016]

【実施例3】実施例1と同様に重合反応、造粒工程を経
た後、得られたポリカーボネート粉粒体を更に熱水中に
投入して混合撹拌した後脱水した。得られた粉粒体中の
塩化メチレン量は2.4%であった。この粉粒体をマイ
クロ波により165℃に昇温し2時間照射した。得られ
たポリカーボネート粉粒体中の塩化メチレン量は0.0
010%であった。
Example 3 After the polymerization reaction and the granulation step were carried out in the same manner as in Example 1, the obtained polycarbonate powder was further put into hot water, mixed and stirred, and then dehydrated. The amount of methylene chloride in the obtained powder and granules was 2.4%. The powder and granules were heated to 165 ° C. by microwave and irradiated for 2 hours. The amount of methylene chloride in the obtained polycarbonate powder is 0.0
It was 010%.

【0017】[0017]

【比較例1】マイクロ波照射を行わず、パドル型乾燥機
により140℃で9時間乾燥する以外は実施例1と同様
に行った。得られたポリカーボネート粉粒体中の塩化メ
チレン量は0.023%であった。
[Comparative Example 1] The same procedure as in Example 1 was carried out except that microwave irradiation was not carried out and drying was carried out at 140 ° C for 9 hours using a paddle dryer. The amount of methylene chloride in the obtained polycarbonate powder was 0.023%.

【0018】[0018]

【比較例2】マイクロ波照射を行わず、パドル型乾燥機
により140℃で9時間乾燥する以外は実施例3と同様
に行った。得られたポリカーボネート粉粒体中の塩化メ
チレン量は0.010%であった。
[Comparative Example 2] The same procedure as in Example 3 was carried out except that microwave irradiation was not performed and drying was performed at 140 ° C for 9 hours using a paddle dryer. The amount of methylene chloride in the obtained polycarbonate powder granules was 0.010%.

【0019】[0019]

【比較例3】マイクロ波照射を行わず、パドル型乾燥機
により155℃で乾燥したところ3時間で乾燥機内部に
て粉粒体の融着が起こった。以上結果をまとめて表1に
示した。
[Comparative Example 3] When microwaves were not used and drying was performed at 155 ° C by a paddle type dryer, fusion of powder and granules occurred within the dryer in 3 hours. The results are summarized in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明によれば、ポリカーボネート粉粒
体に残留する有機溶媒量を大幅に低減することができ、
且つ乾燥工程の省略乃至は大幅な短縮が可能で、品質向
上、工程の省力化、製造コストの低減が可能であり、そ
の奏する効果は格別なものである。
According to the present invention, the amount of organic solvent remaining in the polycarbonate powder can be significantly reduced,
In addition, the drying process can be omitted or greatly shortened, the quality can be improved, the labor of the process can be saved, and the manufacturing cost can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機溶媒を含有するポリカーボネート粉
粒体を内部発熱方式によって該ポリカーボネートのガラ
ス転移点以上の温度に発熱させて有機溶媒を除去するこ
とを特徴とするポリカーボネート粉粒体の乾燥方法。
1. A method of drying a polycarbonate powder or granular material, which comprises heating the polycarbonate powder or granular material containing an organic solvent to a temperature not lower than the glass transition point of the polycarbonate by an internal heating method to remove the organic solvent.
JP6392093A 1993-03-23 1993-03-23 Method for drying polycarbonate powder Pending JPH06271662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6392093A JPH06271662A (en) 1993-03-23 1993-03-23 Method for drying polycarbonate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6392093A JPH06271662A (en) 1993-03-23 1993-03-23 Method for drying polycarbonate powder

Publications (1)

Publication Number Publication Date
JPH06271662A true JPH06271662A (en) 1994-09-27

Family

ID=13243263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6392093A Pending JPH06271662A (en) 1993-03-23 1993-03-23 Method for drying polycarbonate powder

Country Status (1)

Country Link
JP (1) JPH06271662A (en)

Similar Documents

Publication Publication Date Title
WO1990007536A1 (en) A porous, crystallized, aromatic polycarbonate prepolymer, a porous, crystallized aromatic polycarbonate, and production methods
JP2004536916A (en) Method for producing polycarbonate by solid state polymerization
JP3174445B2 (en) Production method of polycarbonate
US5817183A (en) Method for removing coatings from thermoplastic substrates
JPH04305414A (en) Refining of polycarbonate and polyester carbonate waste
JPS5869225A (en) Isolation of polymer
US5726223A (en) Process for production of polymer particles
JPH06271662A (en) Method for drying polycarbonate powder
JP3118833B2 (en) Method for producing granular high molecular weight polycarbonate resin
JPH05310907A (en) Method for removing residual solvent
JPH09291143A (en) Production of polycarbonate powder
JP2002535463A (en) Method for producing polycarbonate with improved crystallinity
JP2003507548A (en) Production of copolycarbonate by solid state polymerization
KR20040040664A (en) Preparation method of high molecular weight polycarbonate resin
JPH07268092A (en) Production of polycarbonate
JP4272123B2 (en) Method for obtaining an alkaline aqueous solution of a purified aromatic dihydroxy compound from waste aromatic polycarbonate
JPS63218730A (en) Purification of polycarbonate granules
JPS6126571B2 (en)
JP2795558B2 (en) Method for producing polymer granules
JPH0118939B2 (en)
JPS63159332A (en) Production of alkaline metal salt of hydroxyaromatic compound
KR102203151B1 (en) Crystallization of Polycarbonate
KR20010093292A (en) Method for preparing copolycarbonates of enhanced crystallinity
JPH05310905A (en) Production of aromatic polycarbonate prepolymer, prepolymer obtained thereby and production of aromatic polycarbonate
EP1242503A1 (en) Method for isolating dihydroxybiphenyl polyethersulfones