JPH0627104A - Method and apparatus for detecting double-stranded nucleic acid - Google Patents

Method and apparatus for detecting double-stranded nucleic acid

Info

Publication number
JPH0627104A
JPH0627104A JP518892A JP518892A JPH0627104A JP H0627104 A JPH0627104 A JP H0627104A JP 518892 A JP518892 A JP 518892A JP 518892 A JP518892 A JP 518892A JP H0627104 A JPH0627104 A JP H0627104A
Authority
JP
Japan
Prior art keywords
nucleic acid
reaction
stranded nucleic
double
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP518892A
Other languages
Japanese (ja)
Inventor
Kazuko Kawamoto
和子 川本
Hideki Kanbara
秀記 神原
Keiichi Nagai
啓一 永井
Katsuji Murakawa
克二 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP518892A priority Critical patent/JPH0627104A/en
Publication of JPH0627104A publication Critical patent/JPH0627104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To provide an easy and efficient method for detecting double-stranded nucleic acid regarding amplification and production and an easy and efficient method for detecting varied nucleic acid and to obtain a detecting apparatus used for these methods. CONSTITUTION:A method for detecting double-stranded nuclei acid selectively produced by reaction comprises steps of adding marker reagent for exciting a specific reaction on a part where the double-stranded nucleic acid is formed to reactant solution in a reaction vessel where reaction occurs, sensing excitation of the specific reaction and detecting a production state of the double-stranded nucleic acid in the reactant solution. A fluorescent detector used for the method for detecting a nucleic acid sample senses relatively low temperature dissociation of pairing of a DNA chain having gene variation and a DNA chain having an inherent sequence using marker reagent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核酸の新規な検出方法
及び蛍光検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel nucleic acid detection method and fluorescence detection device.

【0002】[0002]

【従来の技術】[Prior art]

(1) 近年、ポリメラーゼ連鎖反応法 (polymerase chai
n reaction : PCR 法)に代表される二本鎖核酸の生成方
法が次々と開発され、遺伝子の解析や特定遺伝子のクロ
ーニングが容易になり、かかる方法は、産業界に多大な
貢献をしている。
(1) In recent years, the polymerase chain reaction method (polymerase chai
n reaction: PCR method) has been developed one after another to facilitate the analysis of genes and cloning of specific genes, and such methods make a great contribution to the industry. .

【0003】ところで、例えば前記PCR法で特定遺伝
子を増幅又は生成し、その特定遺伝子を検出するため
に、反応容器中のDNA溶液の一部を採取し、アガロー
スゲルやアクリルアミドゲル中で電気泳動を行ない分子
量分離して、当該分離パターンを読み取る方法やエチジ
ウムブロマイド染色の比色定量法(Molecular Cloning,A
Laboratory Manual, vol.2 E.5〜E.7)を用いることが
通常行なわれている。
By the way, for example, in order to amplify or generate a specific gene by the PCR method and detect the specific gene, a part of the DNA solution in the reaction vessel is sampled and subjected to electrophoresis in agarose gel or acrylamide gel. Perform molecular weight separation to read the separation pattern and ethidium bromide staining colorimetric assay (Molecular Cloning, A
Laboratory Manual, vol.2 E.5 to E.7) is usually used.

【0004】しかしながら、これらの方法はいずれもD
NAの増幅又は生成反応の終了後、別途試料を反応容器
から取り出して増幅又は生成の目的とするDNAを検出
する必要があり、チェックのための作業に時間をとられ
ることが多く、また結果として目的とする遺伝子が増幅
又は生成していない場合には、前記チェック時間のみな
らず、増幅又は生成のための反応時間が無駄になり、全
体として作業効率を落とす原因となる。
However, all of these methods use D
After the completion of the NA amplification or production reaction, it is necessary to take out a sample separately from the reaction vessel to detect the target DNA for amplification or production, and it often takes time for the checking work. If the target gene is not amplified or produced, not only the check time but also the reaction time for amplification or production is wasted, which causes a reduction in overall work efficiency.

【0005】(2) これとは別に、最近の遺伝子工学の
進歩は、特定遺伝子の変異により、特定の疾病が惹き起
こされることを次々に解明している。よって、かかる遺
伝子の変異を検出することで、上記疾病の予防又は診断
が可能になるが、遺伝子の変異の検出技術が生物学的な
発見に必ずしも対応しきれていないのが現状である。
(2) Apart from this, recent advances in genetic engineering have revealed that mutations of specific genes cause specific diseases one after another. Therefore, by detecting the mutation of such a gene, it is possible to prevent or diagnose the above-mentioned diseases, but the present situation is that the technology for detecting the mutation of the gene does not always correspond to biological discovery.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明が解決す
べき課題は、増幅又は生成に係る二本鎖核酸の簡便かつ
効率的な検出方法、及び変異をおこした核酸の簡便かつ
確実な検出方法の確立にある。
SUMMARY OF THE INVENTION The problems to be solved by the present invention are therefore a simple and efficient method for detecting double-stranded nucleic acids involved in amplification or production, and a simple and reliable method for detecting mutated nucleic acids. Is in the establishment of.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題に
ついて鋭意検討した結果、二本鎖核酸の形成部分で特異
的な反応を励起する標識試薬を用いて反応容器中におい
て直接目的遺伝子の増殖又は生成過程における二本鎖核
酸を検出可能であること、及びかかる標識試薬の二本鎖
核酸における当該反応の消失条件が完全に相補的な二本
鎖核酸と非相補的な部分を含む二本鎖核酸では異なると
いう性質を利用して上記課題を解決可能であることを見
出した。
Means for Solving the Problems As a result of extensive studies on the above-mentioned problems, the present inventor has used a labeling reagent that excites a specific reaction at the formation portion of a double-stranded nucleic acid, and Double-stranded nucleic acid can be detected in the process of proliferation or generation, and the double-stranded nucleic acid of the labeling reagent has a condition of extinguishing the reaction, which includes a completely complementary double-stranded nucleic acid and a non-complementary portion. It has been found that the above problem can be solved by utilizing the property that the double-stranded nucleic acid is different.

【0008】すなわち、本発明の第一は、反応により選
択的に生成される二本鎖核酸の検出方法であって、当該
反応を行なう反応容器内の反応液中に、二本鎖核酸の形
成部分で特異的な反応を励起する標識試薬を加えて、か
かる特異的な反応の励起を検知し、当該反応液中の二本
鎖核酸の生成状態を検出することを特徴とする二本鎖核
酸の検出方法であり、第二は、検体となる一本鎖核酸と
その一本鎖核酸が本来有する塩基配列と相補的である一
本鎖の核酸プローブとを対合させてなる二本鎖核酸を、
二本鎖核酸の形成部分で特異的な反応を励起する標識試
薬で標識して、当該二本鎖核酸標識体を温度上昇によっ
て解離させ、当該解離温度を前記特異的な反応の消失に
より検知し、前記核酸プローブと相補的なDNA鎖が対
合した二本鎖核酸の解離温度と比較することを特徴とす
る核酸試料の検出方法であり、第三は、前記二つの検出
方法実行のための蛍光検出装置である。A. まず本願第
一の発明である二本鎖核酸の増殖・生成状態の検出方法
について詳細に説明する。
That is, the first aspect of the present invention is a method for detecting a double-stranded nucleic acid selectively produced by a reaction, which comprises forming a double-stranded nucleic acid in a reaction solution in a reaction vessel for carrying out the reaction. A double-stranded nucleic acid characterized by adding a labeling reagent that excites a specific reaction at a part, detecting the excitation of the specific reaction, and detecting the production state of the double-stranded nucleic acid in the reaction solution. The second is a double-stranded nucleic acid obtained by pairing a single-stranded nucleic acid as a sample and a single-stranded nucleic acid probe complementary to the base sequence originally possessed by the single-stranded nucleic acid. To
Labeling with a labeling reagent that excites a specific reaction at the formation portion of the double-stranded nucleic acid, the double-stranded nucleic acid labeled body is dissociated by an increase in temperature, and the dissociation temperature is detected by the disappearance of the specific reaction. And a method for detecting a nucleic acid sample, which comprises comparing with a dissociation temperature of a double-stranded nucleic acid in which the complementary DNA strand is paired with the nucleic acid probe, and the third is a method for performing the two detection methods. It is a fluorescence detection device. A. First, the method for detecting the growth / production state of a double-stranded nucleic acid, which is the first invention of the present application, will be described in detail.

【0009】(1) 当該方法は、反応により選択的に生
成される二本鎖核酸の検出方法において行なわれる。か
かる検出方法は、試験管内 (インビトロ) において行な
われる検出方法であれば特に限定されず、例えばポリメ
ラーゼ連鎖反応法 (polymerase chain reaction : PCR
法) (Science, vol.239, p487-491, 1988)、シーケンシ
ング法(Molecular Cloning, A Laboratory Manual, 13
・3〜13・102, second edition)、ハイブリッド形成法
(Molecular Cloning, A Laboratory Manual, 11・3〜1
1・58,second edition) 等を挙げることができるが、特
定のDNA領域を挟んだ二種類のプライマーによるDN
A合成反応の繰り返しで、その特定のDNA領域を特異
的に増幅する方法であるPCR法を特に好ましい検出方
法として挙げることができる。
(1) The method is carried out in a method for detecting double-stranded nucleic acid selectively produced by the reaction. The detection method is not particularly limited as long as it is a detection method performed in vitro (in vitro), and for example, a polymerase chain reaction method (PCR) is used.
Method) (Science, vol.239, p487-491, 1988), Sequencing method (Molecular Cloning, A Laboratory Manual, 13
・ 3 ~ 13 ・ 102, second edition), Hybridization method
(Molecular Cloning, A Laboratory Manual, 11 ・ 3〜1
1 ・ 58, second edition) etc., but DN with two kinds of primers sandwiching a specific DNA region
The PCR method, which is a method of specifically amplifying the specific DNA region by repeating the A synthesis reaction, can be mentioned as a particularly preferable detection method.

【0010】(2) また、当該方法は、上記反応を行な
う反応容器内の反応液中に、二本鎖核酸の形成部分で特
異的な反応を励起する標識試薬を加えて、かかる特異的
な反応の励起を検出し、当該反応液中の二本鎖核酸の生
成状態を検出することが必要である。当該方法において
使用される二本鎖核酸の形成部分で特異的な反応を励起
する標識試薬は、当該性質を有する標識試薬であれば特
に限定されない。ここで特異的な反応の励起とは二本鎖
核酸の形成部分で特異的な反応の生起、又は反応の強度
の増加はもちろん反応の消失、又は反応強度の減少をも
含む。
(2) In addition, the method involves adding a labeling reagent that excites a specific reaction at the formation portion of the double-stranded nucleic acid, to the reaction solution in the reaction vessel in which the above reaction is carried out. It is necessary to detect the excitation of the reaction and detect the production state of the double-stranded nucleic acid in the reaction solution. The labeling reagent used in the method for exciting a specific reaction in the double-stranded nucleic acid forming portion is not particularly limited as long as it is a labeling reagent having the property. Here, the excitation of a specific reaction includes the occurrence of a specific reaction in the forming portion of the double-stranded nucleic acid, the increase of the reaction intensity, as well as the disappearance of the reaction or the decrease of the reaction intensity.

【0011】上記標識識薬の代表的なものとして、エチ
ジウムブロマイド、チアゾールオレンジ、エチジウムホ
モダイマー等の二本鎖核酸を標識した状態で発する蛍光
と一本鎖核酸を標識した状態で発する蛍光が異なる蛍光
色素を挙げることができる。さらに、二本鎖核酸の純粋
量の検出ということを考慮すれば、上記色素の内、エチ
ジウムブロマイド又はチアゾールオレンジを好ましいも
のとして例示できる。
As a typical example of the labeled drug, fluorescence emitted from a double-stranded nucleic acid such as ethidium bromide, thiazole orange and ethidium homodimer which is labeled is different from fluorescence emitted from a single-stranded nucleic acid which is labeled. A dye can be mentioned. Further, in consideration of detection of a pure amount of double-stranded nucleic acid, ethidium bromide or thiazole orange can be exemplified as a preferable one among the above dyes.

【0012】次に、当該標識試薬を反応容器内の反応液
中に加えることが必要である。反応液の内容は、二本鎖
核酸の増殖又は生成反応の種類に応じて適宜決定される
が、例えばPCR法の場合には、鋳型となる一本鎖DN
A、DNA合成基質、PCRプライマー、及び合成酵素
を含む緩衝液である。標識色素は添加時期は、反応容器
中に直接添加する限りにおいて、特に限定されない。す
なわち、添加時期は生成又は増殖反応の終了前であると
終了後であるとを問わないが、特定の二本鎖DNAの生
成又は増殖過程を反応初期から経時的に検出する場合に
は、反応終了前に添加することが必要である。さらに反
応終了前の添加においては、二本鎖核酸の生成又は増殖
反応の初期段階、すなわち、反応液の反応容器への添加
前、反応液添加と同時、若しくは反応液添加直後に行な
うのが好ましい。
Next, it is necessary to add the labeling reagent to the reaction solution in the reaction container. The content of the reaction solution is appropriately determined according to the type of reaction for producing or producing double-stranded nucleic acid. For example, in the case of PCR method, single-stranded DN as a template is used.
A buffer solution containing A, a DNA synthesis substrate, a PCR primer, and a synthetic enzyme. The timing of adding the labeling dye is not particularly limited as long as it is directly added to the reaction vessel. That is, the timing of addition may be before or after the completion of the production or proliferation reaction, but when the production or proliferation process of a specific double-stranded DNA is to be detected over time from the initial stage of the reaction, It is necessary to add it before the end. Further, the addition before the completion of the reaction is preferably performed in the initial stage of the double-stranded nucleic acid generation or growth reaction, that is, before the addition of the reaction solution to the reaction vessel, at the same time as the addition of the reaction solution, or immediately after the addition of the reaction solution. .

【0013】なお、反応容器の形状、構造等は、上記特
異的な反応の励起を検出することができる限り特に限定
されないが、後述する上記特異的反応の検出専用の蛍光
検出装置が好ましく用いられることを考慮すれば、当該
検出装置に用いられる反応容器であることが好ましい。
特異的反応の検知手段も、当該特異的反応の種類に応じ
て選択し得る。例えば、標識試薬が、二本鎖核酸を標識
した状態で発する蛍光と一本鎖核酸を標識した状態で発
する蛍光が異なる蛍光色素である場合は、当該蛍光色素
が照射により蛍光を発する性質を有する光を反応容器中
の反応試料に照射して、試料から得られる蛍光を検出
し、二本鎖核酸生成又は増殖による蛍光量の増加又は減
少を計測する方法を採ることができる。例えば、当該蛍
光色素がエチジウムブロマイドの場合には、260〜500nm
程度の紫外線を照射して590nm 付近にピークを有する蛍
光を、エチジウムホモダイマーの場合は260nmの紫外線
を照射して620nm 付近にピークを有する蛍光を、チアゾ
ールオレンジの場合は、488nmのアルゴンレーザーを照
射して530nm 付近にピークを有する蛍光を検出すること
ができる。
The shape, structure, etc. of the reaction vessel are not particularly limited as long as the excitation of the specific reaction can be detected, but a fluorescence detection device dedicated to the detection of the specific reaction described below is preferably used. Considering this, the reaction container used in the detection device is preferable.
The means for detecting the specific reaction can also be selected according to the type of the specific reaction. For example, in the case where the labeling reagent is a fluorescent dye that emits fluorescence differently when the double-stranded nucleic acid is labeled and fluorescence emitted when the single-stranded nucleic acid is labeled, the fluorescent dye has a property of emitting fluorescence upon irradiation. It is possible to adopt a method in which the reaction sample in the reaction container is irradiated with light, the fluorescence obtained from the sample is detected, and the increase or decrease in the amount of fluorescence due to double-stranded nucleic acid generation or proliferation is measured. For example, when the fluorescent dye is ethidium bromide, it is 260-500 nm.
For example, ethidium homodimer is irradiated with 260 nm UV and then 620 nm is irradiated with fluorescence, and thiazole orange is irradiated with 488 nm argon laser. The fluorescence having a peak around 530 nm can be detected.

【0014】図1は、上記の本発明方法の一例を図示し
たものである。二本鎖DNAの合成は、鋳型となる一本
鎖DNA1と、DNAを合成するのに必要な基質 (A‥
アデニン、C‥シトシン、G‥グアニン、T‥チミン)
2と、合成の始点となる短い一本鎖DNAプライマー
3、耐熱性合成酵素4を適当な緩衝液中に混合したもの
である。これに二本鎖DNA中に入ると励起光の照射に
対する発光強度が増える標識色素5を加えて、温度を調
節することにより合成反応を行なう。合成された二本鎖
DNA中には標識色素が取り込まれ、二本鎖合成DNA
と色素の複合体6が形成される。かかる反応の終了した
DNA溶液中に例えば紫外線を照射して、二本鎖DNA
に取り込まれた標識色素の発する蛍光強度の増加分を計
測することにより、二本鎖の生成状態が確認できる。
B. 次いで、本願第二の発明である遺伝子変異の検出方
法について詳細に説明する。
FIG. 1 shows an example of the above-described method of the present invention. Double-stranded DNA is synthesized by using single-stranded DNA1 as a template and a substrate (A ...
(Adenine, C ... cytosine, G ... guanine, T ... thymine)
2, a short single-stranded DNA primer 3 as a starting point of synthesis, and a thermostable synthase 4 are mixed in an appropriate buffer solution. To this, a labeling dye 5 whose emission intensity upon irradiation with excitation light increases when it enters the double-stranded DNA, and the temperature is adjusted to perform a synthetic reaction. A labeling dye is incorporated into the synthesized double-stranded DNA to form a double-stranded synthetic DNA.
And a dye complex 6 is formed. The DNA solution in which the reaction has been completed is irradiated with, for example, ultraviolet rays to give double-stranded DNA.
By measuring the increase in the fluorescence intensity emitted by the labeling dye incorporated into the, the formation state of the double strand can be confirmed.
B. Next, the method for detecting a gene mutation, which is the second invention of the present application, will be described in detail.

【0015】当該方法は、完全に相補的な結合を有する
二本鎖核酸と、一部に非相補部分が存在する二本鎖核酸
とでは、加温による一本鎖核酸への変性温度が相違する
ことに着目して、上記Aの本願第一の発明で用いた標識
試薬の性質を利用して、遺伝子の変異を簡単に検出する
ことが可能な方法である。 (1) これにおいては、二本鎖核酸の形成部分で特異的
な反応を励起する標識試薬で標識した、検体となる一本
鎖核酸とその一本鎖核酸が本来有する塩基配列と相補的
である一本鎖の核酸プローブとを対合させてなる二本鎖
核酸の存在が前提となる。
According to the method, the denaturation temperature of a double-stranded nucleic acid having a completely complementary bond and the double-stranded nucleic acid having a non-complementary portion partially differ in denaturation temperature to a single-stranded nucleic acid by heating. Focusing on this, it is a method capable of easily detecting a mutation of a gene by utilizing the property of the labeling reagent used in the first invention of the present application A above. (1) In this, a single-stranded nucleic acid as a sample, which is labeled with a labeling reagent that excites a specific reaction in the formation portion of the double-stranded nucleic acid, and is complementary to the base sequence originally possessed by the single-stranded nucleic acid It is premised on the existence of a double-stranded nucleic acid obtained by pairing with a certain single-stranded nucleic acid probe.

【0016】二本鎖核酸の形成部分で特異的な反応を励
起する標識試薬は、上記の発明で用いたものと同様であ
る。検体となる一本鎖核酸は、通常公知の方法を用いて
調製することが可能である。すなわち、検出を目的とす
る遺伝子変異の種類に応じて、例えばヒトの血液から採
取された白血球細胞等より、抽出し、これを通常公知の
方法、例えば熱変性法、アルカリ変性法によって一本鎖
に変性する。
The labeling reagent that excites a specific reaction at the double-stranded nucleic acid forming portion is the same as that used in the above invention. The single-stranded nucleic acid used as a sample can be prepared by a generally known method. That is, depending on the type of gene mutation to be detected, it is extracted from, for example, white blood cells collected from human blood, and this is extracted by a generally known method such as heat denaturation method or alkali denaturation method. Degenerate into.

【0017】一方、検体となる一本鎖核酸が本来有する
塩基配列と相補的である一本鎖の核酸プローブは、検出
を目的とする遺伝子変異の種類に応じて調製することが
できる。すなわち、既知のDNA配列を基にDNAプラ
イマーを化学合成して、上記PCR法により特定の遺伝
子を増幅させて調製することもできるし、直接化学合成
により調製することもできる。かかる核酸プローブの長
さは連続する12mer 以上、好ましくは100mer以上であ
る。
On the other hand, a single-stranded nucleic acid probe which is complementary to the base sequence originally possessed by the single-stranded nucleic acid as a sample can be prepared according to the type of gene mutation to be detected. That is, it can be prepared by chemically synthesizing a DNA primer based on a known DNA sequence and amplifying a specific gene by the above-mentioned PCR method, or by direct chemical synthesis. The length of such a nucleic acid probe is 12 mer or longer, preferably 100 mer or longer, which is continuous.

【0018】そして、前記検体DNAと核酸プローブと
からなる二本鎖DNAを、上記標識試薬で標識し、二本
鎖核酸標識体を調製する。また、これとは別に対照とし
て、前記核酸プローブと相補的なDNA鎖とが対合した
二本鎖核酸を前記標識物質で標識した標識体も調製する
ことが必要である。
Then, the double-stranded DNA composed of the sample DNA and the nucleic acid probe is labeled with the labeling reagent to prepare a double-stranded nucleic acid labeled product. In addition to this, as a control, it is necessary to prepare a labeled product in which a double-stranded nucleic acid in which the nucleic acid probe and a complementary DNA strand are paired is labeled with the labeling substance.

【0019】(2) 次に、前記 (1) で得られた二本鎖
核酸複合体を含む反応液の温度を上昇させ、温度上昇に
よる二本鎖DNAから一本鎖DNAへの変性を、前記標
識試薬の特異的な反応の消失を検出することにより検知
することができる。この温度上昇は室温から95℃程度ま
で温度上昇勾配40℃/1hr程度、好ましくは40℃/3hrs程
度で行なう。標識試薬の特異的反応の消失は、前記Aで
示した方法と同様に行なうことができる。
(2) Next, the temperature of the reaction solution containing the double-stranded nucleic acid complex obtained in (1) above is raised, and denaturation of double-stranded DNA into single-stranded DNA due to the temperature rise is carried out. It can be detected by detecting the disappearance of the specific reaction of the labeling reagent. This temperature rise is performed from room temperature to about 95 ° C. with a temperature rise gradient of about 40 ° C./1 hr, preferably about 40 ° C./3 hrs. The disappearance of the specific reaction of the labeling reagent can be performed in the same manner as in the method shown in A above.

【0020】図2は、上記Bの発明の一実施例を示した
ものである。検体となる一本鎖DNA7とヒトDNAの
特定部位に対応するDNAプライマー8を対合させて、
これに二本鎖DNA中に入ると励起光の照射に対する発
光強度が増える標識色素5を加えて、二本鎖形成部分9
でかかる標識色素5の発光を増強させ、対合しているD
NAの温度を上昇させていくとある温度においては、
(c) に示すように、検体が正常であり、完全な対合を
しているものは、二本鎖状態を保ち、発光強度が変わら
ず、これに対して検体が異常な遺伝子部分を含み、プラ
イマー8と不完全な対合をしているものは (d) に示す
ごとく、解離して標識色素5の発光強度が減少していく
ことになる。そして、この発光強度の変化と発光強度変
化時の温度を調べることによって、遺伝子の正常と異常
を区別することができる。
FIG. 2 shows an embodiment of the invention B described above. A single-stranded DNA 7 as a sample and a DNA primer 8 corresponding to a specific site of human DNA are paired,
To this, a labeling dye 5 whose luminescence intensity upon irradiation with excitation light increases when it enters the double-stranded DNA is added to form a double-stranded portion 9
D enhances the light emission of the labeling dye 5 at
At a certain temperature when the temperature of NA is raised,
As shown in (c), when the sample is normal and perfectly matched, the double-stranded state is maintained and the luminescence intensity does not change, whereas the sample contains an abnormal gene part. As shown in (d), the primer that is incompletely paired with the primer 8 is dissociated and the emission intensity of the labeling dye 5 is reduced. Then, by examining the change in luminescence intensity and the temperature at the time of change in luminescence intensity, it is possible to distinguish between normal and abnormal genes.

【0021】また、本発明者は、上記の本発明方法を効
率的に行なうことを目的とした蛍光検出装置を作出し
た。当該蛍光検出装置は、反応容器と、蛍光色素を励起
するための励起光源と、当該蛍光色素が発する蛍光を検
出する光検出器とを備えた恒温槽とから構成され、当該
蛍光色素が発する蛍光を、当該励起光源が発する励起光
の入射方向と異なる角度から検出することを特徴とする
蛍光検出装置である。
The inventor of the present invention has also created a fluorescence detecting device for the purpose of efficiently carrying out the above-mentioned method of the present invention. The fluorescence detection device is composed of a reaction container, an excitation light source for exciting the fluorescent dye, and a thermostatic chamber provided with a photodetector for detecting the fluorescence emitted by the fluorescent dye, and the fluorescence emitted by the fluorescent dye. Is detected from an angle different from the incident direction of the excitation light emitted from the excitation light source.

【0022】[0022]

【実施例】以下、実施例により本発明についてさらに具
体的に説明するが、本発明はこれらに限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0023】[0023]

【実施例1】 本発明蛍光検出装置 以下、図面を参照しながら、本発明蛍光検出装置につい
て説明する。図3は、本発明蛍光検出装置の概略図であ
る。図3において、励起光源13から発せられた励起光14
は、恒温槽12中に静置された反応用反応容器11中の反応
試料に、励起光挿入窓口15を通じて入射され、励起光14
の入射により励起された当該反応試料より生じた蛍光17
を蛍光出射窓口 (図示せず) より出射させる。結像レン
ズ18は反応試料より生じた蛍光17を集光して、光検出器
19に蛍光を到達させる役割を有する。信号処理装置20
は、光検出器19において出力された蛍光を変換した信号
を処理し、かかる信号はデータ出力装置21によって出力
される。
First Embodiment Fluorescence Detection Device of the Present Invention Hereinafter, the fluorescence detection device of the present invention will be described with reference to the drawings. FIG. 3 is a schematic view of the fluorescence detection device of the present invention. In FIG. 3, the excitation light 14 emitted from the excitation light source 13
Is incident on the reaction sample in the reaction container 11 for reaction that has been left standing in the constant temperature bath 12 through the excitation light insertion window 15 and the excitation light 14
Fluorescence generated from the reaction sample excited by the incidence of
Is emitted from a fluorescence emission window (not shown). The imaging lens 18 collects the fluorescence 17 generated from the reaction sample, and a photodetector.
It has a role to make 19 reach fluorescence. Signal processor 20
Processes the signal obtained by converting the fluorescence output from the photodetector 19, and the signal is output by the data output device 21.

【0024】励起光源13は、使用する標識色素の種類に
応じて適宜選択される。例えば標識色素としてエチジウ
ムブロマイドを選択する場合にはUVランプ(トランス
イルミネーター使用用)が、チアゾールオレンジを選択
する場合には488nmのアルゴンレーザーを使用するのが
好ましい。恒温槽12は、内部に静置された反応用反応容
器11内の温度を適宜コントロールし得るものであれば特
に限定されず、例えば、サーマルサイクラー(パーキン
エルマー シータス社製) を挙げることができる。
The excitation light source 13 is appropriately selected according to the type of labeling dye used. For example, when ethidium bromide is selected as the labeling dye, a UV lamp (for transilluminator use) is preferably used, and when thiazole orange is selected, an 488 nm argon laser is preferably used. The thermostat 12 is not particularly limited as long as it can appropriately control the temperature in the reaction vessel 11 for reaction left inside, and examples thereof include a thermal cycler (manufactured by Perkin Elmer Cetus).

【0025】反応用反応容器11の詳細な構造を図4に示
す。かかる反応容器11の素材は、特に限定されないが、
別に設けた励起光挿入窓口15及び蛍光出射窓口16に集中
的に光を通すのが反応検知感度を良好にする上で好まし
く、遮光性を有する素材、例えば、アルミニウム、銅等
の金属;黒色の塩化ビニール等の遮光性を有するプラス
チック等を用いるのが好ましい。さらに、本来光を透過
させる性質を有するガラス、プラスチック等の素材を遮
光性を有する塗料を塗布して反応容器11として用いるこ
ともできる。励起光14は、励起光挿入窓口15を通して、
反応溶液23中の反応試料中の標識色素を励起させ、その
結果生ずる蛍光を蛍光出射窓口16より出射する。励起光
挿入窓口15と蛍光出射窓口16の素材は、良好な光透過性
を有するものであれば特に限定されるものではないが、
石英、ホウケイ酸ガラス、アクリル樹脂、又は塩化ビニ
ール樹脂は特に良好な透過性を有するという点において
好ましい。また、反応容器11の形状は、所期の目的を達
成し得る形状であれば特に限定されず、例えば、丸型試
験管形、角型試験管形等を例示できる。さらに、遮光性
を有する素材で作られた窓のあいた試験管ホルダーに既
成の試験管を装着することもできる。また、励起光挿入
窓口15と蛍光出射窓口16は、それぞれ1ケ所以上設ける
ことが必須である。励起光挿入窓口15は、1ヶ所以上に
設けてもよい。恒温槽12中に、反応容器11を複数個静置
する場合は、励起光挿入窓口15を対称位置に少なくとも
2ケ所設けることが必要である。蛍光出射窓口16は、蛍
光を検知する個所の個数に応じて設けることが可能であ
るが、通常励起光の入射窓と異なる角度で通常1ケ所設
けられる。ここで異なる角度とは、励起光の入射又は出
射方向と同一平面上のみならず、異なる平面において、
例えば、反応用反応容器11の下部に設けることができる
が、後に説明する光検出器19を可動とする態様を考慮す
れば、励起光の入射又は出射方向と同一平面上において
励起光挿入窓口15とほぼ直角の方向に蛍光出射窓口16を
設けるのが好ましい。結像レンズ18は、反応試料から射
出された蛍光を集光することができるものであれば、そ
の素材、形状は特に限定されない。光検出器19は、反応
試料から射出され、結像レンズ18により集光された蛍光
を信号処理装置20で処理可能な信号に変換可能なもので
あれば、特に限定されず、例えば二次元カメラ等を採用
することができる。また、かかる光検出器19を、例えば
矢印22に示した方向への移動を可能にして、複数の反応
試料からの蛍光を検知することも可能である。かかる場
合は、恒温槽12中に図3で示すごとく、直線上に反応用
反応容器11を並置し、各々の反応用反応容器11に設けら
れた蛍光出射窓口16に沿って光検出器19を移動させるの
が好ましい。この際、結像レンズ18を、各々の反応用反
応容器11毎に設けることも可能であり、光検出器19と一
体として設置して、光検出器19と結像レンズ18を同時に
移動させて、それぞれの反応用反応容器11の試料からの
蛍光を検知することもできる。また、全ての反応用反応
容器11からの発光を集光して、1台の多素子からなる光
検出器19上で各反応用反応容器11についても同時に検出
可能である。さらに、図3に示す励起光の放射方向と直
交する方向の各反応容器の側面あるいは下部面から同時
に励起光を入射させ、1台の多素子からなる光検出器で
各反応容器の下部面あるいは側面から蛍光を検出しても
よい。信号処理装置20は、前述のごとく光検出器19より
の信号を処理可能なものであれば、その種類は特に限定
されない。出力装置21は信号処理装置20で処理された信
号をデータ処理可能な形で出力することができるもので
あれば特にその種類は限定されるものではない。
The detailed structure of the reaction container 11 for reaction is shown in FIG. The material of the reaction container 11 is not particularly limited,
It is preferable to concentrate light through the separately provided excitation light insertion window 15 and fluorescence emission window 16 in order to improve the reaction detection sensitivity, and a material having a light shielding property, for example, a metal such as aluminum or copper; It is preferable to use a light-shielding plastic such as vinyl chloride. Further, it is also possible to apply a material having a light-shielding property to a material such as glass or plastic which originally has a property of transmitting light and use it as the reaction container 11. Excitation light 14 passes through excitation light insertion window 15,
The labeling dye in the reaction sample in the reaction solution 23 is excited, and the resulting fluorescence is emitted from the fluorescence emission window 16. Materials of the excitation light insertion window 15 and the fluorescence emission window 16 are not particularly limited as long as they have good light transmittance,
Quartz, borosilicate glass, acrylic resin, or vinyl chloride resin is preferable in that it has particularly good permeability. The shape of the reaction vessel 11 is not particularly limited as long as it can achieve the intended purpose, and examples thereof include a round test tube shape and a square test tube shape. Further, it is possible to mount a ready-made test tube on a test tube holder having a window made of a light-shielding material. In addition, it is essential that the excitation light insertion window 15 and the fluorescence emission window 16 be provided in one or more locations. The excitation light insertion window 15 may be provided at one or more places. When a plurality of reaction vessels 11 are allowed to stand in the thermostat 12, it is necessary to provide at least two excitation light insertion windows 15 at symmetrical positions. The fluorescence emission window 16 can be provided depending on the number of places where fluorescence is detected, but normally one place is provided at an angle different from the entrance window of the excitation light. Here, different angles are not only on the same plane as the incident or outgoing direction of the excitation light, but also on different planes,
For example, although it can be provided in the lower part of the reaction container 11 for reaction, in consideration of a mode in which the photodetector 19 described later is movable, the excitation light insertion window 15 is on the same plane as the incidence or emission direction of the excitation light. It is preferable to provide the fluorescence emission window 16 in a direction substantially at right angles to. The material and shape of the imaging lens 18 are not particularly limited as long as they can collect the fluorescence emitted from the reaction sample. The photodetector 19 is not particularly limited as long as it can convert the fluorescence emitted from the reaction sample and collected by the imaging lens 18 into a signal that can be processed by the signal processing device 20, and for example, a two-dimensional camera. Etc. can be adopted. It is also possible to move the photodetector 19 in the direction indicated by the arrow 22, for example, and detect fluorescence from a plurality of reaction samples. In such a case, as shown in FIG. 3, the reaction vessels 11 for reaction are juxtaposed in a straight line in the thermostat 12, and the photodetector 19 is installed along the fluorescence emission window 16 provided in each reaction vessel 11 for reaction. It is preferable to move it. At this time, it is also possible to provide the imaging lens 18 for each of the reaction vessels 11 for reaction, and it is installed integrally with the photodetector 19, and the photodetector 19 and the imaging lens 18 are moved simultaneously. It is also possible to detect the fluorescence from the sample in each reaction reaction container 11. Further, it is possible to collect the light emitted from all reaction reaction vessels 11 and simultaneously detect each reaction reaction vessel 11 on the photodetector 19 composed of one multi-element. Further, the excitation light is simultaneously made incident from the side surface or the lower surface of each reaction vessel in a direction orthogonal to the emission direction of the excitation light shown in FIG. Fluorescence may be detected from the side. The type of the signal processing device 20 is not particularly limited as long as it can process the signal from the photodetector 19 as described above. The type of the output device 21 is not particularly limited as long as it can output the signal processed by the signal processing device 20 in a data processable form.

【0026】[0026]

【実施例2】 PCR産物の経時的同定 以下の試料DNA及びオリゴヌクレオチドを用いて、P
CR産物の経時的増加について調べた。 試料DNA;ヒト白血球DNA 1μg オリゴヌクレオチド:配列番号1の塩基配列を有するプ
ライマーA 配列番号2の塩基配列を有するプライマーB (1) ヒト白血球抽出DNAの調製 ヒト白血球抽出DNAは、健常人の血液から常法により
調製した。すなわち、健常人の血液を相当量ヘパリン採
血し、これに蒸留水を加え血球を破壊した後、これを30
00rpm 程度で5分間遠心した。当該操作をさらに2回繰
り返した後、白血球を含む下層を分離し、SDS (Sodi
um Dodecyl Sulfate) 存在下でプロテアーゼを作用さ
せ、さらにフェノール−クロロホルム抽出とエタノール
沈澱操作で精製を行ない、ヒト白血球抽出DNAを調製
した。
Example 2 Identification of PCR Products Over Time Using the sample DNA and oligonucleotides below, P
The increase in CR product over time was investigated. Sample DNA; Human leukocyte DNA 1 μg Oligonucleotide: Primer A having the nucleotide sequence of SEQ ID NO: 1 Primer B having the nucleotide sequence of SEQ ID NO: 2 (1) Preparation of human leukocyte extracted DNA Human leukocyte extracted DNA is obtained from blood of a healthy person. It was prepared by a conventional method. That is, a large amount of heparin blood of a healthy person was collected, distilled water was added to this to destroy blood cells, and then 30
It was centrifuged at about 00 rpm for 5 minutes. After repeating this operation two more times, the lower layer containing white blood cells was separated, and SDS (Sodi
um Dodecyl Sulfate) in the presence of protease, and further purified by phenol-chloroform extraction and ethanol precipitation to prepare human leukocyte extracted DNA.

【0027】(2) オリゴヌクレオチドの調製 上記プライマーA及びプライマーBは、DNAシンセサ
イザー (ABI社製)により合成し、HPLCで精製し
た。 (3) 試料DNAの増幅 上記のヒト白血球抽出DNAとPCRプライマーA, B
を各々20pmol、各dNTPを各々 250μM 、MgCl2
2.5mM、Tris-HCl (pH8.5) を10mM、KCl を50mM、ゼラ
チンを 0.001%(w/v) 、エチジウムブロマイド (ニッポ
ンジーン社製) を0.01〜0.05%(w/v)となるように混合
し、全体を 100μl とした。このPCRプライマー混合
液に耐熱性DNAポリメラーゼ (パーキンエルマーシー
タス社製)5ユニットを加え、蒸発防止用のミネラルオ
イルを重層し、94℃・30秒、50℃・90秒、72℃・90秒の
熱サイクルを30回繰り返しPCR増幅を行なった。そし
て、かかる熱サイクル1回毎に、実施例1に示した蛍光
検出装置で、エチジウムブロマイドが二本鎖DNAの形
成部分で発する蛍光量を経時的に測定した。なお、実施
例1の蛍光検出装置における励起光源14としては、488
nmアルゴンレーザーを、反応用反応容器12の励起光挿入
窓口16、及び蛍光出射窓口17の材料としては、パイレッ
クスガラスを、光検出器20としては、ホトマルチプライ
ヤを、信号処理装置21としては、 HITACHIワークステー
ション2050/32Eを、及び出力装置22としては、GRAPHTEC
XY PLOTTER を用いた。また励起光の入射方向と蛍光の
検出方向としては、同一平面上ほぼ直角の方向を採用し
た。
(2) Preparation of oligonucleotide The above-mentioned primer A and primer B were synthesized by a DNA synthesizer (ABI) and purified by HPLC. (3) Amplification of sample DNA The above human leukocyte extracted DNA and PCR primers A and B
20 pmol each, each dNTP 250 μM each, MgCl 2
2.5mM, Tris-HCl (pH8.5) 10mM, KCl 50mM, gelatin 0.001% (w / v), ethidium bromide (Nippon Gene) 0.01-0.05% (w / v) The total volume was 100 μl. 5 units of heat-resistant DNA polymerase (manufactured by Perkin Elmer Cetus) was added to this PCR primer mixture, and mineral oil for evaporation prevention was overlaid, and the temperature was 94 ° C for 30 seconds, 50 ° C for 90 seconds, and 72 ° C for 90 seconds. The heat cycle was repeated 30 times to perform PCR amplification. Then, for each such thermal cycle, the amount of fluorescence emitted by ethidium bromide at the portion where the double-stranded DNA was formed was measured with time with the fluorescence detection apparatus shown in Example 1. In addition, as the excitation light source 14 in the fluorescence detection apparatus of Example 1, 488
nm argon laser, the excitation light insertion window 16 of the reaction container 12 for reaction, and the fluorescence emission window 17 as the material, Pyrex glass, as the photodetector 20, photomultiplier, as the signal processing device 21, HITACHI workstation 2050 / 32E and output device 22 are GRAPHTEC
XY PLOTTER was used. In addition, as the incident direction of the excitation light and the detection direction of the fluorescence, a direction substantially perpendicular to the same plane was adopted.

【0028】結果を図5(a)に示す。この結果、蛍光
強度は、典型的な2n 曲線(nはサイクル数)を描き、
熱サイクル1回毎にエチジウムブロマイドの発する蛍光
量が経時的に増加していることが明らかとなった。ま
た、上記30回の熱サイクル後電気泳動をして、増幅した
遺伝子について検討したところ、目的の遺伝子の増幅量
と蛍光量増加より換算された遺伝子量は一致して本発明
方法がPCR法における遺伝子の増幅のモニター法とし
て極めて有用であることが判明した。
The results are shown in FIG. 5 (a). As a result, the fluorescence intensity draws a typical 2 n curve (n is the number of cycles),
It was revealed that the amount of fluorescence emitted by ethidium bromide increased with time at each thermal cycle. In addition, when the amplified gene was subjected to electrophoresis after the 30th thermal cycle and examined for the amplified gene, the amplification amount of the target gene and the gene amount converted from the increase in the fluorescence amount were in agreement and the method of the present invention was used in the PCR method. It has been found to be extremely useful as a method for monitoring gene amplification.

【0029】[0029]

【実施例3】 遺伝子変異の検定 E.coli K12株をLB培地10mlに白金耳を使用して植菌
し、これを37℃下前培養を行ない、対数増殖期に達した
段階で、かかる培養液20mlを、ニトロソグアニジン (M
NNG)(0.5g/ml)を添加した。前記と同じ培地100
mlに加え、再び37℃下一晩本培養を行なった。その後、
再び菌体が対数増殖期に達したところで、かかる培養液
10mlを再び、MNNGを含まない上記の培地100mlに殖
菌し、菌体に変異が定着したところで、前記同様のMN
NG処理を施した。その後、当該MNNG処理を2〜3
回繰り返し、生き残った菌を増殖させ、当該変異株を集
菌して、エタノール沈澱法等の通常公知の方法により、
変異株のDNAを100μg 抽出した。
Example 3 Assay for Gene Mutation E. coli K12 strain was inoculated into 10 ml of LB medium using a platinum loop, and this was precultured at 37 ° C., and when the logarithmic growth phase was reached, the culture was performed. 20 ml of liquid was added to nitrosoguanidine (M
NNG) (0.5 g / ml) was added. Same medium as above 100
The cells were added to the cells, and main culture was performed again at 37 ° C. overnight. afterwards,
When the cells have reached the logarithmic growth phase again, the culture solution
10 ml was again cultivated in 100 ml of the above medium containing no MNNG, and when the mutation was established in the cells, MN similar to the above was used.
NG treatment was performed. After that, the MNNG process is performed 2-3
Repeated times, to grow the surviving bacteria, collect the mutant strain, by a commonly known method such as ethanol precipitation,
DNA of the mutant strain was extracted by 100 μg.

【0030】一方、本来のE.coli K12株のDNAを、前
記と同様、通常公知の方法により1000μg 抽出した。次
に、それぞれのDNAを95℃まで加熱して、一本鎖DN
Aに変性した後、E.coli K12株の一本鎖DNA溶液と変
異株の一本鎖DNA溶液を1μgずつ、エチジウムブロ
マイド0.01%(w/v)の存在下、溶液を室温に放置してハ
イブリダイゼーションを行なった。また他方、前記のハ
イブリダイゼーション反応に用いた培量の熱変性による
E.coli K12株の一本鎖DNA溶液にエチジウムブロマイ
ド0.01%(w/v)を加えて、室温に放置し、ハイブリダイ
ゼーション反応を行なった。
On the other hand, the DNA of the original E. coli K12 strain was extracted by 1000 μg by a generally known method as described above. Next, each DNA was heated to 95 ° C.
After denaturation to A, 1 μg each of the E. coli K12 strain single-stranded DNA solution and the mutant single-stranded DNA solution were allowed to stand at room temperature in the presence of ethidium bromide 0.01% (w / v). Hybridization was performed. On the other hand, due to the thermal denaturation of the culture amount used for the above-mentioned hybridization reaction.
0.01% (w / v) of ethidium bromide was added to a single-stranded DNA solution of E. coli K12 strain, and the mixture was allowed to stand at room temperature for hybridization reaction.

【0031】さらに、前記実施例2で用いた蛍光検出装
置を用いて、上記で得られたエチジウムブロマイドで標
識された二本鎖DNAの加熱処理に伴うエチジウムブロ
マイドの発する蛍光量の検出を特定した。その結果を図
5(b)に示す。変異したDNAの反応系においては、
60℃程度の比較的低い温度から蛍光強度の減少がはじま
り、その後緩やかに蛍光強度が減少し、95℃付近で解離
反応の終了が認識された。一方、正常なDNAの反応系
においては、75℃付近で蛍光強度の減少がはじまり、急
激な減少カーブを描いて95℃付近で解離反応の終了が認
識された。
Furthermore, using the fluorescence detection apparatus used in Example 2, the detection of the amount of fluorescence emitted by ethidium bromide upon heat treatment of the ethidium bromide-labeled double-stranded DNA obtained above was specified. . The result is shown in FIG. In the reaction system of mutated DNA,
The fluorescence intensity started to decrease at a relatively low temperature of about 60 ° C, then gradually decreased, and the end of the dissociation reaction was recognized at around 95 ° C. On the other hand, in a normal DNA reaction system, a decrease in fluorescence intensity started at around 75 ° C., a sharp decrease curve was drawn, and the end of the dissociation reaction was recognized at around 95 ° C.

【0032】これらの結果により、正常なDNAと変異
を起こしたDNAを区別し判定できること、すなわち本
法が遺伝子診断法として有用であることが判明した。
From these results, it was found that normal DNA and mutated DNA can be distinguished and judged, that is, this method is useful as a gene diagnostic method.

【0033】[0033]

【発明の効果】本発明により、増幅又は生成に係る二本
鎖核酸の簡便かつ効率的な検出、及び変異をおこした核
酸の簡便かつ確実な検出が可能になった。
INDUSTRIAL APPLICABILITY The present invention enables simple and efficient detection of double-stranded nucleic acid involved in amplification or production, and simple and reliable detection of mutated nucleic acid.

【0034】[0034]

【配列表】配列番号:1 配列の長さ:20 配列の型 :核酸 鎖の数 :一本鎖 トポロジー:直鎖状 配列の種類:他の配列 合成DNAプライマー 配列 :ATGCTAAGTTAGCTTTACAG 配列番号:2 配列の長さ:20 配列の型 :核酸 鎖の数 :一本鎖 トポロジー:直鎖状 配列の種類:他の配列 合成DNAプライマー 配列 :ACAGTTTCATGCCCATCGTC[Sequence Listing] SEQ ID NO: 1 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other sequence Synthetic DNA primer Sequence: ATGCTAAGTTTAGCTTTACAG SEQ ID NO: 2 Sequence Length: 20 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other sequence Synthetic DNA primer Sequence: ACAGTTTCATGCCCATCGTC

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による、DNA合成反応における二本鎖
核酸の生成状態を検出する方法の概略図。
FIG. 1 is a schematic diagram of a method for detecting the production state of double-stranded nucleic acid in a DNA synthesis reaction according to the present invention.

【図2】本発明による、温度変化を与え二本鎖核酸の解
離状態を検出する方法の概略図。
FIG. 2 is a schematic diagram of a method for detecting the dissociation state of a double-stranded nucleic acid according to the present invention by applying a temperature change.

【図3】本発明による、二本鎖核酸の検出装置の構成を
示すブロック図を含む見取図。
FIG. 3 is a sketch including a block diagram showing the configuration of a double-stranded nucleic acid detection device according to the present invention.

【図4】本発明二本鎖核酸検出装置で使用される反応容
器の正面図及び側面図。
FIG. 4 is a front view and a side view of a reaction container used in the double-stranded nucleic acid detection device of the present invention.

【図5】実施例2及び実施例3の結果を示した図。FIG. 5 is a diagram showing the results of Example 2 and Example 3.

フロントページの続き (72)発明者 村川 克二 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Continuation of the front page (72) Inventor Katsuji Murakawa 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 反応により選択的に生成される二本鎖核
酸の検出方法であって、当該反応を行なう反応容器内の
反応液中に、二本鎖核酸の形成部分で、特異的な反応を
励起する標識試薬を加えて、かかる特異的な反応の励起
を検知し、当該反応液中の二本鎖核酸の生成状態を検出
することを特徴とする二本鎖核酸の検出方法。
1. A method for detecting a double-stranded nucleic acid selectively produced by a reaction, which comprises a specific reaction at a double-stranded nucleic acid forming portion in a reaction solution in a reaction vessel for carrying out the reaction. A method for detecting a double-stranded nucleic acid, comprising adding a labeling reagent for exciting a specific reaction to detect the excitation of the specific reaction, and detecting the generation state of the double-stranded nucleic acid in the reaction solution.
【請求項2】 少なくとも増幅又は解離反応の終了前
に、二本鎖核酸の形成部分で特異的な反応を励起する標
識試薬を加えて、かかる特異的な反応の励起を経時的に
検知することを特徴とする請求項1記載の二本鎖核酸の
検出方法。
2. At least before the end of the amplification or dissociation reaction, a labeling reagent that excites a specific reaction in the double-stranded nucleic acid-forming portion is added, and the excitation of the specific reaction is detected with time. The method for detecting double-stranded nucleic acid according to claim 1, wherein
【請求項3】 二本鎖核酸の生成方法が、特定のDNA
領域を挟んだ二種類のプライマーによるDNA合成反応
の繰り返しで、その特定のDNA領域を特異的に増幅す
る方法であることを特徴とする請求項1記載の二本鎖核
酸の検出方法。
3. A method for producing a double-stranded nucleic acid, which comprises using a specific DNA
The method for detecting a double-stranded nucleic acid according to claim 1, which is a method of specifically amplifying a specific DNA region by repeating a DNA synthesis reaction with two types of primers sandwiching the region.
【請求項4】 検体となる一本鎖核酸とその一本鎖核酸
が本来有する塩基配列と相補的である一本鎖の核酸プロ
ーブとを対合させてなる二本鎖核酸を、二本鎖核酸の形
成部分で特異的な反応を励起する標識試薬で標識して、
かかる二本鎖核酸標識体を温度上昇によって解離させ、
当該解離温度を前記特異的な反応の消失により検知し、
前記核酸プローブと相補的なDNA鎖とが対合した二本
鎖核酸の解離温度と比較することを特徴とする核酸試料
の検出方法。
4. A double-stranded nucleic acid, which is obtained by pairing a single-stranded nucleic acid serving as a sample and a single-stranded nucleic acid probe complementary to a base sequence originally possessed by the single-stranded nucleic acid. Labeled with a labeling reagent that excites a specific reaction at the nucleic acid forming part,
The double-stranded nucleic acid label is dissociated by increasing the temperature,
The dissociation temperature is detected by the disappearance of the specific reaction,
A method for detecting a nucleic acid sample, which comprises comparing with a dissociation temperature of a double-stranded nucleic acid in which the nucleic acid probe is paired with a complementary DNA strand.
【請求項5】 二本鎖核酸の形成部分で、特異的な反応
を励起する標識試薬が、二本鎖核酸を標識した状態で発
する蛍光と一本鎖核酸を標識した状態で発する蛍光が異
なる蛍光色素であることを特徴とする請求項1、請求項
2、請求項3、又は請求項4記載の検出方法。
5. A labeling reagent that excites a specific reaction in a portion where a double-stranded nucleic acid is formed has different fluorescence emitted from a double-stranded nucleic acid labeled and a fluorescence emitted from a single-stranded nucleic acid labeled. It is a fluorescent dye, The detection method of Claim 1, Claim 2, Claim 3, or Claim 4 characterized by the above-mentioned.
【請求項6】 反応容器と、蛍光色素を励起するための
励起光源と、当該蛍光色素が発する蛍光を検出する光検
出器とを備えた恒温槽とから構成され、当該蛍光色素が
発する蛍光を、当該励起光源が発する励起光の入射方向
と異なる角度から検出することを特徴とする蛍光検出装
置。
6. A thermostat comprising a reaction container, an excitation light source for exciting a fluorescent dye, and a photodetector for detecting the fluorescence emitted by the fluorescent dye. A fluorescence detection device, which detects from an angle different from an incident direction of excitation light emitted from the excitation light source.
【請求項7】 反応容器に、励起光源からの励起光を入
射する入射窓と蛍光色素が発する蛍光を射出する射出窓
を設けたことを特徴とする請求項6記載の蛍光検出装
置。
7. The fluorescence detection device according to claim 6, wherein the reaction container is provided with an entrance window for entering the excitation light from the excitation light source and an exit window for emitting the fluorescence emitted by the fluorescent dye.
JP518892A 1992-01-14 1992-01-14 Method and apparatus for detecting double-stranded nucleic acid Pending JPH0627104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP518892A JPH0627104A (en) 1992-01-14 1992-01-14 Method and apparatus for detecting double-stranded nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP518892A JPH0627104A (en) 1992-01-14 1992-01-14 Method and apparatus for detecting double-stranded nucleic acid

Publications (1)

Publication Number Publication Date
JPH0627104A true JPH0627104A (en) 1994-02-04

Family

ID=11604251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP518892A Pending JPH0627104A (en) 1992-01-14 1992-01-14 Method and apparatus for detecting double-stranded nucleic acid

Country Status (1)

Country Link
JP (1) JPH0627104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862237B2 (en) 2001-12-27 2005-03-01 Fujitsu Limited Data access method of semiconductor memory device and semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862237B2 (en) 2001-12-27 2005-03-01 Fujitsu Limited Data access method of semiconductor memory device and semiconductor memory device

Similar Documents

Publication Publication Date Title
US7270951B1 (en) Method for direct nucleic acid sequencing
US6060288A (en) Method for performing amplification of nucleic acid on supports
JP4401416B2 (en) Monitoring of hybridization during PCR
US5427911A (en) Coupled amplification and sequencing of DNA
US5348853A (en) Method for reducing non-specific priming in DNA amplification
JP4441699B2 (en) DNA or RNA sequencing methods
EP2182077B1 (en) A method for single nucleotide polymorphism and mutation detection using real time polymerase chain reaction microarray
US20120040853A1 (en) Real time multiplex pcr detection on solid surfaces using double stranded nucleic acid specific dyes
JP2005537030A (en) Methods for analyzing nucleic acids
JPH09508793A (en) High electric field detection of melting temperature polymorphism
US5545528A (en) Rapid screening method of gene amplification products in polypropylene plates
JP4047395B2 (en) Method for simultaneous amplification of nucleic acids
JP3752466B2 (en) Genetic testing method
JP4721606B2 (en) Method for determining the base sequence of a single nucleic acid molecule
WO1998010097A2 (en) Method and apparatus for single molecule two color fluorescent detection and molecular weight and concentration determination
CN107893120B (en) Primer group for detecting motion gene SNP, application and product thereof, and detection method and application for detecting motion gene SNP
JPH0627104A (en) Method and apparatus for detecting double-stranded nucleic acid
JP2004141158A (en) Method for detecting elongation reaction of primer, method for discriminating type of base, apparatus for discriminating the type of base, apparatus for detecting pyrophosphoric acid, method for detecting nucleic acid and sample solution-introducing chip
CN113774141B (en) Primer and probe composition for double-site cis-trans mutation detection and application thereof
US20040106109A1 (en) Detection of ras mutations
EP0466367B1 (en) Process for detecting nucleic acid
JPWO2004011646A1 (en) Detection method of base mutation
JP2003144152A (en) Method for detecting target nucleic acid fragment and detection kit for target nucleic acid fragment
JP3387707B2 (en) Gene analysis method and apparatus
JPH04346800A (en) Detection of nucleic acid and apparatus therefor