JPH06269957A - Jointed body of lightweight heat resistant material and its production - Google Patents

Jointed body of lightweight heat resistant material and its production

Info

Publication number
JPH06269957A
JPH06269957A JP8526693A JP8526693A JPH06269957A JP H06269957 A JPH06269957 A JP H06269957A JP 8526693 A JP8526693 A JP 8526693A JP 8526693 A JP8526693 A JP 8526693A JP H06269957 A JPH06269957 A JP H06269957A
Authority
JP
Japan
Prior art keywords
joining
base
intermetallic compound
lightweight heat
tial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8526693A
Other languages
Japanese (ja)
Inventor
Masanori Taiyama
正則 泰山
Kazuhiro Ogawa
和博 小川
Takao Ko
隆夫 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8526693A priority Critical patent/JPH06269957A/en
Publication of JPH06269957A publication Critical patent/JPH06269957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To suppress the formation of a brittle intermetallic compd. at the boundary and to improve joint strength by joining a Ti-Al member and a W- base or Mo-base high melting metal base material via an insert material, such as Ta or Nb, in a solid phase. CONSTITUTION:The insert material consisting of the Ta or Nb is interposed between the first member consisting of the intermetallic compd. of the Ti-Al system and the second member consisting of the W-base or Mo-base high melting metal base materia. Both members are butted and joined against and to each other in the solid phase state by an HIP treatment, by which these members are combined and the joined body of the lightweight heat resistant materials is obtd. The thickness of the insert material is preferably >=10mum in terms of preventing the interdiffusion between Ti or Al and the high melting metal. The intermetallic compd. of the Ti-Al system is for example, Ti3Al, TiAl, TiAl3, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、宇宙・航空機エンジン
部材等に適した軽量耐熱材料接合体とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight heat-resistant material joined body suitable for space / aircraft engine members and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】宇宙・航空機エンジン部材等の高温環境
下で高強度が要求される部材への適用が期待されている
新材料として、Ti−Al系の金属間化合物(Ti3
l,TiAl,TiAl3 等)がある。この新材料は、
一般の金属間化合物の例にもれず、延性に乏しく、加工
性が極めて低い反面、高温強度に優れ、しかも一般の金
属間化合物より軽量で耐熱性に優れている。従って、T
i−Al系の金属間化合物は宇宙・航空機エンジン部材
への適用が可能な新材料として期待されている。
2. Description of the Related Art As a new material expected to be applied to members requiring high strength in a high temperature environment such as space and aircraft engine members, Ti--Al based intermetallic compounds (Ti 3 A
1, TiAl, TiAl 3, etc.). This new material is
As is the case with common intermetallic compounds, it has poor ductility and extremely low workability, but it is also excellent in high-temperature strength, and is lighter and more heat-resistant than general intermetallic compounds. Therefore, T
The i-Al intermetallic compound is expected as a new material applicable to space / aircraft engine members.

【0003】[0003]

【発明が解決しようとする課題】しかし、Ti−Al系
の金属間化合物の使用限界温度は1273K程度であ
る。一方、ジェットエンジンのタービンや宇宙航空機の
外壁等の使用環境温度としては、Ti−Al系の金属間
化合物の融点(TiAlで約1773K)より高い温度
も予想される。従って、ジェットエンジンのタービンや
宇宙航空機の外壁等の部材にはTi−Al系の金属間化
合物も使用できず、これより更に耐熱性が優れた材料が
必要となる。
However, the use limit temperature of the Ti-Al intermetallic compound is about 1273K. On the other hand, as the operating environment temperature of the turbine of a jet engine, the outer wall of a spacecraft, etc., a temperature higher than the melting point of Ti-Al-based intermetallic compounds (about 1773 K for TiAl) is expected. Therefore, Ti-Al-based intermetallic compounds cannot be used for members such as the turbine of a jet engine and the outer wall of a spacecraft, and a material having higher heat resistance than this is required.

【0004】本発明の目的は、Ti−Al系の金属間化
合物より更に優れた耐熱性を有する軽量耐熱材料接合体
とその製造方法を提供することにある。
An object of the present invention is to provide a lightweight heat resistant material joined body having heat resistance superior to that of a Ti--Al based intermetallic compound and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】耐熱性にのみ着目するな
らば、MoやWなどの高融点金属は、2000Kを超え
る高い融点を持ち、Ti−Al系の金属間化合物より優
れた耐熱性を有している。しかし、これらの高融点金属
は比重が大きいため、軽量化が特に強く要求される宇宙
・航空機分野への単体での適用は難しい。そこで、高融
点金属とTi−Al系の金属間化合物とを接合して複合
化することにより、優れた耐熱性を有する軽量材料を開
発することが考えられる。
[Means for Solving the Problems] If attention is paid only to heat resistance, high-melting-point metals such as Mo and W have high melting points exceeding 2000 K, and are superior in heat resistance to Ti-Al-based intermetallic compounds. Have However, since these high-melting-point metals have a large specific gravity, it is difficult to apply them individually to the space and aircraft fields where weight reduction is particularly required. Therefore, it is conceivable to develop a lightweight material having excellent heat resistance by joining a high melting point metal and a Ti—Al-based intermetallic compound to form a composite.

【0006】しかし、現在までのところ、その異材接合
についての詳細な検討は見られず、Ti−Al系の金属
間化合物同士の接合が検討されているにすぎない(特開
平3−226387号公報、溶接学会全国大会講演概要
第50集No. 313〜315,溶接冶金委員会資料WU
−1378−91等)。
However, up to now, no detailed study has been found on the joining of dissimilar materials, and only joining of Ti—Al-based intermetallic compounds has been studied (JP-A-3-226387). , Welding Society National Convention Lecture Summary No. 50 No. 313-315, Welding Metallurgical Commission Material WU
-1378-91).

【0007】Ti−Al系の金属間化合物とWやMoな
どの高融点金属との異材接合では、接合界面に脆弱な金
属間化合物層が形成されるため、健全な異材継手が得ら
れないことが考えられる。このような接合材同士が反応
して脆弱な金属間化合物層を形成する組み合わせの異材
接合には、一般に摩擦圧接、熱間圧延法、拡散接合、ろ
う付け接合などが用いられるが、それぞれ次のような問
題がある。
In the dissimilar material joining of a Ti--Al based intermetallic compound and a refractory metal such as W or Mo, a fragile intermetallic compound layer is formed at the joining interface, so that a sound dissimilar material joint cannot be obtained. Can be considered. Friction welding, hot rolling, diffusion bonding, brazing and the like are generally used for the dissimilar material bonding of the combination in which the bonding materials react with each other to form a brittle intermetallic compound layer. There is such a problem.

【0008】摩擦圧接では、接合物が回転対称性の良い
形状のものに限られる。熱間圧延法は、素材の大きな塑
性変形を必要とするために、変形能に乏しいTi−Al
系の金属間化合物や高融点金属の接合には適さない。拡
散接合では、両者の融点がW:3683K,Mo:28
93Kに対しTiAl:約1773Kと大きく違うため
に接合条件の選定が難しい。ろう付けは、低融点のろう
材を用いるために、特に高温での耐熱性を要求される部
材への適用は難しい。
In friction welding, the joint is limited to one having a good rotational symmetry. The hot rolling method requires large plastic deformation of the material, and thus Ti-Al having poor deformability.
Not suitable for joining intermetallic compounds and refractory metals. In diffusion bonding, the melting points of both are W: 3683K, Mo: 28.
It is difficult to select the bonding conditions because it is significantly different from 93K for TiAl: about 1773K. Since brazing uses a low melting point brazing material, it is difficult to apply it to a member that is particularly required to have heat resistance at high temperatures.

【0009】拡散接合では更に、通常は接合材の融点
(K)の1/2以上の温度で接合を行うため、Wの接合
では1800K以上、Moの接合では1400K以上の
接合温度が必要となるが、TiAlの融点が1773K
程度とMo,Wの融点と比較して低いために、Mo,W
の条件で拡散接合による接合を行った場合には、接合時
の加圧によってTiAlが大きく変形し、健全な形の継
手が得られないという問題もある。
Further, in the diffusion bonding, since the bonding is usually performed at a temperature of ½ or more of the melting point (K) of the bonding material, a bonding temperature of 1800K or higher for W bonding and 1400K or higher for Mo bonding is required. However, the melting point of TiAl is 1773K.
And the melting points of Mo and W are low,
When the joining by diffusion joining is performed under the condition of (1), TiAl is largely deformed by the pressure applied during joining, and there is also a problem that a sound shaped joint cannot be obtained.

【0010】一方、高融点金属同士の接合には、アーク
溶接、電子ビーム溶接などの溶融溶接が行われるが、溶
接時に高温にさらされることに起因する結晶粒の粗大化
により脆化することが問題となっており、高温で拡散接
合を行った場合にも同様の問題が懸念される。
On the other hand, fusion welding such as arc welding and electron beam welding is carried out for joining refractory metals to each other, but brittleness may occur due to coarsening of crystal grains due to exposure to high temperature during welding. This is a problem, and the same problem is feared even when diffusion bonding is performed at a high temperature.

【0011】本発明者らはこれまでの調査研究から、T
a,NbがTi−Al系の金属間化合物およびMo,W
などの高融点金属のいずれに対しても脆弱な金属間化合
物を形成し難いことを確認している。また、HIP処理
は全方向からの加圧が可能であるため、被接合材の変形
を防ぐことができる。
The inventors of the present invention have found that T
a and Nb are Ti-Al based intermetallic compounds and Mo and W
It has been confirmed that it is difficult to form a brittle intermetallic compound against any of the refractory metals such as. Further, since the HIP process can apply pressure from all directions, it is possible to prevent deformation of the materials to be joined.

【0012】これらの点から本発明者らは、Ti基また
はZr基の金属とステンレス鋼との接合を目的として開
発されたTaインサート材使用のHIP処理による接合
(特開平4−46685号公報)に着目した。そして、
Taの他にNbをインサート材として、TiAlとM
o,TiAlとWの接合を加熱温度1473K、加圧力
100kgf/cm2 、1時間保持の条件でHIP処理
により実施した。その結果、接合界面に脆化層が形成さ
れないことを確認し、Ta,NbがTi−Al系の金属
化合物と高融点金属(Mo,W)との接合に有力なイン
サート材になり得るという知見を得た。
From these points, the present inventors have joined by HIP treatment using a Ta insert material developed for joining Ti-based or Zr-based metal and stainless steel (JP-A-4-46685). I focused on. And
In addition to Ta, Nb as an insert material, TiAl and M
The joining of O, TiAl and W was carried out by HIP treatment under the conditions of heating temperature of 1473 K, pressure of 100 kgf / cm 2 , and holding for 1 hour. As a result, it was confirmed that the embrittlement layer was not formed at the joint interface, and Ta and Nb were found to be effective insert materials for joining the Ti—Al-based metal compound and the refractory metal (Mo, W). Got

【0013】また、HIP処理による接合では、変形が
抑制されるだけでなく、その変形抑制により加圧力の増
強が可能となるため、比較的低い温度での接合が可能と
なり、その結果、MoやWの結晶粒の成長が抑制され、
Mo母材やW母材の側に脆化がない接合体を製造できる
という知見も得た。
Further, in the joining by the HIP treatment, not only the deformation is suppressed but also the pressurizing force can be increased by suppressing the deformation, so that the joining can be performed at a relatively low temperature, and as a result, Mo and The growth of W crystal grains is suppressed,
It was also found that it is possible to manufacture a joined body without embrittlement on the side of the Mo base material or the W base material.

【0014】本発明はこれらの知見に基づきなされたも
ので、Ti−Al系の金属間化合物からなる第1の部材
と、W基またはMo基の高融点金属基材料からなる第2
の部材とが、TaまたはNbからなるインサート材を介
して固相接合されていることを特徴とする軽量耐熱材料
接合体を第1の要旨とし、Ti−Al系の金属間化合物
からなる第1の部材と、W基またはMo基の高融点金属
基材料からなる第2の部材との間に、TaまたはNbか
らなるインサート材を介在させて、両方の部材をHIP
処理により固相状態にて接合し複合化することを特徴と
する軽量耐熱材料接合体の製造方法を第2の要旨とす
る。
The present invention has been made on the basis of these findings. A first member made of a Ti--Al intermetallic compound and a second member made of a W-based or Mo-based refractory metal-based material are used.
The first gist is a lightweight heat-resistant material joined body characterized by being solid-phase joined with the member of No. 1 through an insert material made of Ta or Nb. And a second member made of a W-based or Mo-based refractory metal-based material with an insert material made of Ta or Nb interposed therebetween so that both members are HIPed.
A second gist is a method of manufacturing a lightweight heat-resistant material joined body, which is characterized by joining and compounding in a solid phase state by treatment.

【0015】[0015]

【作用】TaまたはNbからなるインサート材は、接合
界面での脆弱な金属間化合物の形成を抑え、接合強度に
優れたTi−Al系金属間化合物と高融点金属基材料と
の複合化を可能にする。
[Function] The insert material made of Ta or Nb suppresses the formation of brittle intermetallic compounds at the joint interface and enables the formation of a composite of Ti-Al-based intermetallic compounds with excellent joint strength and refractory metal-based materials. To

【0016】インサート材の厚みはTi,Alと高融点
金属の相互拡散を防ぐ観点から10μm以上が好ましい
が、軽量化という観点からはインサート材の厚みを大き
くしない方がよい。
The thickness of the insert material is preferably 10 μm or more from the viewpoint of preventing mutual diffusion of Ti and Al and the refractory metal, but from the viewpoint of weight reduction, it is better not to increase the thickness of the insert material.

【0017】Ti−Al系の金属間化合物としては、例
えばTi3 Al,TiAl,TiAl3 等を挙げること
ができる。
Examples of the Ti-Al intermetallic compound include Ti 3 Al, TiAl, and TiAl 3 .

【0018】高融点金属基材料はMo,Wの他、添加元
素としてRe等を添加した二元系、三元系等のMo基合
金,W基合金を含む。
The refractory metal-based material includes, in addition to Mo and W, binary and ternary Mo-based alloys and W-based alloys to which Re or the like is added as an additive element.

【0019】接合形態は、Ti−Al系金属間化合物と
高融点金属基材料を単に接合する他、高融点金属基材料
とTi−Al系金属間化合物をサンドイッチ状に挟んだ
ものでもよい。
The joining form may be such that the Ti--Al based intermetallic compound and the refractory metal-based material are simply joined together, or that the refractory metal based material and the Ti--Al-based intermetallic compound are sandwiched.

【0020】このような接合体は、高融点金属基材料の
側を高温の使用環境にさらすことにより、Ti−Al系
金属間化合物の融点を超えることが予想されるジェット
エンジンのタービンや宇宙航空機の外壁等のような超高
温の使用環境下でも高い強度を示し、しかも軽量性の低
下は最小限に抑えられる。
Such a joined body is expected to exceed the melting point of the Ti-Al intermetallic compound by exposing the refractory metal-based material side to a high-temperature use environment, and is expected to exceed the melting point of a jet engine turbine or a spacecraft. It exhibits high strength even under ultra-high temperature use environment such as outer wall, and the reduction in weight is minimized.

【0021】HIP処理における接合温度としては、T
i−Al系金属間化合物の融点がMo,Wの融点と比較
して低いことから、1673Kが最大限度であり、好ま
しくは1500K以下、特に好ましくは1273K程度
である。
The bonding temperature in the HIP process is T
Since the melting point of the i-Al-based intermetallic compound is lower than the melting points of Mo and W, 1673K is the maximum limit, preferably 1500K or less, and particularly preferably about 1273K.

【0022】HIP処理を用いた場合には、被接合材の
変形を考えずに加圧力を高めることが可能なので、接合
界面を十分に密着させることができ、1273K程度と
いうMoやWの接合にしては低い温度での接合が可能と
なり、高温でのMoやWの脆化を防ぐことができる。
When the HIP process is used, the applied pressure can be increased without considering the deformation of the materials to be joined, so that the joining interface can be sufficiently adhered, and a Mo or W joint of about 1273K can be obtained. As a result, it is possible to join at a low temperature, and it is possible to prevent embrittlement of Mo and W at a high temperature.

【0023】加圧力としては接合面の密着性を高めるた
め大きい方がよく、、特に1273K近傍での接合にお
いては50kgf/cm2 以上が望ましい。
It is preferable that the pressing force is large in order to enhance the adhesiveness of the joint surface, and especially 50 kgf / cm 2 or more is preferable in the case of joining in the vicinity of 1273K.

【0024】接合時間については、接合界面での拡散を
生じさせ、かつTi−Al系金属間化合物の結晶粒の粗
大化による強度の低下を防ぐ目的から5分〜3時間が好
ましい。
The joining time is preferably 5 minutes to 3 hours for the purpose of causing diffusion at the joining interface and preventing a decrease in strength due to coarsening of the crystal grains of the Ti--Al intermetallic compound.

【0025】[0025]

【実施例】以下に本発明の実施例および比較例を説明す
る。
EXAMPLES Examples and comparative examples of the present invention will be described below.

【0026】工業用純Ti,純Alを原料として、Ti
−25〜75at%Alの金属間化合物を溶製し、外径
10mm−長さ30mmの丸棒材を作製すると共に、こ
れと同形状のW,Moからなる丸棒材を作製し、更にイ
ンサート材として厚さ0.1mmのTa,Nb,Zr,N
i箔を用意した。そして両方の丸棒材の間にインサート
材を介在させて、接合温度1073K〜1573K、加
圧力10〜2000kg/cm2 、保持時間0.1〜5h
rの条件で、HIP処理により突き合わせ接合を行っ
た。
Using industrial pure Ti and pure Al as raw materials, Ti
-25 to 75 at% Al intermetallic compound is melted to produce a round bar having an outer diameter of 10 mm and a length of 30 mm, and a round bar made of W and Mo having the same shape as that of the round bar, and further inserted. Ta, Nb, Zr, N with a thickness of 0.1 mm
i foil was prepared. Then, with an insert material interposed between both round bar materials, a joining temperature of 1073K to 1573K, a pressing force of 10 to 2000 kg / cm 2 , and a holding time of 0.1 to 5 h.
Butt joining was performed by HIP treatment under the condition of r.

【0027】突き合わせ接合により得られた接合体の接
合部の引張強度を調査した。結果を表1〜5に示す。
The tensile strength of the joint portion of the joined body obtained by butt joining was investigated. The results are shown in Tables 1-5.

【0028】表1〜表3はTiAlをTi−50at%
Alとして、接合条件を変更した場合の調査結果を示し
ている。接合温度を1273KとW,Moにとっては比
較的低い温度で行った場合にも良好な接合強度が得ら
れ、これによりW,Moの脆化が防止された。
Tables 1 to 3 show that TiAl is Ti-50 at%.
As Al, the result of the investigation when the joining conditions are changed is shown. Good joining strength was obtained even when the joining temperature was 1273 K, which was relatively low for W and Mo, and this prevented embrittlement of W and Mo.

【0029】表4は接合条件を1273K−100kg
/cm2 加圧−1hr保持に固定して、TiAlの組成
を変更した場合の調査結果を示している。TiAlの組
成にかかわらず良好な接合強度が得られた。
Table 4 shows the joining conditions of 1273K-100kg.
The results are shown when the composition of TiAl is changed by fixing the pressure / cm 2 pressure to 1 hr. Good bonding strength was obtained regardless of the composition of TiAl.

【0030】表5は接合条件を1273K−100kg
/cm2 加圧−1hr保持に固定して、インサート材を
変更した場合の調査結果を示している。インサート材が
Ta,Nbの場合にのみ良好な接合が行われ、実用に供
し得る軽量耐熱材料接合体の製造が可能となった。
Table 5 shows the joining conditions of 1273K-100kg.
/ Cm 2 Pressurization-holding for 1 hr holding, the result of investigation when changing the insert material is shown. Good joining was performed only when the insert material was Ta or Nb, and it became possible to manufacture a lightweight heat-resistant material joined body that could be put to practical use.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
の軽量耐熱材料接合体は、TiAl系の金属間化合物と
Mo基またはW基の高融点金属基材料を接合したことに
より、TiAl系の金属間化合物の使用限界温度を超え
るような超高温下でも使用できる。また、高融点金属基
材料の使用を一部使用に制限したので、軽量性に優れ
る。従って、宇宙・航空機分野における部材軽量化等に
大きな効果を発揮する。
As is apparent from the above description, the lightweight heat-resistant material joined body of the present invention is obtained by joining a TiAl-based intermetallic compound and a Mo-based or W-based refractory metal-based material. It can be used even at an ultrahigh temperature exceeding the limit temperature of use of the intermetallic compound. In addition, since the use of the high melting point metal-based material is limited to a part, it is excellent in lightness. Therefore, it exerts a great effect on weight reduction of members in the space and aircraft fields.

【0037】また、本発明の軽量耐熱材料の接合体製造
方法は、TiAl系の金属間化合物とMo基またはW基
の高融点金属基材料を充分な強度で接合することによ
り、TiAl系金属間化合物の使用限界温度を超えるよ
うな超高温まで高い強度を有する軽量耐熱材料接合体を
製造でき、宇宙・航空機分野における部材軽量化等に大
きな効果を発揮する。
Further, the method for producing a joined body of a lightweight heat-resistant material of the present invention is a method of joining a TiAl-based intermetallic compound and a Mo-based or W-based refractory metal-based material with sufficient strength, thereby It is possible to manufacture a lightweight heat-resistant material joined body having high strength up to an extremely high temperature exceeding the use limit temperature of a compound, and it exerts a great effect on weight reduction of members in the space and aircraft fields.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ti−Al系の金属間化合物からなる第
1の部材と、W基またはMo基の高融点金属基材料から
なる第2の部材とが、TaまたはNbからなるインサー
ト材を介して固相接合されていることを特徴とする軽量
耐熱材料接合体。
1. A first member made of a Ti--Al-based intermetallic compound and a second member made of a W-based or Mo-based refractory metal-based material, with an insert material made of Ta or Nb interposed therebetween. A lightweight heat-resistant material joined body characterized by being solid-phase joined together.
【請求項2】 Ti−Al系の金属間化合物からなる第
1の部材と、W基またはMo基の高融点金属基材料から
なる第2の部材との間に、TaまたはNbからなるイン
サート材を介在させて、両方の部材をHIP処理により
固相状態にて接合し複合化することを特徴とする軽量耐
熱材料接合体の製造方法。
2. An insert material made of Ta or Nb between a first member made of a Ti—Al-based intermetallic compound and a second member made of a W-based or Mo-based refractory metal-based material. A method for manufacturing a lightweight heat-resistant material joined body, characterized in that both members are joined in a solid state by HIP treatment to form a composite by interposing the above.
JP8526693A 1993-03-18 1993-03-18 Jointed body of lightweight heat resistant material and its production Pending JPH06269957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8526693A JPH06269957A (en) 1993-03-18 1993-03-18 Jointed body of lightweight heat resistant material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8526693A JPH06269957A (en) 1993-03-18 1993-03-18 Jointed body of lightweight heat resistant material and its production

Publications (1)

Publication Number Publication Date
JPH06269957A true JPH06269957A (en) 1994-09-27

Family

ID=13853780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8526693A Pending JPH06269957A (en) 1993-03-18 1993-03-18 Jointed body of lightweight heat resistant material and its production

Country Status (1)

Country Link
JP (1) JPH06269957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002450A (en) * 2015-07-31 2015-10-28 哈尔滨工程大学 Method for improving room-temperature plasticity and strength of Al3Ti intermetallic compound
CN105537750A (en) * 2016-01-20 2016-05-04 天津大学 High-strength connection process for copper-niobium rodlike metals under non-vacuum low-pressure condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002450A (en) * 2015-07-31 2015-10-28 哈尔滨工程大学 Method for improving room-temperature plasticity and strength of Al3Ti intermetallic compound
CN105537750A (en) * 2016-01-20 2016-05-04 天津大学 High-strength connection process for copper-niobium rodlike metals under non-vacuum low-pressure condition

Similar Documents

Publication Publication Date Title
JP5102814B2 (en) High strength dissimilar metal joining method of steel alloy and titanium or titanium alloy using intermediate layer having joining strength exceeding base material strength, and steel alloy and titanium or titanium alloy joined by the method High strength bonding alloy containing
US7156282B1 (en) Titanium-aluminide turbine wheel and shaft assembly, and method for making same
JPH04362147A (en) Method of forming metal matrix composite by transition liquid phase strengthening
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
Ong et al. Intermetallics evolution and fracture behavior of Nb interlayer inserted Si3N4/Ti joints brazed with AgCuTi filler
Dong et al. A high-strength vacuum-brazed TiAl/Ni joint at room temperature and high temperature with an amorphous foil Zr-Al-Ni-Co filler metal
EP1395387A1 (en) High temperature melting braze materials for bonding niobium based alloys
US7527187B2 (en) Titanium braze foil
Sharma et al. Effect of various factors on the brazed joint properties in al brazing technology
Elrefaey High-temperature brazing in aerospace engineering
Hong et al. Microstructural evolution and shear strength of brazing C103 and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt.%) filler metal
JPH06269957A (en) Jointed body of lightweight heat resistant material and its production
Gao et al. Interfacial microstructure and shear performance of TiAl to Nb–Si alloy diffusion bonded with pure Ti interlayer
Ma et al. Effect of welding temperature on microstructure and mechanical properties of TiAl/Ti2AlNb spark plasma diffusion welded joint
KR100980475B1 (en) Active brazing filler metal alloy composition with high strength and low melting point
JPH07232284A (en) Joining of titanium alloy and iron base metal using intermediate member
JP3187876B2 (en) Method of joining composite material at least partially composed of intermetallic compound
JPS6216896A (en) Brazing filler metal for ceramics
KR102226046B1 (en) Brazing filler metal and the manufacturing method thereof
He et al. Pulse current diffusion bonding of high niobium β-γ TiAl alloy to IN718 superalloy by introducing pure Ni interlayer
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
KR100954097B1 (en) Method of joining of pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-based inserted material and Ag diffusion control layer
Ramos et al. Joining of Gamma-Based Titanium Aluminides–A Review
Guo et al. Microstructure and shear property of high-temperature brazing of TiAl alloy and 316L stainless steel with a Ni-based amorphous filler
JPH08325636A (en) Production of structural part equipped with element brazed to base material