JPH0626937A - Measuring method of optical pulse waveform - Google Patents

Measuring method of optical pulse waveform

Info

Publication number
JPH0626937A
JPH0626937A JP4181153A JP18115392A JPH0626937A JP H0626937 A JPH0626937 A JP H0626937A JP 4181153 A JP4181153 A JP 4181153A JP 18115392 A JP18115392 A JP 18115392A JP H0626937 A JPH0626937 A JP H0626937A
Authority
JP
Japan
Prior art keywords
spectrum
phase
optical pulse
neural network
phie
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4181153A
Other languages
Japanese (ja)
Inventor
Akihisa Mikami
彰久 三上
Yoshitake Yamazaki
義武 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP4181153A priority Critical patent/JPH0626937A/en
Publication of JPH0626937A publication Critical patent/JPH0626937A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To shorten operation time and operation quantity. CONSTITUTION:An input optical pulse is incident to a Michelson interferometer, and the interfered light is subjected to high speed Fourier transformation. A proper phase phie(omega) is given to a basic wave optical spectrum E0(omega) to perform reverse high speed Fourier transformation (S3), the transformation result E(t)phie(t) is subjected to square operation (S4) to calculate the spectrum of double higher harmonics (S5), and the calculated U(omega) is compared with the measured double higher harmonic spectrum U0(omega). When the error is a determined value or more, phase correction is conducted to return to step S2, and the above is repeated. A Boltzmann machine type neural network of multilayer structure is used for this phase correction, phases phie(omega0)--phie(omega255) corresponding to, for example, 256 spectra are inputted to correct all weighs of the neural network on the basis of the error in step S6, and phases phie'(omega0)--phix'(omega255) are obtained as the output of the neural network.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、極めて狭い光パルス
の波形を測定する光パルス波形測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pulse waveform measuring method for measuring the waveform of an extremely narrow optical pulse.

【0002】[0002]

【従来の技術】従来において光パルスの極めて幅の狭い
ものの波形を測定する場合には、その光パルスをフォト
ダイオードのような光センサで電気信号に変換してこれ
をオシログラフに表示しようとしても、その光センサの
応答速度が遅い為、光パルスの波形を表示することがで
きない。
2. Description of the Related Art Conventionally, when measuring the waveform of a light pulse having a very narrow width, even if the light pulse is converted into an electric signal by an optical sensor such as a photodiode and is displayed on an oscillograph. Since the response speed of the optical sensor is slow, the optical pulse waveform cannot be displayed.

【0003】このような点から従来において光パルスを
マイケルソン干渉計に入射してその干渉光を高速フーリ
エ変換して基本波の光スペクトラムを求め、又強度相関
スペクトラムも求め、さらに干渉光の2倍の高調波を取
り出し、それを高速フーリエ変換して2倍高調波の光ス
ペクトラムを得、この3のスペクトラムの相互の関係が
成り立つような位相を見つけることによってその光パル
スの波形を表示することが提案されている(IEEE
J.of Q.E.Vol25 No.6 June
1989 General Method for U
ltrashort Light Pulse Chi
rp Measurement)。
From such a point, conventionally, an optical pulse is incident on a Michelson interferometer and the interference light is subjected to fast Fourier transform to obtain an optical spectrum of a fundamental wave, and an intensity correlation spectrum is also obtained. To display the waveform of the optical pulse by extracting the doubled harmonic, fast Fourier transforming it to obtain the optical spectrum of the second harmonic, and finding the phase where the mutual relationship of these three spectra is established. Has been proposed (IEEE
J. of Q. E. Vol25 No. 6 June
1989 General Method for U
ltrashort Light Pulse Chi
rp Measurement).

【0004】[0004]

【発明が解決しようとする課題】この提案されている干
渉計を利用して光パルスのスペクトルを求め、光パルス
の波形を再生する方法においてはその基本波光スペクト
ラムと強度相関スペクトラムと2倍高調波スペクトラム
との関係は非線形であるため、簡単な連立方程式で解く
ことができない。この為その光スペクトラムに適当な位
相を与えて三つのスペクトラムの相互の関係を満足する
か計算し、満足しない場合は位相を少し変化させて同様
のことを繰返さなければならず、その計算量が膨大なも
のとなり、且つ計算時間が著しく長くなる欠点がある。
In the method of finding the spectrum of an optical pulse by utilizing the proposed interferometer and reproducing the waveform of the optical pulse, the fundamental wave optical spectrum, intensity correlation spectrum and double harmonic wave are used. Since the relationship with the spectrum is non-linear, it cannot be solved by simple simultaneous equations. Therefore, give an appropriate phase to the optical spectrum and calculate whether or not the mutual relationship of the three spectra is satisfied.If not satisfied, the phase must be changed slightly and the same thing must be repeated. It has a drawback that it becomes huge and the calculation time becomes remarkably long.

【0005】[0005]

【課題を解決するための手段】この発明によれば入力光
パルスを干渉計に入射してその干渉光から入力光パルス
の基本波光スペクトラムを求め、又その干渉光の周波数
を2倍にして2倍高調波の光スペクトラムを求め、さら
にその基本波光スペクトラムに未知の位相を与えて逆離
散的フーリエ変換を行い、その逆フーリエ変換の結果を
2乗演算し、その2乗演算結果に対して離散的フーリエ
変換を行い、このフーリエ変換の結果と2倍高調波の光
スペクトラムとを比較し、その比較結果に応じて、上記
未知の位相を修正して、以上のことを繰返して基本波光
スペクトラムに対する真の位相を求め、その真の位相を
持つ光スペクトラムから光パルスの波形を再生するが、
その場合未知位相をニューラルネットワークに入力し、
そのニューラルネットワークの出力を上記修正位相と
し、上記比較結果に応じて上記ニューラルネットワーク
の各重みを修正する。
According to the present invention, an input optical pulse is incident on an interferometer, the fundamental wave optical spectrum of the input optical pulse is obtained from the interference light, and the frequency of the interference light is doubled. The optical spectrum of the double harmonic is obtained, the unknown phase is given to the fundamental optical spectrum, the inverse discrete Fourier transform is performed, the result of the inverse Fourier transform is squared, and the squared result is discretized. Fourier transform is performed, the result of this Fourier transform is compared with the optical spectrum of the second harmonic, the unknown phase is corrected according to the comparison result, and the above is repeated to obtain the fundamental optical spectrum. The true phase is obtained and the waveform of the optical pulse is reproduced from the optical spectrum having the true phase.
In that case, input the unknown phase to the neural network,
The output of the neural network is used as the correction phase, and each weight of the neural network is corrected according to the comparison result.

【0006】上述において基本波光スペクトラムのかわ
りに2倍高調波光スペクトラムに対して未知位相を与
え、その逆離散的フーリエ変換を行い、その逆フーリエ
変換結果を開平演算し、その開平演算結果に対して離散
的フーリエ変換を行い、そのフーリエ変換の結果と基本
波光スペクトラムとを比較して位相を修正するようにし
てもよい。
In the above description, an unknown phase is given to the 2nd harmonic optical spectrum instead of the fundamental optical spectrum, its inverse discrete Fourier transform is performed, and the inverse Fourier transform result is square root calculated. The phase may be corrected by performing a discrete Fourier transform and comparing the result of the Fourier transform with the fundamental wave optical spectrum.

【0007】[0007]

【実施例】図1にこの発明の方法を適応する測定装置を
示す。入力光パルス11はマイケルソン干渉計12に入
射され、そのビームスプリッタ13によって分割されて
固定ミラー14と可動ミラー15とに入射し、その両反
射光がビームスプリッタ13で干渉し、その干渉光16
は受光素子17で電気信号に変換される。その電気信号
はA/D変換器18でデジタル信号に変換され、このデ
ジタル信号は信号処理器19に供給される。
1 shows a measuring device to which the method of the present invention is applied. The input light pulse 11 is incident on a Michelson interferometer 12, is split by the beam splitter 13 thereof, and is incident on a fixed mirror 14 and a movable mirror 15. Both reflected lights interfere with each other at the beam splitter 13, and the interference light 16
Is converted into an electric signal by the light receiving element 17. The electric signal is converted into a digital signal by the A / D converter 18, and this digital signal is supplied to the signal processor 19.

【0008】又干渉光16は分岐されて二次高調波発生
器21へ供給され、その出力はフィルタ22へ供給され
て2倍の周波数成分が取り出され、そのフィルタ22の
出力はフォトマルチプライア23により増幅され、さら
にフォトンカウンタ24で電気信号に変換され、その電
気信号はA/D変換器30でデジタル信号に変換され、
そのデジタル信号は信号処理器19へ供給される。
The interference light 16 is branched and supplied to the second harmonic generator 21, the output thereof is supplied to the filter 22 and the frequency component of twice the frequency component is taken out, and the output of the filter 22 is the photomultiplier 23. Is amplified by the photon counter 24 and converted into an electric signal by the photon counter 24. The electric signal is converted into a digital signal by the A / D converter 30,
The digital signal is supplied to the signal processor 19.

【0009】なお、ヘリウムネオンレーザ25よりの基
準光もマイケルソン干渉計12に入射され、その干渉光
が受光素子25で電気信号に変換され、その変換出力は
2倍の逓倍器27で周波数が2倍にされ、この出力がA
/D変換器18及び30にそれぞれサンプリングパルス
として与えられ、可動ミラー15の単位移動ごとにデジ
タル信号への変換が行なわれる。
The reference light from the helium neon laser 25 is also incident on the Michelson interferometer 12, the interference light is converted into an electric signal by the light receiving element 25, and the converted output has a frequency doubled by the doubler 27. Doubled and this output is A
The signals are given to the / D converters 18 and 30 as sampling pulses, respectively, and are converted into digital signals every unit movement of the movable mirror 15.

【0010】この信号処理器19においてはA/D変換
器18からのデジタル信号を高速フーリエ変換して入力
光パルスの基本波光スペクトラムE0 (ω)を求め、
又、フォトンカウンタ24からの信号を高速フーリエ変
換して入力光パルスの2倍高調波の光スペクトラムU0
(ω)を求める。これら光スペクトラムは振幅のみであ
って位相情報を持っていない。従って図2に示すように
まず各角周波数ωに適当な未知位相φe (ω)を想定し
(S1 )これを各基本波光スペクトラムEo (ω)にそ
れぞれ与える(S2 )。次にこのような位相を与えた基
本波スペクトラムを逆高速フーリエ変換してE(t)φ
e (t)を得る(S3 )。その逆高速フーリエ変換され
た結果を2乗する(S4 )。その2乗した結果を高速フ
ーリエ変換して2倍の高調波光スペクトラムU(ω)を
求める(S5 )。
In the signal processor 19, the digital signal from the A / D converter 18 is fast Fourier transformed to obtain the fundamental wave optical spectrum E 0 (ω) of the input optical pulse,
In addition, the signal from the photon counter 24 is subjected to fast Fourier transform to obtain an optical spectrum U 0 of the second harmonic of the input optical pulse.
Find (ω). These optical spectra have only amplitude and have no phase information. Therefore, as shown in FIG. 2, an appropriate unknown phase φ e (ω) is first assumed for each angular frequency ω (S 1 ), and this is given to each fundamental wave optical spectrum E o (ω) (S 2 ). Next, the fundamental spectrum with such a phase is subjected to inverse fast Fourier transform to E (t) φ
Obtain e (t) (S 3 ). The result of the inverse fast Fourier transform is squared (S 4 ). The squared result is subjected to fast Fourier transform to obtain a doubled harmonic light spectrum U (ω) (S 5 ).

【0011】その演算して求めた2倍の高調波光スペク
トラムU(ω)と先に測定して求めた2倍の高調波光ス
ペクトラムU0 (ω)とを比較する(S6 )。その比較
結果(誤差)が所定値か否かをチェックし所定値以下で
なければ先に設定した位相φ e (ω)を修正し、その修
正した位相φe ′(ω)をφe (ω)としてステップS
2 に戻る(S7 )。以上の事を繰返し、計算した2倍の
高調波スペクトラムU(ω)が測定値U0 (ω)との誤
差が所定値以下になった場合は、その時の位相φ
e (ω)をその入力光パルスの各スペクトルの真の位相
とみなし、この位相φ e (ω)と測定した基本波光スペ
クトラムE0 (ω)とを用いて逆高速フーリエ変換して
光パルス波形を求めて表示器28に表示する(S9 )。
Doubled harmonic spectrum obtained by the calculation
The tram U (ω) and the harmonic light double of the double obtained by the previous measurement
Pectrum U0Compare with (ω) (S6). The comparison
Check whether the result (error) is a predetermined value or less
If not set, the phase φ previously set eCorrect (ω) and fix it
Corrected phase φe′ (Ω) is φeStep S as (ω)
2Return to (S7). Repeat the above and calculate twice
Harmonic spectrum U (ω) is measured value U0Incorrect with (ω)
If the difference is less than the specified value, the phase φ at that time
e(Ω) is the true phase of each spectrum of the input optical pulse
This phase φ e(Ω) and the fundamental optical spectrum measured
Tram E0Inverse fast Fourier transform using (ω) and
The optical pulse waveform is obtained and displayed on the display 28 (S9).

【0012】ところでステップS8 における位相修正を
ニューラルネットワークを利用して行う。例えば図3に
示すように高速フーリエ変換により分解される周波数成
分が256ポイントの場合、その各周波数成分について
の位相φe (ω0 )〜φe (ω255 )がニューラルネッ
トワーク31に入力される。このニューラルネットワー
クとしてはボルツマンマシン形式の多層構造のものが好
ましく、この各重みをステップS6 の比較結果(誤差)
に応じて修正し、ニューラルネットワーク31の出力に
修正された位相φe ′(ωo )〜φe ′(ω255 )を得
る。このようにする事によって早い収束、すなわち真の
位相が得られる。学習過程では逆プロパゲーションアル
ゴリズムを用い、又学習の程度に従ってアニールプロセ
スを導入する。このようにして繰返し回数を2500〜
3程度に減少することができる。
By the way, the phase correction in step S 8 is performed using a neural network. For example, as shown in FIG. 3, when the frequency components decomposed by the fast Fourier transform are 256 points, the phases φ e0 ) to φ e255 ) for each frequency component are input to the neural network 31. . As this neural network, a Boltzmann machine type multi-layer structure is preferable, and the respective weights are compared with each other in the comparison result (error) in step S 6.
And the corrected phases φ e ′ (ω o ) to φ e ′ (ω 255 ) are obtained as the output of the neural network 31. By doing so, fast convergence, that is, a true phase can be obtained. In the learning process, an inverse propagation algorithm is used, and an annealing process is introduced according to the degree of learning. In this way, the number of repetitions is 2500-
It can be reduced to about 3.

【0013】図2の中のステップS2 において基本波光
スペクトラムではなく2倍高調波光スペクトラムU
0 (ω)に位相を与え、ステップS4 において2乗演算
ではなく開平演算を行い、ステップS6 においては計算
した基本波光スペクトラムE(ω)と測定した基本波ス
ペクトラムE0 (ω)とを比較し、その他については前
述と同様にしてもよい。
In step S 2 in FIG. 2, not the fundamental wave optical spectrum but the second harmonic optical spectrum U
0 (ω) is given a phase, square root calculation is performed in step S 4 instead of square calculation, and the calculated fundamental wave optical spectrum E (ω) and measured fundamental wave spectrum E 0 (ω) are calculated in step S 6 . Comparison may be made, and other points may be the same as those described above.

【0014】[0014]

【発明の効果】以上述べたようにこの発明によればニュ
ーラルネットワークを用いて位相修正を行うため、その
真の位相に早く収斂し、つまり演算時間が少なくかつ演
算量が少なく、短い光パルスの波形を再生することがで
きる。
As described above, according to the present invention, since the phase correction is performed using the neural network, the true phase is quickly converged, that is, the calculation time is short and the calculation amount is small, and the short optical pulse The waveform can be played.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の方法を実施する装置の一例を示すブ
ロック図。
FIG. 1 is a block diagram showing an example of an apparatus for carrying out the method of the present invention.

【図2】この発明の方法の一部の動作の流れを示す流れ
図。
FIG. 2 is a flowchart showing a part of the operational flow of the method of the present invention.

【図3】位相修正のニューラルネットワークを示す図。FIG. 3 is a diagram showing a phase correction neural network.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力光パルスを干渉計に入射し、 その干渉光から上記入力光パルスの基本波のスペクトラ
ムを求め、 また上記干渉光の周波数を2倍にして、上記入力光パル
スの2倍高調波のスペクトラムを求め、 これら求めた上記基本波スペクトラム又は2倍高調波ス
ペクトラムにそれぞれ未知位相を与えてその逆離散的フ
ーリエ変換を行い、 その変換結果を2乗又は開平演算し、 その演算結果に対して離散的フーリエ変換を行い、 そのフーリエ変換の結果と上記2倍高調波スペクトラム
又は基本波スペクトラムと比較し、 その比較結果に応じて上記位相を修正して以上のことを
繰返して上記基本波スペクトラム又は2倍高調波スペク
トラムに対する真の位相を求め、 その真の位相をもつスペクトラムから上記入力光パルス
の波形を再生する光パルス波形測定方法であって、 上記未知位相をニューラルネットワークに入力し、 そのニューラルネットワークの出力を上記修正位相と
し、 上記比較結果に応じて上記ニューラルネットワークの各
重みを修正することを特徴とする、 光パルス波形測定方法。
1. An input optical pulse is incident on an interferometer, a spectrum of a fundamental wave of the input optical pulse is obtained from the interference light, and the frequency of the interference light is doubled to double the input optical pulse. Obtain the spectrum of the harmonics, give an unknown phase to each of the obtained fundamental wave spectrum or the double harmonic spectrum, perform the inverse discrete Fourier transform, and perform the square or square root calculation of the conversion result. Discrete Fourier transform is performed on the above, and the result of the Fourier transform is compared with the 2nd harmonic spectrum or the fundamental wave spectrum, and the phase is modified according to the comparison result and the above is repeated to repeat the above basic Waveform spectrum or 2nd harmonic spectrum, obtain the true phase, and reproduce the waveform of the above input optical pulse from the spectrum with the true phase. An optical pulse waveform measuring method according to claim 1, wherein the unknown phase is input to a neural network, the output of the neural network is used as the modified phase, and each weight of the neural network is modified according to the comparison result. Optical pulse waveform measurement method.
JP4181153A 1992-07-08 1992-07-08 Measuring method of optical pulse waveform Pending JPH0626937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4181153A JPH0626937A (en) 1992-07-08 1992-07-08 Measuring method of optical pulse waveform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4181153A JPH0626937A (en) 1992-07-08 1992-07-08 Measuring method of optical pulse waveform

Publications (1)

Publication Number Publication Date
JPH0626937A true JPH0626937A (en) 1994-02-04

Family

ID=16095818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4181153A Pending JPH0626937A (en) 1992-07-08 1992-07-08 Measuring method of optical pulse waveform

Country Status (1)

Country Link
JP (1) JPH0626937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599865A (en) * 2018-04-13 2018-09-28 北京邮电大学 Based on the format modulation signal recognition methods of photon neural network, device
CN113218520A (en) * 2021-04-30 2021-08-06 南京森林警察学院 Optimized neural network extraction method for laser pulse width

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599865A (en) * 2018-04-13 2018-09-28 北京邮电大学 Based on the format modulation signal recognition methods of photon neural network, device
CN108599865B (en) * 2018-04-13 2020-04-28 北京邮电大学 Signal modulation format identification method and device based on photon neural network
CN113218520A (en) * 2021-04-30 2021-08-06 南京森林警察学院 Optimized neural network extraction method for laser pulse width
CN113218520B (en) * 2021-04-30 2021-11-09 南京森林警察学院 Optimized neural network extraction method for laser pulse width

Similar Documents

Publication Publication Date Title
US4792230A (en) Method and apparatus for measuring ultrashort optical pulses
US4084136A (en) Eddy current nondestructive testing device for measuring variable characteristics of a sample utilizing Walsh functions
Palchetti et al. Spectral noise due to sampling errors in Fourier-transform spectroscopy
Alorifi et al. Analysis and Detection of a Target Gas System Based on TDLAS & LabVIEW.
US4636719A (en) Apparatus for extended precision phase measurement
US5253183A (en) Obtaining a spectrogram from a single scanning of interference fringes
Siemens et al. Making h (t) for LIGO
JPH0626937A (en) Measuring method of optical pulse waveform
Fontana Multidetector intensity interferometers
US5039222A (en) Apparatus and method for producing fourier transform spectra for a test object in fourier transform spectrographs
JPH1090065A (en) Data processor and data processing method for fourier transform spectrometer
JP3696379B2 (en) Multi-input amplitude / phase measurement method and apparatus
Benson et al. Technique for obtaining visibility amplitudes from atmospherically disturbed interferograms
US4885708A (en) Apparatus and method for measuring frequency response function
JP3696369B2 (en) Short optical pulse waveform regeneration method
JP2889248B2 (en) Optical interferometer for optical spectrum analyzer
JPH09329502A (en) Waveform reproducing method for short pulsed light
Ivanenko et al. Measurement Module of Dispersion Interferometer Based on the CO2 Laser for Plasma Density Control
Lvovsky et al. Photon Echo Modulation Effects in Cesium Vapor
JP2637012B2 (en) Measurement data analysis method
Appiani et al. A new data processing method for space-borne Fourier Transform Spectrometers
RU2065149C1 (en) Method of registration of changes of order of interference
SU928172A1 (en) Two-beam photometer
SU1396081A1 (en) Amplitude-phase analyzer of harmonics of periodic voltages
JPS633230A (en) Optical digital spectrum analyzer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010403