JPH06269173A - Frequency converter - Google Patents

Frequency converter

Info

Publication number
JPH06269173A
JPH06269173A JP5115708A JP11570893A JPH06269173A JP H06269173 A JPH06269173 A JP H06269173A JP 5115708 A JP5115708 A JP 5115708A JP 11570893 A JP11570893 A JP 11570893A JP H06269173 A JPH06269173 A JP H06269173A
Authority
JP
Japan
Prior art keywords
induction machine
power
power system
induction
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5115708A
Other languages
Japanese (ja)
Other versions
JP3398416B2 (en
Inventor
Hiroshi Uchino
廣 内野
Shinichi Nohara
眞一 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11570893A priority Critical patent/JP3398416B2/en
Publication of JPH06269173A publication Critical patent/JPH06269173A/en
Application granted granted Critical
Publication of JP3398416B2 publication Critical patent/JP3398416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a frequency converter having high conversion efficiency by performing frequency control utilizing a fact that the secondary frequency of an induction machine is the sum of primary frequency and a rotational frequency and controlling the rotational speed of the induction machine through power flow control using another induction machine and a power converter. CONSTITUTION:A power converter 10 detects power being fed to a power system (PP) 1 from an induction machine 3. A rotational speed detector 11 detects rotational speed of the induction machine 6. An adder 14 detects the difference between an output from the power converter 10 and a power command value 13 for providing a power flow control command from the PP1 to a PP2. An adder 17 detects the difference 1'7 between a synchronous speed reference value 16 for providing a rotational speed matching the primary and secondary frequency ratio of the induction machine 3 with the frequency ratio between the PP1 and PP2 and a rotational speed 11' of the induction machine 6 detected by a rotational speed detector 11. An adder 18 detects the difference between the outputs from the amplifier 15 and the adder 17. A power converter 9 controls the rotational speed of the induction machine 3 through the induction machine 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導機と電力変換装置
で構成された周波数変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency converter including an induction machine and a power converter.

【0002】[0002]

【従来の技術】図4は従来の回転型周波数変換装置の一
実施例構成図である。図に於て、1は第1の電力系統、
2は第1の電力系統1と周波数の異なる図2の電力系
統、20は第1の電力系統1に接続された第1の同期機、
21は第1の同期機20の界磁に電流を供給するスリップリ
ング、22は第1の同期機20の界磁電流を制御する励磁装
置、23は第2の電力系統2に接続され、回転子が第1の
同期機20の回転子と機械的に結合された第2の同期機、
24は第2の同期機23の界磁に電流を供給するスリップリ
ング、25は第2の同期機23の界磁電流を制御する励磁装
置、26は第2の同期機23の電機子巻線を機械的に回転さ
せる転動装置である。また第1の同期機20の極数と第2
の同期機23の極数の比は、第1の電力系統1の周波数と
第2の電力系統2の周波数の比に等しいものとする。以
上の構成に於て、転動装置26により第2の同期機23の電
機子巻線を回転させることにより、それぞれの同期機の
電力系統に対する相差角を制御することができる。従っ
て、転動装置26を操作して第2の同期機23を電動機とし
て運転し、第1の同期機20を発電機として運転すれば、
電力は第2の電力系統2から第1の電力系統1へ供給さ
れる。転動装置26を逆方向に回転して、第1 の同期機20
を電動機として運転し、第2の同期機23を発電機として
運転すれば電力は、第1の電力系統1から第2の電力系
統2へ供給される。
2. Description of the Related Art FIG. 4 is a block diagram of an embodiment of a conventional rotary frequency converter. In the figure, 1 is the first power system,
2 is a power system of FIG. 2 having a frequency different from that of the first power system 1, 20 is a first synchronous machine connected to the first power system 1,
Reference numeral 21 is a slip ring that supplies current to the field of the first synchronous machine 20, 22 is an exciter that controls the field current of the first synchronous machine 20, and 23 is connected to the second power system 2 and rotates. A second synchronous machine, the child of which is mechanically coupled to the rotor of the first synchronous machine 20;
24 is a slip ring for supplying a current to the field of the second synchronous machine 23, 25 is an exciter for controlling the field current of the second synchronous machine 23, and 26 is an armature winding of the second synchronous machine 23. Is a rolling device that mechanically rotates. The number of poles of the first synchronous machine 20 and the second
The ratio of the number of poles of the synchronous machine 23 is assumed to be equal to the ratio of the frequency of the first power system 1 and the frequency of the second power system 2. In the above configuration, by rotating the armature winding of the second synchronous machine 23 by the rolling device 26, the phase difference angle of each synchronous machine with respect to the power system can be controlled. Therefore, if the rolling device 26 is operated to operate the second synchronous machine 23 as an electric motor and the first synchronous machine 20 as a generator,
Electric power is supplied from the second power system 2 to the first power system 1. Rotate the rolling device 26 in the opposite direction to move the first synchronous machine 20
Is operated as an electric motor and the second synchronous machine 23 is operated as a generator, electric power is supplied from the first electric power system 1 to the second electric power system 2.

【0003】図5は従来の静止型周波数変換装置の構成
図である。図に於て、1は第1の電力系統、2は第1の
電力系統1と周波数の異なる第2の電力系統、27は第1
の制御整流器、28は第1の電源系統1と第1の制御整流
器27を接続する電源変圧器、29は第2の制御整流器、30
は第2の電源系統2と第2の制御整流器29を接続する電
源変圧器、31は第1の制御整流器27と第2の制御整流器
29の直流電流を平滑する直流リアクトル、32は第1の制
御整流器27が発生する高調波を吸収する高調波フィル
タ、33は第1の制御整流器27が発生する無効電力を吸収
する進相コンデンサ、34は第2の制御整流器29が発生す
る高調波を吸収する高調波フィルタ、35は第2の制御整
流器29が発生する無効電力を吸収する進相コンデンサで
ある。
FIG. 5 is a block diagram of a conventional static frequency converter. In the figure, 1 is a first power system, 2 is a second power system having a frequency different from that of the first power system 1, and 27 is a first power system.
Control rectifier, 28 is a power transformer that connects the first power supply system 1 and the first control rectifier 27, 29 is a second control rectifier, 30
Is a power transformer that connects the second power supply system 2 and the second controlled rectifier 29, and 31 is the first controlled rectifier 27 and the second controlled rectifier
A DC reactor for smoothing the DC current of 29, 32 a harmonic filter for absorbing harmonics generated by the first controlled rectifier 27, 33 a phase advance capacitor for absorbing reactive power generated by the first controlled rectifier 27, Reference numeral 34 is a harmonic filter that absorbs harmonics generated by the second controlled rectifier 29, and 35 is a phase advance capacitor that absorbs reactive power generated by the second controlled rectifier 29.

【0004】以上の構成に於て、第2の制御整流器29の
制御角を90°より進み側(α運転領域)に制御し、第1
の制御整流器27の制御角を90°より遅れ側(β運転領
域)に制御すれば、第2の電源系統2の電力が第2の制
御整流器29により順変換され直流電力に変換される。こ
の直流電力は、第1の制御整流器27により逆変換され第
1の電力系統1へ供給される。従って、第2の電源系統
2から第1の電力系統1へ電力が供給される。逆に、第
1の制御整流器27の制御角を90°より進み側(α運転領
域)に制御し、第2の制御整流器29の制御角を90°より
遅れ側(β運転領域)に制御すれば、第1の電源系統1
の電力が第1の制御整流器27により順変換され直流電力
に変換される。この直流電力は、第2の制御整流器29に
より逆変換され第2の電力系統2へ供給される。従っ
て、第1の電源系統1から第2の電力系統2へ電力が供
給される。
In the above structure, the control angle of the second control rectifier 29 is controlled to the advanced side (α operation range) from 90 °,
If the control angle of the controlled rectifier 27 is controlled to be delayed from 90 ° (β operating region), the electric power of the second power supply system 2 is forward-converted by the second controlled rectifier 29 and converted to DC electric power. This DC power is inversely converted by the first controlled rectifier 27 and supplied to the first power system 1. Therefore, power is supplied from the second power system 2 to the first power system 1. On the contrary, the control angle of the first controlled rectifier 27 is controlled to the leading side (α operating range) from 90 °, and the control angle of the second controlled rectifier 29 is controlled to the delayed side (β operating range) from 90 °. For example, the first power system 1
Is converted into DC power by the first controlled rectifier 27. This DC power is inversely converted by the second controlled rectifier 29 and supplied to the second power system 2. Therefore, power is supplied from the first power system 1 to the second power system 2.

【0005】[0005]

【発明が解決しようとする課題】以上述べた従来の構成
に於て、図4の同期機を用いた構成では、(1)電力系
統の動揺によって同期外れを生ずる恐れがある。(2)
両系統間の周波数比が厳密に両同期機の極数比に限定さ
れ柔軟性がない。(3)両系統間の同期外れを防ぐため
に、同期機の最小容量が限定される。(4)潮流制御を
機械的な転動装置により行う必要があり、操作がかなり
面倒で速い制御が出来ない。(5)2台の同期機を直列
に運転するため損失が多く効率が悪いなどの欠点があ
る。また、図5の制御整流器を用いた構成では、(6)
制御整流器が発生する高調波と無効電力を吸収するため
に、大容量の高調波フィルタと進相コンデンサが必要に
なり、設置面積が大きくなる。(7)系統事故時に進相
コンデンサにより過電圧を発生する恐れが有り、これを
防止するために静止型無効電力補償装置などを設置する
と、コストがかなり高くなるなどの欠点がある。
In the conventional configuration described above, in the configuration using the synchronous machine shown in FIG. 4, (1) there is a possibility that the synchronization may be lost due to the fluctuation of the power system. (2)
The frequency ratio between the two systems is strictly limited to the pole ratio of both synchronous machines and is not flexible. (3) The minimum capacity of the synchronous machine is limited in order to prevent loss of synchronization between the two systems. (4) The tidal current control needs to be performed by a mechanical rolling device, and the operation is considerably troublesome and cannot be performed quickly. (5) Since two synchronous machines are operated in series, there are disadvantages such as large loss and poor efficiency. In the configuration using the controlled rectifier of FIG. 5, (6)
In order to absorb the harmonics and reactive power generated by the controlled rectifier, a large-capacity harmonic filter and a phase-advancing capacitor are required, and the installation area becomes large. (7) There is a risk that the phase-advancing capacitor may generate an overvoltage in the event of a system failure, and if a static var compensator or the like is installed to prevent this, there is a drawback that the cost will be considerably high.

【0006】本発明は、以上述べた従来の周波数変換装
置の欠点を除去するために、回転機と静止型電力変換装
置を組み合わせてそれぞれの利点をいかした、新規な構
成の周波数変換装置を提供することを目的としている。
In order to eliminate the above-mentioned drawbacks of the conventional frequency conversion device, the present invention provides a frequency conversion device having a novel structure in which a rotating machine and a static power conversion device are combined to take advantage of each of them. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、第1の誘導機と、第2の誘導機と、電力変
換装置から構成され、前記第1の誘導機の回転子と前記
第2の誘導機の回転子を機械的に結合し、前記第1の誘
導機の1次巻線と前記第2の誘導機の1次巻線とを第1
の電力系統に接続し、前記第1の誘導機の2次巻線を第
2の電力系統に接続し、前記第2の誘導機の2次誘導機
の2次巻線を前記電力変換装置を介して前記第2の電力
系統に接続したしたことを特徴とするものである
In order to solve the above-mentioned problems, the present invention comprises a first induction machine, a second induction machine, and a power conversion device, and a rotor of the first induction machine. And a rotor of the second induction machine are mechanically coupled to each other, and the primary winding of the first induction machine and the primary winding of the second induction machine are first coupled to each other.
Connected to the electric power system, the secondary winding of the first induction machine is connected to the second electric power system, and the secondary winding of the secondary induction machine of the second induction machine is connected to the power conversion device. It is characterized in that it is connected to the second power system through

【0008】[0008]

【作用】本発明は、誘導機の2次周波数は、1次周波数
と回転による周波数の和になることを利用した周波数変
換を行い、誘導機の回転速度をもう1台の誘導機と電力
変換装置で制御して潮流制御を行うようにしたものであ
る。
The present invention performs frequency conversion by utilizing the fact that the secondary frequency of an induction machine is the sum of the primary frequency and the frequency due to rotation, and the rotation speed of the induction machine is converted to that of another induction machine. The device controls the power flow.

【0009】[0009]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。図1は本発明の一実施例の構成図である。図に於
て、1は周波数がf1 〔Hz 〕の第1の電力系統、2は
第1の電力系統1と周波数の異なるf2 〔Hz 〕の第2
の電力系統、3は第1の巻線形誘導機である。そして4
は第1の巻線形誘導機3の1次巻線であり、第1の電力
系統1へ接続されているものとする。5は第1の巻線形
誘導機3の2次巻線であり、第2の電力系統2へ接続さ
れているものとする。6は第1の巻線形誘導機と機械的
に結合された第2の巻線形誘導機であり、その1次巻線
7は第1の電力系統1へ接続され、その2次巻線8は後
述する電力変換装置9に接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, 1 is a first power system whose frequency is f 1 [Hz], and 2 is a second power system whose frequency is f 2 [Hz] different from that of the first power system 1.
The power system 3 is a first winding type induction machine. And 4
Is a primary winding of the first winding type induction machine 3 and is assumed to be connected to the first power system 1. Reference numeral 5 is a secondary winding of the first winding type induction machine 3, and is assumed to be connected to the second power system 2. 6 is a second winding-type induction machine mechanically coupled to the first winding-type induction machine, the primary winding 7 of which is connected to the first power system 1 and the secondary winding 8 of which is It is connected to a power conversion device 9 described later.

【0010】なお以下の説明では第1、第2の巻線形誘
導機を、単に第1、第2の誘導機と呼称する。9は2次
巻線8の電流を制御する静止形電力変換装置(以下単に
電力変換装置という)、10は第1の誘導機3から第1の
電力系統1へ供給される電力を検出する電力検出器、11
は第1の誘導機6の回転速度検出器(TG)、12は本発
明の周波数変換装置の潮流を制御する潮流制御装置(以
下単に制御装置という)で、以下の13〜19で構成され
る。13は第1の電力系統1から第2の電力系統2への潮
流制御の指令値を与える電力指令値である。14はこの電
力指令値13と前記電力検出器10との偏差を検出する加算
器、15は加算器14の出力に得られる偏差を増幅する増幅
器(AMP)である。一方、16は第1の誘導機3の1次
と2次の周波数比が第1の電力系統1と第2の電力系統
2の周波数比に一致するような回転速度を与える同期速
度基準値である。この速度基準値16は加算器17にて前記
回転速度検出器11で検出される第1の誘導機6の回転速
度11′との偏差17′を検出される。18は増幅器(AM
P)15の出力と加算器17の出力の偏差を検出する加算
器、19は制御信号の振幅制限器である。
In the following description, the first and second wire wound induction machines are simply referred to as the first and second induction machines. Reference numeral 9 denotes a static power converter (hereinafter simply referred to as power converter) that controls the current of the secondary winding 8, and 10 is power that detects the power supplied from the first induction machine 3 to the first power system 1. Detector, 11
Is a rotation speed detector (TG) of the first induction machine 6, and 12 is a power flow control device (hereinafter simply referred to as a control device) for controlling the power flow of the frequency conversion device of the present invention. . Reference numeral 13 is a power command value that gives a command value for power flow control from the first power system 1 to the second power system 2. Reference numeral 14 is an adder that detects a deviation between the power command value 13 and the power detector 10, and reference numeral 15 is an amplifier (AMP) that amplifies the deviation obtained at the output of the adder 14. On the other hand, 16 is a synchronous speed reference value that gives a rotation speed such that the primary and secondary frequency ratio of the first induction machine 3 matches the frequency ratio of the first power system 1 and the second power system 2. is there. This speed reference value 16 is detected by an adder 17 as a deviation 17 'from the rotation speed 11' of the first induction machine 6 detected by the rotation speed detector 11. 18 is an amplifier (AM
P) An adder for detecting a deviation between the output of 15 and the output of the adder 17, and 19 is an amplitude limiter for the control signal.

【0011】図2は、図1で述べた本発明による一実施
例の作用を表す波形図である。図2(a)に於て、(V
1U)は第1の電力系統1のU相電圧で、周波数は50Hz
としている。(I3-1U)は第1の誘導機3の1次U相電
流、(13)は電力指令値の波形、(P3-11)は第1の誘
導機3の1次から第1の電力系統1へ供給される電力で
ある。図2(b)に於て、(V2U)は第2の電力系統2
のU相電圧で、周波数は60Hz としている。(I3-2U
は第1の誘導機3の2次U相電流、(P3-21)は第1の
誘導機3の2次から第2の電力系統2へ供給される電力
である。図2(c)に於て、(I6-1U)は第2の誘導機
6の1次U相電流、(P6-11)は第2の誘導機6の1次
から第1の電力系統1へ供給される電力である。図2
(d)に於て、(19′)は振幅制限器19から電力変換装
置9へ与えられる制御信号、(17′)は加算器17の出力
として得られる信号で、第1の誘導機3の回転速度と同
期速度基準値16との偏差を表している。(δ)は第1の
誘導機3の2次側内部誘起電圧の第2の電力系統2の電
圧に対する相差角であり、この相差角(δ)を初期状態
は零としている。このときの図2(a)、(b)でそれ
ぞれを示す第1の誘導機3の1次U相電流(I3-1U)と
2次U相電流(I3-2U)は、それぞれ第1の電力系統と
第2の電力系統2から第1の誘導機3に供給される励磁
電流である。第2の誘導機6の励磁電流は電力変換装置
9から供給され、1次U相電流(I6-1U)は零となって
いる。時刻t1 に於て電力指令値13をステップ的に増加
させると、振幅制御器19の出力に(19′)で示すような
制御信号を現れ、この信号は電力変換装置9に与えられ
る。電力変換装置9は第2の誘導機6の1次電力(P
6-11)を信号(19′)に従って制御する。電力の方向は
誘導機から電力系統へ供給する方向を正としているか
ら、(P6-11)で示す正の電力は、第2の誘導機6から
第1の電力系統1へ電力が供給されていることを表して
いる。即ち、第2の誘導機6は発電機として作用し、第
1の誘導機3の回転速度を減少させる。従って、同期速
度基準値16との偏差信号(17′)は図2(d)で図示の
ように負の方向に増加する。また、この偏差の積分値に
比例して、第1の誘導機3の2次側内部誘起電圧の第2
の電力系統2の電圧に対する相差角が(δ)で示すよう
に負の方向に増加し、従って、第1の誘導機3の1次側
内部誘起電圧の第1の電力系統1の電圧に対する相差角
は正の方向に増加するから第1の誘導機3の1次から第
1の電力系統1へ供給される電力(P3-11)は図示のよ
うに増加し、第1の誘導機3の2次から第2の電力系統
2へ供給される電力(P3-21)は、図示のように負の方
向に増加する。加算器17の出力(17′)が負の方向に増
加し、増幅器15の出力より大きくなる時刻t2 に於て、
振幅制限器19の出力(19′)の極性が反転し、第2の誘
導機6の1次電力(P6-11)の極性も反転する。このと
き第2の誘導機6は電動機として作用し、第1の誘導機
3の回転速度を増加させる。従って、同期速度基準値16
との偏差信号(17′)は図示のように減少する。このよ
うにして、第1の誘導機3の1次電力(P3-11)は電力
指令値(13)に一致するように制御され、これに比例し
て第1の誘導機3の2次電力(P3-21)は負の方向に増
加する。最終的には、第1の誘導機3の1次電力(P
3-11)と第2の誘導機6の1次電力(P6-11)の和と、
第1の誘導機3の2次電力(P3-21)の大きさが等しく
なる。このとき、第2の電力系統2から第1の電力系統
1へ電力が供給される。即ち、60Hz の電力が50Hz の
電力に変換され周波数本換装置として作用する。
FIG. 2 is a waveform diagram showing the operation of the embodiment of the present invention described with reference to FIG. In FIG. 2 (a), (V
1U ) is the U-phase voltage of the first power system 1, and the frequency is 50Hz.
I am trying. (I 3-1U ) is the primary U-phase current of the first induction machine 3, (13) is the waveform of the power command value, and (P 3-11 ) is the first to the first of the induction machine 3. This is the power supplied to the power grid 1. In FIG. 2B, (V 2U ) is the second power system 2
And the frequency is 60 Hz. (I 3-2U )
Is the secondary U-phase current of the first induction machine 3, and (P 3-21 ) is the power supplied from the secondary of the first induction machine 3 to the second power system 2. In FIG. 2C, (I 6-1U ) is the primary U-phase current of the second induction machine 6, and (P 6-11 ) is the primary to first power of the second induction machine 6. This is the power supplied to the grid 1. Figure 2
In (d), (19 ') is a control signal given from the amplitude limiter 19 to the power converter 9, and (17') is a signal obtained as the output of the adder 17, which is the signal of the first induction machine 3. It shows the deviation between the rotation speed and the synchronous speed reference value 16. (Δ) is the phase difference angle of the secondary side internal induced voltage of the first induction machine 3 with respect to the voltage of the second power system 2, and this phase difference angle (δ) is set to zero in the initial state. At this time, the primary U-phase current (I 3-1U ) and the secondary U-phase current (I 3-2U ) of the first induction machine 3 shown in FIGS . The exciting current is supplied from the first power system and the second power system 2 to the first induction machine 3. The exciting current of the second induction machine 6 is supplied from the power converter 9 and the primary U-phase current (I 6-1U ) is zero. When the power command value 13 is increased stepwise at time t 1 , a control signal as shown by (19 ′) appears at the output of the amplitude controller 19, and this signal is given to the power converter 9. The power conversion device 9 uses the primary power (P
6-11 ) according to the signal (19 '). Since the direction of power supply is positive from the induction machine to the power system, the positive power indicated by (P 6-11 ) is supplied from the second induction machine 6 to the first power system 1. It means that That is, the second induction machine 6 acts as a generator and reduces the rotation speed of the first induction machine 3. Therefore, the deviation signal (17 ') from the synchronous speed reference value 16 increases in the negative direction as shown in FIG. 2 (d). Further, in proportion to the integrated value of this deviation, the second-side internal induced voltage of the first induction machine 3 becomes the second
, The phase difference angle with respect to the voltage of the power system 2 increases in the negative direction as indicated by (δ). Therefore, the phase difference of the primary internal induced voltage of the first induction machine 3 with respect to the voltage of the first power system 1 Since the angle increases in the positive direction, the power (P 3-11 ) supplied from the primary of the first induction machine 3 to the first electric power system 1 increases as shown in the figure, and the first induction machine 3 The electric power (P 3-21 ) supplied from the secondary side to the second electric power system 2 increases in the negative direction as shown. At time t 2 when the output (17 ′) of the adder 17 increases in the negative direction and becomes larger than the output of the amplifier 15,
The polarity of the output (19 ') of the amplitude limiter 19 is also inverted, and the polarity of the primary power ( P6-11 ) of the second induction machine 6 is also inverted. At this time, the second induction machine 6 acts as an electric motor to increase the rotation speed of the first induction machine 3. Therefore, the synchronous speed reference value 16
The deviation signal (17 ') between and decreases as shown. In this way, the primary power (P 3-11 ) of the first induction machine 3 is controlled so as to match the power command value (13), and in proportion to this, the secondary power of the first induction machine 3 is controlled. The power (P 3-21 ) increases in the negative direction. Finally, the primary electric power (P
3-11 ) and the sum of the primary electric power (P 6-11 ) of the second induction machine 6,
The secondary electric powers (P 3-21 ) of the first induction machine 3 are equal in magnitude. At this time, electric power is supplied from the second electric power system 2 to the first electric power system 1. That is, the electric power of 60 Hz is converted into the electric power of 50 Hz to act as a frequency conversion device.

【0012】図3は、図1で述べた本発明一実施例の作
用を表す他の波形図である。図に於て、(V1U)〜
(δ)は図2の同一記号と同一である。初期状態は図2
の最終バラスン状態を示しており、相差角(δ)が負
で、第2の電力系統2から第1の電力系統1へ電力が供
給され、60Hz の電力が50Hz の電力に変換されている
状態である。時刻t3 に於て、図3(a)のように電力
指令値13をステップ的に負に変化させると、図3(d)
のように振幅制限器19の出力は(19′)で示すように負
の方向に増加し、この信号は電力変換装置9に与えられ
る。電力変換装置9は同図(c)のように第2の誘導機
6の1次電力(P6-11)を信号(19′)に従って負の方
向に増加させる。電力の方向は誘導機から電力系統へ供
給する方向を正としているから、(P6-11)で示す電力
の負の方向の増加は、第2の誘導機6を電動機として作
動させることになり、第1の誘導機3の回転速度を増加
させる。従って、回転速度信号11′と同期速度基準値16
との偏差信号(17′)は図3(d)に図示のように増加
する。また、この偏差の積分値に比例して、第1の誘導
機3の内部誘起電圧の電力系統の電圧に対する相差角
(δ)が同図(d)で示すように増加し、第1の誘導機
3の1次から第1の電力系統1へ供給される電力(P
3-11)は図3(a)のように、減少し第1の誘導機3の
2次から第2の電力系統2へ供給される電力(P3-21
は、同図(b)に図示のように減少する。加算器17の出
力(17′)が増加し、増幅器15の出力より大きくなる時
刻t4 に於て、振幅制限器19の出力(19′)の極性が反
転し、第2の誘導機6の1次電力(P6-11)の極性も反
転する。このとき第2の誘導機6は発電機として作用
し、第1の誘導機3の回転速度を減少させる。従って、
同期速度基準値16との偏差信号(17′)は図示のように
減少する。時刻t5 に於て、相差角(δ)の極性が反転
すると、誘導機3の1次電力(P3-11)と2次電力(P
3-21)の極性も反転する。このようにして、第1の誘導
機3の1次電力(P3-11)は電力指令値(13)に一致す
るように負の方向に制御され、これに比例して第1の誘
導機3の2次電力(P3-21)は正の方向に増加する。最
終的には、第1の誘導機3の1次電力(P3-11)と第2
の誘導機6の1次電力(P6-11)の和と、第1の誘導機
3の2次電力(P3-21)の大きさが等しくなる。このと
き、第1の電力系統1から第2の電力系統2へ電力が供
給される。即ち、50Hz の電力が60Hz の電力に変換さ
れ周波数変換装置として作用する。
FIG. 3 is another waveform diagram showing the operation of the embodiment of the present invention described in FIG. In the figure, (V 1U ) ~
(Δ) is the same as the same symbol in FIG. Figure 2 shows the initial state
Shows the final ballast state, the phase difference angle (δ) is negative, the power is supplied from the second power system 2 to the first power system 1, and the power of 60Hz is converted to the power of 50Hz. Is. At time t 3 , when the power command value 13 is changed stepwise to negative as shown in FIG. 3A, FIG.
As shown in (19 '), the output of the amplitude limiter 19 increases in the negative direction, and this signal is given to the power converter 9. The power converter 9 increases the primary power (P 6-11 ) of the second induction machine 6 in the negative direction according to the signal (19 ′) as shown in FIG. Since the direction of electric power is positive in the direction of supply from the induction machine to the electric power system, an increase in the negative direction of the electric power shown in (P 6-11 ) causes the second induction machine 6 to operate as an electric motor. , The rotation speed of the first induction machine 3 is increased. Therefore, the rotational speed signal 11 'and the synchronous speed reference value 16
The deviation signal (17 ') between and increases as shown in FIG. 3 (d). Further, in proportion to the integrated value of this deviation, the phase difference angle (δ) of the internal induced voltage of the first induction machine 3 with respect to the voltage of the power system increases as shown in FIG. Power supplied from the primary of the machine 3 to the first power system 1 (P
3-11 ), as shown in FIG. 3 (a), decreases and the power supplied from the secondary of the first induction machine 3 to the second power system 2 (P 3-21 ).
Decreases as shown in FIG. At time t 4 when the output (17 ′) of the adder 17 increases and becomes larger than the output of the amplifier 15, the polarity of the output (19 ′) of the amplitude limiter 19 is inverted and the output of the second induction machine 6 The polarity of the primary power (P 6-11 ) is also inverted. At this time, the second induction machine 6 acts as a generator and reduces the rotation speed of the first induction machine 3. Therefore,
The deviation signal (17 ') from the sync speed reference value 16 decreases as shown. At time t 5, when the polarity of the phase difference angle (δ) is reversed, the primary power (P 3-11 ) and the secondary power (P 3-11 ) of the induction machine 3 are reversed.
The polarity of 3-21 ) is also reversed. In this way, the primary power (P 3-11 ) of the first induction machine 3 is controlled in the negative direction so as to match the power command value (13), and in proportion to this, the first induction machine 3 is controlled. The secondary power of 3 (P 3-21 ) increases in the positive direction. Finally, the primary power (P 3-11 ) of the first induction machine 3 and the second
The sum of the primary power (P 6-11 ) of the induction machine 6 and the magnitude of the secondary power (P 3-21 ) of the first induction machine 3 become equal. At this time, electric power is supplied from the first electric power system 1 to the second electric power system 2. That is, the electric power of 50 Hz is converted into the electric power of 60 Hz to act as a frequency conversion device.

【0013】次に本発明の他の実施例について図6およ
び図7(A),(B)を用いて説明する。図6は本発明
の他の実施例の構成図である。図1の実施例と異なる部
分は、第1の誘導機3に対して同一軸に直結された第3
の誘導機43の縦続接続で構成した点にある。図において
図1の同一記号のものは全く同じ、および同一作用をつ
かさどる構成要素であるので、詳細な説明は省略し、図
1と異なる部分について以下に説明する。
Next, another embodiment of the present invention will be described with reference to FIGS. 6 and 7A and 7B. FIG. 6 is a block diagram of another embodiment of the present invention. The difference from the embodiment of FIG. 1 is that the third induction unit 3 is directly connected to the same shaft by the same shaft.
The induction machine 43 is connected in cascade. In the drawing, the same symbols as those in FIG. 1 are components that are completely the same and that control the same operation, so detailed description thereof will be omitted, and portions different from FIG. 1 will be described below.

【0014】43は第3の誘導機、44は第3の誘導機43の
一次巻線(固定子巻線)で、第2の電力系統2へ接続さ
れている。45は第3の誘導機43の二次巻線(回転子巻
線)である。46は第1の誘導機3と第3の誘導機43の回
転子を直結するための軸であり、第2の誘導機6は図1
の場合と同様に第1の誘導機3と直結されているので、
この3台の誘導機の回転子は同一軸で直結され、同じ方
向に回転するように構成されている。また47は第1およ
び第3の誘導機の二次巻線5および45を接続する導体
で、直結軸46の上部または内部に配置され、互いに逆相
順となるように接続されている。なお潮流制御装置12は
図1で説明しているように記号13から19までの要素で構
成されるが、図6においても全く同一であり、また作用
も同じであるので、ここでは詳細な記述を省略する。
Reference numeral 43 is a third induction machine, and 44 is a primary winding (stator winding) of the third induction machine 43, which is connected to the second power system 2. Reference numeral 45 is a secondary winding (rotor winding) of the third induction machine 43. Reference numeral 46 is a shaft for directly connecting the rotors of the first induction machine 3 and the third induction machine 43, and the second induction machine 6 is shown in FIG.
Since it is directly connected to the first induction machine 3 as in the case of
The rotors of these three induction machines are directly connected by the same shaft and are configured to rotate in the same direction. Reference numeral 47 is a conductor that connects the secondary windings 5 and 45 of the first and third induction machines, and is arranged above or inside the direct coupling shaft 46 and connected so as to be in a reverse phase order. The power flow control device 12 is composed of elements 13 to 19 as described with reference to FIG. 1. However, the power flow control device 12 is exactly the same in FIG. 6 and has the same operation. Is omitted.

【0015】次に図6の実施例の作用について説明す
る。図1の場合、第1の誘導機3の一次巻線4が固定子
側であるとすると、二次巻線5は回転子側となり、第2
の電力系統2へはスリップリングとブラシを介して接続
されることになる。これに対し、図6の実施例ではスリ
ップリングとブラシの代りにもう一つの誘導機第3の誘
導機43を用い、前述した構成とすることで、ブラシ無し
周波数変換装置を提供するものである。よって周波数の
異なる第1の電力系統1と第2の電力系統2との間の関
係が図1と図6とで全く同じように作用することを以下
に説明する。
Next, the operation of the embodiment shown in FIG. 6 will be described. In the case of FIG. 1, assuming that the primary winding 4 of the first induction machine 3 is on the stator side, the secondary winding 5 is on the rotor side, and
It will be connected to the electric power system 2 via a slip ring and a brush. On the other hand, in the embodiment of FIG. 6, another induction machine third induction machine 43 is used instead of the slip ring and the brush, and the configuration described above is provided to provide a brushless frequency conversion device. . Therefore, it will be described below that the relationship between the first power system 1 and the second power system 2 having different frequencies works in exactly the same manner in FIGS. 1 and 6.

【0016】図7(A)は図1における第1の誘導機3
の一次および二次巻線の周波数の関係を説明する図であ
る。一次巻線4すなわち第1の電力系統1の周波数をf
1 とし、二次巻線5すなわち第2の電力系統2の周波数
をf2 とする。また第1の誘導機3の磁極数をP、回転
速度をnとすると、回転子の回転周波数fr
FIG. 7A shows the first induction machine 3 in FIG.
It is a figure explaining the relationship of the frequency of the primary and secondary winding. The frequency of the primary winding 4 or the first power system 1 is f
1 and the frequency of the secondary winding 5, that is, the second power system 2 is f 2 . The number of magnetic poles of the first induction machine 3 P, when the rotational speed is n, the rotation frequency f r of the rotor

【0017】[0017]

【数1】 となる。よって、すべりをSとすると[Equation 1] Becomes Therefore, if the slip is S

【0018】[0018]

【数2】 また二次巻線の周波数f2[Equation 2] The frequency f 2 of the secondary winding is

【0019】[0019]

【数3】f2 =Sf1 ……(3) (2),(3)式より[Formula 3] f 2 = Sf 1 (3) From the formulas (2) and (3),

【0020】[0020]

【数4】f2 =f1 −fr ……(4) となる。次に図7(B)は図6において、縦続接続され
た第1の誘導機3と第3の誘導機43のそれぞれ一次およ
び二次巻線の周波数の関係を説明する図である。
[Number 4] becomes the f 2 = f 1 -f r ...... (4). Next, FIG. 7 (B) is a diagram for explaining the relationship between the frequencies of the primary and secondary windings of the first induction machine 3 and the third induction machine 43, which are connected in cascade in FIG.

【0021】図7(A)と同様に第1の電力系統1の周
波数をf1 、第2の電力系統2の周波数をf2 とする
と、誘導機の一次巻線4には周波数f1 の電源が印加さ
れ、また第3の誘導機の一次巻線44には周波数f2 の電
源が印加される。次に第1の誘導機3の二次巻線5の周
波数をfs とすると、第3の誘導機二次巻線45の周波数
もfs となり、夫々の誘導機のすべり周波数となる。ま
た第1の誘導機3の磁極数をP1 、第3の誘導機43の磁
極数をP2 、回転子の回転速度をn′とする。先づ第1
の誘導機3における回転子の回転周波数fr1
If the frequency of the first electric power system 1 is f 1 and the frequency of the second electric power system 2 is f 2 as in FIG. 7A, the frequency f 1 is applied to the primary winding 4 of the induction machine. Power is applied, and power of frequency f 2 is applied to the primary winding 44 of the third induction machine. Next, assuming that the frequency of the secondary winding 5 of the first induction machine 3 is f s , the frequency of the third induction machine secondary winding 45 also becomes f s , which is the slip frequency of each induction machine. The number of magnetic poles of the first induction machine 3 is P 1 , the number of magnetic poles of the third induction machine 43 is P 2 , and the rotation speed of the rotor is n ′. First first
The rotation frequency f r1 of the rotor of the induction machine 3 of

【0022】[0022]

【数5】 となるから、すべりをS1 とすると[Equation 5] Therefore, if the slip is S 1 ,

【0023】[0023]

【数6】 また二次巻線の周波数fs[Equation 6] The frequency f s of the secondary winding is

【0024】[0024]

【数7】fs =S11 ……(7) となり、(6),(7)式より[Equation 7] f s = S 1 f 1 (7), and from equations (6) and (7)

【0025】[0025]

【数8】fs =f1 −fr1 ……(8) となる。一方第3の誘導機43における回転子の回転周波
数fr2
## EQU8 ## f s = f 1 −f r1 (8) On the other hand, the rotation frequency f r2 of the rotor in the third induction machine 43 is

【0026】[0026]

【数9】 よって、二次巻線を基準としたすべりをS2 とすると[Equation 9] Therefore, if the slip based on the secondary winding is S 2 ,

【0027】[0027]

【数10】 と表わされ、一次巻線の周波数f2[Equation 10] And the frequency f 2 of the primary winding is

【0028】[0028]

【数11】 f2 =S2s ……(11) (10),(11)式より[Equation 11] f 2 = S 2 f s (11) From equations (10) and (11),

【0029】[0029]

【数12】 f2 =fs −fr2 ……(12) よって(8),(12)式から[Number 12] f 2 = f s -f r2 ...... (12) Therefore, (8), from the equation (12)

【0030】[0030]

【数13】 f2 =f1 −(fr1+fr2) ……(13) (4)式から、周波数の異なる2つの電力系統を接続す
るためには、図1の構成における第1の誘導機は
F 2 = f 1 − (f r1 + f r2 ) ... (13) From equation (4), in order to connect two power systems with different frequencies, the first induction in the configuration of FIG. Machine

【0031】[0031]

【数14】 すなわち、両系統の周波数差に等しい回転子の回転周波
数となるよう磁極数と回転速度を選べばよいことが判
る。一方、図6の2台の誘導機3,43縦続接続では(13)
式から判るように
[Equation 14] That is, it is understood that the number of magnetic poles and the rotation speed should be selected so that the rotation frequency of the rotor becomes equal to the frequency difference between the two systems. On the other hand, in the case of the two induction machines 3 and 43 in cascade connection in Fig. 6, (13)
As you can see from the formula

【0032】[0032]

【数15】 すなわち、2台の誘導機3,43の磁極数の和に等しい磁
極数を持つ単一の誘導機の回転子の回転周波数が両系統
の周波数差に等しくなるように設計すればよいことにな
る。また換言すれば、(14),(15)式から
[Equation 15] That is, it suffices to design so that the rotation frequency of the rotor of a single induction machine having the same number of magnetic poles as the total number of magnetic poles of the two induction machines 3 and 43 becomes equal to the frequency difference between the two systems. . In other words, from equations (14) and (15),

【0033】[0033]

【数16】fr =fr1+fr2 よって Pn=(P1 +P2 )n′ となるようにすれば、図6における第1の誘導機3と、
第3の誘導機43の縦続接続された回転機は、図1の第1
の誘導機3の場合と全く同じ作用をすることが判る。従
って、図2および図3で説明しているように第2の誘導
機6を用いて、縦続接続された第1,第3の誘導機3,
43の回転速度を制御すれば、第1の電力系統1と第2の
電力系統2の間の潮流を任意に制御できることは明らか
である。
[Equation 16] f r = f r1 + f r2 Therefore, if Pn = (P 1 + P 2 ) n ′ is satisfied, the first induction machine 3 in FIG.
The rotary machine connected in cascade of the third induction machine 43 is the first rotary machine of FIG.
It can be seen that the same action as in the case of the induction machine 3 is performed. Therefore, as described in FIGS. 2 and 3, by using the second induction machine 6, the first and third induction machines 3, 3 connected in cascade.
It is obvious that the power flow between the first power system 1 and the second power system 2 can be arbitrarily controlled by controlling the rotation speed of 43.

【0034】以上述べたように、図6に示した実施例で
は、図1の実施例と同様に 1)同期外れを起さない。 2)機械的な転動装置が不要となる。
As described above, in the embodiment shown in FIG. 6, as in the embodiment shown in FIG. 2) No mechanical rolling device is required.

【0035】3)速応性の高い潮流制御が可能である。 4)系統事故時に過電圧を発生しない。 などの効果を有する他に、本実施例特有の効果、即ち回
転機の保守の上で最も負担となるブラシがないために、
ブラシの点検、交換などの保守作業が不要となる利点を
有することが判る。
3) Power flow control with high responsiveness is possible. 4) Do not generate overvoltage in the event of a system fault. In addition to the effects such as the above, in addition to the effects peculiar to this embodiment, that is, since there is no brush that is the most burdensome in maintenance of the rotating machine,
It can be seen that there is an advantage that maintenance work such as inspection and replacement of the brush is unnecessary.

【0036】[0036]

【発明の効果】以上述べたように本発明は、第1の誘導
機3の1次周波数と回転による周波数の和として、2次
巻線に周波数変換された2次周波数を得るために、電力
変換装置9により2次励磁制御された第2の誘導機6を
用いて、第1の誘導機3の回転速度を制御するように構
成したことが特徴であり、電力の指令値13に従って、第
1の電力系統1と第2の電力系統2の間の潮流を任意に
制御することが出来る。本発明によれば、電力系統に動
揺を生じても、この動揺は第1の誘導機3の1次電力の
変化として、電力検出器10によって検出され、この変化
を抑制するように第1の誘導機3の回転速度が制御され
るから同期外れを生ずる恐れがない。また、両系統間の
周波数比が多少変化しても、第1の誘導機3の回転速度
を変えることにより吸収できるから柔軟性があり、小容
量の周波数変換装置で両系統を連繋しても同期外れを生
ずる恐れがない。また、潮流制御のための機械的な転動
装置が不要であり、指令値に従って電子的に速い潮流制
御を行うことができる。また、従来技術では2台の同期
機を直列に運転する場合、全電力が一旦機械エネルギに
変換され、再び電気エネルギに変換されるのに対し、本
発明によれば、周波数差の部分のみが機械エネルギに変
換される。即ち、図1に於て、第1の電力系統1の50H
z の電力を、60Hz の電力に変換する場合、第1の誘導
機3の1次巻線4の電力を100 とするとき、第2の誘導
機6の1次巻線7の電力は20で、この電力は機械エネル
ギに変換され、回転による第1の誘導機3の2次誘起電
圧の増加分として2次巻線5から取り出される。従っ
て、2次巻線5からは、1次巻線4からの誘導分100 と
あわせて120 の電力が取り出される。このように、一旦
機械エネルギに変換される分は全体の17%であり、トル
クの小さい小形の誘導機を使用できるとともに、エネル
ギ変換に伴う損失が少なくなり効率が高くなる。また、
制御整流器を用いた構成で必要な、大容量の高調波フィ
ルタと進相コンデンサが不要であるから、設置面積を小
さく出来る。また、進相コンデンサが不要であるから系
統事故時に過電圧を発生する恐れがない。
As described above, according to the present invention, in order to obtain the secondary frequency frequency-converted to the secondary winding as the sum of the primary frequency of the first induction machine 3 and the frequency due to the rotation, the power consumption is reduced. It is characterized in that the rotation speed of the first induction machine 3 is controlled by using the second induction machine 6 which is subjected to the secondary excitation control by the conversion device 9, and the first induction machine 3 is controlled in accordance with the command value 13 of the electric power. It is possible to arbitrarily control the power flow between the first power system 1 and the second power system 2. According to the present invention, even if a fluctuation occurs in the power system, this fluctuation is detected by the power detector 10 as a change in the primary power of the first induction machine 3, and the first fluctuation is suppressed so as to suppress the change. Since the rotational speed of the induction machine 3 is controlled, there is no risk of loss of synchronization. Further, even if the frequency ratio between the two systems changes to some extent, it can be absorbed by changing the rotation speed of the first induction machine 3, so there is flexibility, and even if the two systems are connected by a small-capacity frequency conversion device. There is no risk of out of sync. Further, a mechanical rolling device for power flow control is not required, and fast power flow control can be performed electronically according to the command value. Further, in the prior art, when two synchronous machines are operated in series, the total electric power is once converted into mechanical energy and then converted into electric energy again, whereas according to the present invention, only the frequency difference part is converted. Converted to mechanical energy. That is, in FIG. 1, 50H of the first power system 1
When converting the electric power of z into the electric power of 60 Hz, the electric power of the primary winding 7 of the second induction machine 6 is 20 when the electric power of the primary winding 4 of the first induction machine 3 is 100. , This electric power is converted into mechanical energy and taken out from the secondary winding 5 as an increment of the secondary induced voltage of the first induction machine 3 due to rotation. Therefore, 120 electric power is extracted from the secondary winding 5 together with the inductive component 100 from the primary winding 4. As described above, the amount of energy that is once converted into mechanical energy is 17% of the whole, and a small induction machine with a small torque can be used, and the loss due to energy conversion is reduced and efficiency is increased. Also,
Since a large-capacity harmonic filter and a phase-advancing capacitor, which are required in the configuration using the controlled rectifier, are not required, the installation area can be reduced. Further, since a phase-advancing capacitor is not required, there is no risk of generating overvoltage in the event of a system fault.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の作用を表す波形図。FIG. 2 is a waveform chart showing the operation of the present invention.

【図3】本発明の作用を表す他の波形図。FIG. 3 is another waveform diagram showing the operation of the present invention.

【図4】従来の一実施例の構成図。FIG. 4 is a configuration diagram of a conventional example.

【図5】従来の他の実施例の構成図。FIG. 5 is a configuration diagram of another conventional example.

【図6】本発明の他の実施例の構成図。FIG. 6 is a configuration diagram of another embodiment of the present invention.

【図7】図6で示す実施例の作用を説明するための図。FIG. 7 is a diagram for explaining the operation of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1…第1の電力系統、2…第2の電力系統、3…第1の
誘導機、4…1次巻線、5…2次巻線、6…第2の誘導
機、7…1次巻線、8…2次巻線、9…電力変換装置、
10…電力検出器、11…回転速度検出器、12…制御装置、
13…電力指令値、14…加算器、15…増幅器、16…同期速
度基準値、17…加算器、18…加算器、19…振幅制限器、
43…第3の誘導機。
1 ... 1st electric power system, 2 ... 2nd electric power system, 3 ... 1st induction machine, 4 ... primary winding, 5 ... secondary winding, 6 ... 2nd induction machine, 7 ... primary Winding, 8 ... Secondary winding, 9 ... Power converter,
10 ... Power detector, 11 ... Rotation speed detector, 12 ... Control device,
13 ... Power command value, 14 ... Adder, 15 ... Amplifier, 16 ... Synchronous speed reference value, 17 ... Adder, 18 ... Adder, 19 ... Amplitude limiter,
43 ... Third induction machine.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の誘導機と、第2の誘導機と、電力
変換装置と、前記第1の誘導機の電力検出器と、前記第
1の誘導機の回転速度検出器と、潮流制御装置から構成
され、前記第1の誘導機の回転子と前記第2の誘導機の
回転子を機械的に結合し、前記第1の誘導機の1次巻線
と前記第2の誘導機の1次巻線を第1の電力系統に接続
し、前記第1の誘導機の2次巻線を第2の電力系統に接
続し、前記第2の誘導機の2次巻線を前記電力変換装置
を介して前記第2の電力系統に接続し、前記電力変換装
置により電力の指令値と前記第1の誘導機の電力との電
力偏差信号に応じて、前記第2の誘導機の2次電流を制
御して、前記第1の誘導機の回転速度を制御することを
特徴とする周波数変換装置。
1. A first induction machine, a second induction machine, a power converter, a power detector of the first induction machine, a rotation speed detector of the first induction machine, and a power flow. And a rotor for the first induction machine and a rotor for the second induction machine mechanically coupled to each other, and a primary winding of the first induction machine and the second induction machine. A primary winding of the first induction machine is connected to a first power system, a secondary winding of the first induction machine is connected to a second power system, and a secondary winding of the second induction machine is connected to the power system. It connects to the 2nd electric power system via a converter, and the 2nd of the 2nd induction machine according to the electric power deviation signal of the command value of electric power and the electric power of the 1st induction machine by the electric power converter. A frequency conversion device, characterized in that a secondary current is controlled to control a rotation speed of the first induction machine.
【請求項2】 第1の誘導機もしくは第2の誘導機の回
転速度を検出する回転速度検出器を設け、この回転速度
検出器の出力信号と同期速度基準値との速度偏差信号を
求める加算器を設け、電力偏差信号にこの速度偏差信号
を加算して偏差を求め、この偏差信号により電力変換装
置に制御信号を出力するようにした潮流制御装置を備え
た請求項1に記載の周波数変換装置。
2. A rotation speed detector for detecting the rotation speed of the first induction machine or the second induction machine is provided, and addition for obtaining a speed deviation signal between the output signal of this rotation speed detector and the synchronous speed reference value is added. The frequency converter according to claim 1, further comprising: a power flow controller that is provided with a power deviation signal, adds the speed deviation signal to the power deviation signal to obtain the deviation, and outputs the control signal to the power conversion apparatus based on the deviation signal. apparatus.
【請求項3】 第1の誘導機と第3の誘導機の回転子を
機械的に結合すると共に、この2つの誘導機の回転子巻
線(二次巻線)同志を相互に導体にて縦続接続し、これ
にさらに第2の誘導機の回転子を前記第1,第3の誘導
機と同一軸に直結するようにし、第1の誘導機の固定子
巻線(一次巻線)を第1の電力系統に接続し、第3の誘
導機の固定子巻線(一次巻線)を第2の電力系統に接続
し、第2の誘導機の一次巻線を前記2つの電力系統のい
づれか一方に接続し、第2の誘導機の二次巻線は電力変
換装置を介して他方の電力系統に接続し、前記電力変換
装置を制御する潮流制御装置を設け、この潮流制御装置
には前記誘導機によって駆動される回転速度検出器の出
力信号と、前記第1の誘導機または第3の誘導機の固定
子巻線のいづれかの電力を検出する電力検出器の出力信
号を入力し、前記潮流制御装置の電力指令値と前記電力
検出器出力との偏差に応じて演算される潮流制御装置の
出力により前記電力変換装置を制御し前記縦続接続の誘
導機の回転速度を制御するようにしたことを特徴とする
周波数変換装置。
3. The rotors of the first induction machine and the third induction machine are mechanically coupled, and the rotor windings (secondary windings) of the two induction machines are mutually conductors. In a cascade connection, the rotor of the second induction machine is directly connected to the same shaft as the first and third induction machines, and the stator winding (primary winding) of the first induction machine is connected to the rotor. Connected to the first power system, the stator winding (primary winding) of the third induction machine to the second power system, and the primary winding of the second induction machine to the two power systems. The secondary winding of the second induction machine is connected to either one of them, and the secondary winding of the second induction machine is connected to the other power system via the power converter, and a power flow controller for controlling the power converter is provided. One of the output signal of the rotation speed detector driven by the induction machine and the stator winding of the first induction machine or the third induction machine An output signal of a power detector for detecting power is input, and the power converter is controlled by the output of the power flow controller calculated according to the deviation between the power command value of the power flow controller and the output of the power detector. A frequency conversion device, wherein the rotational speed of the cascade-connected induction machine is controlled.
JP11570893A 1993-01-13 1993-05-18 Frequency converter Expired - Fee Related JP3398416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11570893A JP3398416B2 (en) 1993-01-13 1993-05-18 Frequency converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-3936 1993-01-13
JP393693 1993-01-13
JP11570893A JP3398416B2 (en) 1993-01-13 1993-05-18 Frequency converter

Publications (2)

Publication Number Publication Date
JPH06269173A true JPH06269173A (en) 1994-09-22
JP3398416B2 JP3398416B2 (en) 2003-04-21

Family

ID=26337610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11570893A Expired - Fee Related JP3398416B2 (en) 1993-01-13 1993-05-18 Frequency converter

Country Status (1)

Country Link
JP (1) JP3398416B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159708A (en) * 2007-12-26 2009-07-16 Toshiba Corp Frequency converter and frequency conversion method
CN102954012A (en) * 2011-08-23 2013-03-06 苏州常乐泡塑有限公司 Frequency conversion control circuit of forced and induced draft fan
CN105680761A (en) * 2016-03-30 2016-06-15 贵州大学 Method and device for demonstrating motor AC frequency conversion speed regulation experiment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159708A (en) * 2007-12-26 2009-07-16 Toshiba Corp Frequency converter and frequency conversion method
CN102954012A (en) * 2011-08-23 2013-03-06 苏州常乐泡塑有限公司 Frequency conversion control circuit of forced and induced draft fan
CN105680761A (en) * 2016-03-30 2016-06-15 贵州大学 Method and device for demonstrating motor AC frequency conversion speed regulation experiment

Also Published As

Publication number Publication date
JP3398416B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
US7554302B2 (en) Slip-controlled, wound-rotor induction machine for wind turbine and other applications
US6954004B2 (en) Doubly fed induction machine
US8193654B2 (en) Variable speed power generator having two induction generators on a common shaft
US6984897B2 (en) Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls
US9593672B2 (en) Isochronous wind turbine generator capable of stand-alone operation
US6380655B1 (en) Variable-speed electromechanical energy converter
Beik et al. High-voltage hybrid generator and conversion system for wind turbine applications
US6924991B2 (en) Energy transfer multiplexer
US6943462B2 (en) Ring generator for a wind power installation
US8432051B2 (en) Electric generator
US8198743B2 (en) Multi-stage controlled frequency generator for direct-drive wind power
JP3398416B2 (en) Frequency converter
Chakraborty et al. A new series of brushless and permanent magnetless synchronous machines
CN102723739B (en) Wind generator system
JP2001339976A (en) Brushless induction generator
EP3920406A1 (en) Wind turbine electrical power generating system and method
JP4018262B2 (en) Frequency converter
JP2662050B2 (en) Secondary excitation device for AC excitation synchronous machine
JP2575535B2 (en) Frequency converter
CN113013918A (en) Alternating current excitation transformation method and system for grid-connected direct current excitation synchronous generator set
KR830002509B1 (en) Alternator
JPH0634628B2 (en) Variable speed pumped storage system operation controller
JPS589556A (en) Variable-speed drive fixed frequency generator
JPS6110998A (en) Generator apparatus
Taka et al. Use of multifield induction machine to determine the characteristics of self‐excited generator systems at variable speed, constant voltage and constant frequency

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees