JPH06269077A - High frequency ultrasonic wave vibrator - Google Patents

High frequency ultrasonic wave vibrator

Info

Publication number
JPH06269077A
JPH06269077A JP5091794A JP9179493A JPH06269077A JP H06269077 A JPH06269077 A JP H06269077A JP 5091794 A JP5091794 A JP 5091794A JP 9179493 A JP9179493 A JP 9179493A JP H06269077 A JPH06269077 A JP H06269077A
Authority
JP
Japan
Prior art keywords
vibration
horn
high frequency
face
conical shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5091794A
Other languages
Japanese (ja)
Inventor
Kimihiko Tanizawa
公彦 谷沢
Akira Takeuchi
彰 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHOONPA KOGYO KK
Ultrasonic Engineering Co Ltd
Original Assignee
CHOONPA KOGYO KK
Ultrasonic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHOONPA KOGYO KK, Ultrasonic Engineering Co Ltd filed Critical CHOONPA KOGYO KK
Priority to JP5091794A priority Critical patent/JPH06269077A/en
Publication of JPH06269077A publication Critical patent/JPH06269077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To expand a vibration amplitude at a high frequency by placing a tool to a small end face of a cone shell horn of axial symmetry torsion having elongation in the generating line direction and fixing a vibration element driving vibration of the horn in-phase to a large end face. CONSTITUTION:A disk tool 1 in bending vibration at two node circles and a vibration transducer 11 are fitted to a tip of a cone shell horn 2 as an integral structure. A flange 61 is placed to a vibration node face of a rear face body 6 similarly to the case with the cone shell horn 2 and tightened with a flange 24 and a bolt 7. Two PZT vibrators 4 are installed in the same polarization direction with respect to an electrode 5. A flange 51 is installed to a node face of the vibration of the electrode 5 and an object electric signal having a frequency equal to a resonance frequency of the cone shell horn 2 is applied to the flange, a front face body and the rear face body. Then elastic vibration is caused by the vibrator 4, vibration elements 3-6 are vibrated in the longitudinal vibration mode 9 to drive the horn. A longitudinal vibration input to the horn 2 reaches again the longitudinal vibration through elongation torsional vibration through mode transformation and the tool 1 is driven finally in the bending vibration mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体の霧化・微粒化、
金属およびプラスチックの接合、精密部品の洗浄などに
使用するホーンタイプの高周波用超音波振動子に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to atomization and atomization of liquids,
The present invention relates to a horn type high frequency ultrasonic transducer used for joining metals and plastics, cleaning precision parts and the like.

【0002】[0002]

【従来の技術】周波数200k Hz以上の領域で、直
接超音波振動子、若しくは振動板を液浸し、ホーンによ
る振動振幅の拡大を伴わない方式の超音波霧化器および
洗浄機が実用化されている。一方、周波数120k H
z以下の領域で、ホーンによる振動振幅の拡大を伴った
超音波ワイヤボンダおよび超音波プラスチックウエルダ
が実用化されている。
2. Description of the Related Art Ultrasonic atomizers and washing machines of the type in which an ultrasonic transducer or a diaphragm is directly immersed in a frequency range of 200 kHz or higher and the vibration amplitude is not enlarged by a horn have been put into practical use. There is. On the other hand, the frequency is 120 kHz
In the region of z or less, an ultrasonic wire bonder and an ultrasonic plastic welder with a vibration amplitude enlarged by a horn have been put into practical use.

【0003】しかしながら、直接超音波振動子を液中に
浸漬する超音波霧化器の場合、液全体を振動するため効
率が低く、液によっては、超音波振動と発熱による液の
物性変化を惹起する問題がある。更に溶融金属の超音波
微粒化への応用は、多くの場合、液温が超音波振動子の
キューリー温度を越えるため使用不可能である。これに
対して40k Hz以下のホーンタイプの超音波振動子
による金属の微粒化が実験されているが、粒径が周波数
の2/3乗に逆比例するため、超微細化のための高周波
化が期待されている。IC用の超音波ワイヤボンダを高
周波化すると、被接合物へのワイヤの潰れ幅が低減し、
有効接合面積とサージ電流が増大する効果があり、ボン
ディング条件に余裕ができ信頼性が向上するため、損傷
し易いワークに対しては更なる高周波化が期待されると
共に、同様の効果を金属箔・金属細線の接合に期待でき
る。プラスチックウエルダを高周波化すると、化学繊維
の溶接部の硬化がなく、風合を保った溶接が期待でき
る。従って、周波数100k Hz以上のホーンタイプ
の高周波用超音波振動子の開発が重要な課題となってい
る。
However, in the case of an ultrasonic atomizer in which an ultrasonic transducer is directly immersed in the liquid, the efficiency is low because the entire liquid is vibrated, and some liquids cause changes in the physical properties of the liquid due to ultrasonic vibration and heat generation. I have a problem to do. Further, in many cases, the application of molten metal to ultrasonic atomization cannot be used because the liquid temperature exceeds the Curie temperature of the ultrasonic vibrator. On the other hand, atomization of metal with a horn-type ultrasonic oscillator of 40 kHz or less is being tested, but since the particle size is inversely proportional to the 2/3 power of the frequency, higher frequencies for ultra-miniaturization are used. Is expected. Increasing the frequency of ultrasonic wire bonders for ICs reduces the crushed width of the wire to the object to be bonded,
Since it has the effect of increasing the effective bonding area and surge current, and the margin of bonding conditions is improved and the reliability is improved, further higher frequency is expected for the work that is easily damaged, and the same effect is obtained.・ It can be expected to join thin metal wires. If the frequency of the plastic welder is increased, the welded part of the chemical fiber does not harden, and it is possible to expect welding that maintains the texture. Therefore, development of a horn type high frequency ultrasonic transducer having a frequency of 100 kHz or more has become an important issue.

【0004】このようなことから、本発明では、円錐殻
状のホーンの伸びを伴った高周波たわみ振動(以下伸び
たわみ振動と略称する)を利用して、ホーンタイプの高
周波用超音波振動子を提供するものである。
In view of the above, according to the present invention, a horn type ultrasonic transducer for high frequency is utilized by utilizing the high frequency flexural vibration (hereinafter abbreviated as flexural vibration) accompanied by the expansion of the conical shell horn. It is provided.

【0005】[0005]

【課題を解決するための手段】本発明は、上述の点に鑑
みなされたもので、円錐殻状ホーンの小端面にツールを
設置し、大端面側に超音波振動要素を固定し、同超音波
振動要素で円錐殻状ホーンを同ホーンの伸びたわみ振動
と同相駆動する。所要振動振幅は、ホーンおよびツール
の形状の構造解析(有限要素法)より求める。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and a tool is installed on the small end face of a conical shell horn, and an ultrasonic vibration element is fixed on the large end face side of the same. The conical shell horn is driven in phase with the extended flexural vibration of the horn by the acoustic wave vibrating element. The required vibration amplitude is obtained by structural analysis (finite element method) of the shapes of the horn and the tool.

【0006】[0006]

【作用】円錐殻状ホーンと超音波振動要素のそれぞれの
振動の節をボルト締結することにより、従来のボルト締
めランジュバン型振動子(周波数20〜100k H
z)と同様の取扱ができ、同振動子の振動の節を利用し
たフランジ据付が可能である。現状では円錐殻状ホーン
の伸びたわみ振動モード解析に、有限要素法によるシミ
ュレーションを必要とするが、ツールは目的に応じて設
計可能で、縦振動モード、縦→曲げ振動モード等、従来
の手法が適用できる。
The conventional bolted Langevin type oscillator (frequency of 20 to 100 kHz) is bolted to the vibration nodes of the conical shell horn and the ultrasonic vibration element.
It can be handled in the same way as z), and the flange can be installed using the vibration node of the same oscillator. At present, simulation using the finite element method is required to analyze the flexural vibration mode of a conical shell horn, but tools can be designed according to the purpose, and conventional methods such as longitudinal vibration mode, longitudinal → bending vibration mode, etc. can be used. Applicable.

【0007】[0007]

【実施例】以下、本発明の高周波用超音波振動子の実施
例について、図を参照しながら説明する。
EXAMPLES Examples of high frequency ultrasonic transducers of the present invention will be described below with reference to the drawings.

【0008】図1は、本発明の一実施例を示す組立断面
図である。同図で1はツール、2は円錐殻状ホーン、3
ないし7は振動要素で、3は前面体、4はPZT振動
子、5は電極、6は脊面体、7および71は2ないし6
の締結用ボルトおよびナット、8および9は、同ホーン
および振動要素のそれぞれの振動モードである。
FIG. 1 is an assembled sectional view showing an embodiment of the present invention. In the figure, 1 is a tool, 2 is a conical shell horn, 3
1 to 7 are vibrating elements, 3 is a front body, 4 is a PZT oscillator, 5 is an electrode, 6 is a spine, and 7 and 71 are 2 to 6
The fastening bolts and nuts 8 and 9 are the vibration modes of the horn and the vibration element, respectively.

【0009】円錐殻状ホーンとその振動モードの詳細図
を図2に示す。同図で20は円錐殻状ホーンの中心軸を
示し、同ホーンは円錐殻22と充実円筒21および中空
円筒23の一体構造からなっている。円錐殻状ホーンは
多くの高調波振動モードを含んでいるが、そのうちの目
的とする振動モードの一例を図2の8に示す。同図8は
目的とする振動モードの有限要素法による振動の一シミ
ュレーションで、円錐殻22および中空円筒23に対応
した82および83が伸びたわみ振動モード(軸に垂直
な径方向の振動成分が径方向に平行でなく伸びを伴って
いる)充実円筒21に対応した81が縦振動モードで振
動(径方向の振動成分が径方向に平行)していることを
示している。図2の例では円錐殻および中空円筒の平均
長さを、伸びたわみ振動の平均波長の4倍となるように
調整する。中空円筒外側面節線84の円周上に固定用の
フランジ24を設置する。
A detailed view of the conical shell horn and its vibration mode is shown in FIG. In the figure, reference numeral 20 denotes the central axis of the conical shell horn, which has an integral structure of a conical shell 22, a solid cylinder 21 and a hollow cylinder 23. The conical shell horn includes many harmonic vibration modes, and an example of the desired vibration mode is shown in 8 of FIG. FIG. 8 is a simulation of the vibration of the target vibration mode by the finite element method. In the flexural vibration mode in which 82 and 83 corresponding to the conical shell 22 and the hollow cylinder 23 are extended (the vibration component in the radial direction perpendicular to the axis is the radius It is shown that 81 corresponding to the solid cylinder 21 vibrating in the longitudinal vibration mode (the vibration component in the radial direction is parallel to the radial direction), which corresponds to the solid cylinder 21 and is not parallel to the direction but is accompanied by extension. In the example of FIG. 2, the average lengths of the conical shell and the hollow cylinder are adjusted to be four times the average wavelength of the flexural vibration of extension. The fixing flange 24 is installed on the circumference of the nodal line 84 on the outer surface of the hollow cylinder.

【0010】図2で中空円筒23の端面の矢印Xおよ
びXは、円錐殻状ホーンの大端面の内・外面の振動モ
ードが中心軸に垂直な面に対して逆位相の関係にあるこ
とを示し、同じく矢印YおよびYは中空円筒23の
内側面の振動モードが中心軸に平行な側線に対して、逆
位相の関係にあることを示している。従って、ホーン大
端面を縦方向駆動用振動要素で駆動する場合は、その当
り面をホーン外側寄りの矢印X若しくは内側寄りの矢
印Xに対応した局所中空円面として、矢印Xおよび
を同時同方向に縦駆動することを回避し、ホーンの
同相駆動を実現する。具体的には、図1の前面体3とホ
ーンの当り面にリング状突起31を設置し、同ホーンを
同相駆動する。同様に径方向駆動用振動素子と円錐殻状
ホーンの中空円筒内側面の当り面を矢印の部位Y若し
くはYに対応した局所短円筒面とすることにより、矢
印YおよびYの部位を同時同方向駆動することを回
避して、ホーンの同相駆動を実現することも可能であ
る。従来の超音波振動子では、径方向振動が径方向に平
行となるように、種々の手段を講じて、縦・径方向の振
動モード結合の影響を低減する努力をしてきた。本発明
は、今まで目的外振動(スプリアス振動)として忌避さ
れてきた振動モードを円錐殻状ホーンに適用し、同振動
を同相駆動することによって、ホーンによる高周波振動
の増幅を図るものである。図1で、円錐殻状ホーンの先
端には2節円で曲げ振動する円板ツール1と振動変換体
11が同ホーンと1体構造となっている。
In FIG. 2, arrows X 1 and X 2 on the end surface of the hollow cylinder 23 have a relation that the vibration modes of the inner and outer surfaces of the large end surface of the conical shell horn are in antiphase with respect to the surface perpendicular to the central axis. Similarly, the arrows Y 1 and Y 2 indicate that the vibration mode of the inner surface of the hollow cylinder 23 has an antiphase relationship with the lateral line parallel to the central axis. Therefore, when the large end face of the horn is driven by the vibration element for driving in the vertical direction, the contact face is defined as a local hollow circular face corresponding to the arrow X 1 toward the outside of the horn or the arrow X 2 toward the inside of the horn, and the arrows X 1 and X It is possible to avoid vertically driving 2 in the same direction at the same time, and realize in-phase driving of the horn. Specifically, the ring-shaped protrusions 31 are provided on the front surface 3 of FIG. 1 and the contact surface of the horn, and the same horn is driven in phase. Similarly, by making the contact surface of the inner surface of the hollow cylinder of the radial driving vibrating element and the conical shell-shaped horn a local short cylindrical surface corresponding to the portion Y 1 or Y 2 of the arrow, the portions of the arrows Y 1 and Y 2 can be obtained. It is also possible to realize the in-phase drive of the horns by avoiding simultaneous drive in the same direction. In conventional ultrasonic transducers, various measures have been taken so that radial vibrations are parallel to the radial direction, and efforts have been made to reduce the influence of vibration mode coupling in the longitudinal and radial directions. The present invention is intended to amplify a high frequency vibration by a horn by applying a vibration mode, which has been avoided as a vibration other than the target (spurious vibration) up to now, to a conical shell horn and driving the same vibration in the same phase. In FIG. 1, at the tip of the conical shell-shaped horn, a disk tool 1 that bends and vibrates in a two-node circle and a vibration converter 11 have the same structure as the horn.

【0011】縦方向駆動用振動要素を構成する各素子
は、それぞれ目的とするホーンの伸びたわみ共振周波数
において軸方向に縦波半波長共振する長さに設置する。
脊面体6の振動の節面には円錐殻状ホーンと同様にフラ
ンジ61を設置し、両フランジ24と61をボルト7お
よびナット71で締結する。(図1では1ヶ所のみ図示
し他は省略する)2ヶのPZT振動子4は電極5に対し
て、同じ分極(電極側をプラス側)方向に設置する。電
極5の振動の節面にフランジ51を設置し、同フランジ
と前面体および脊面体間に目的とする円錐殻状ホーン2
の共振周波数と等しい電気信号(図面省略)を印加する
と、同電気信号は、PZT振動子4により電気・機械変
換されて弾性振動となり、振動要素3ないし6は縦振動
モード9で振動し、同ホーンを駆動する。ホーン2への
縦振動入力は、伸びたわみ振動を経て再び縦振動とモー
ド変換して、最後にツール1を曲げ振動モードで駆動す
る。
Each element constituting the longitudinal driving vibrating element is set to have such a length as to cause longitudinal wave half-wavelength resonance in the axial direction at the target extensional flexural resonance frequency of the horn.
A flange 61 is installed on the vibration nodal surface of the vertebral body 6 similarly to a conical shell horn, and both flanges 24 and 61 are fastened with a bolt 7 and a nut 71. (Only one location is shown in FIG. 1 and the others are omitted.) Two PZT oscillators 4 are installed in the same polarization direction (the electrode side is the positive side) with respect to the electrode 5. A flange 51 is installed on the nodal surface of vibration of the electrode 5, and a desired conical shell-shaped horn 2 is provided between the flange 51 and the front body and the face body.
When an electric signal (not shown) equal to the resonance frequency is applied, the electric signal is electromechanically converted by the PZT vibrator 4 into elastic vibration, and the vibrating elements 3 to 6 vibrate in the longitudinal vibration mode 9, Drive the horn. The longitudinal vibration input to the horn 2 is mode-converted again into longitudinal vibration through the flexural vibration, and finally the tool 1 is driven in the bending vibration mode.

【0012】図3に円錐殻状ホーンの別の一実施例を示
す。同図25は、内・外側線を円弧の組合せで構成した
断面を、軸20を中心軸とした回転体で構成した円錐殻
状ホーンの一実施例である。円弧の中心は、回転中心軸
20を含む平面上で、円錐殻状ホーンの中空部の両端面
を通る中心軸の垂線上にある。円弧の半径をそれぞれR
およびRとおくと、R、Rは円錐殻状ホーンの
中空部の中心軸長(高さ)をχとし、大端面の内半径と
肉厚をそれぞれyおよびt、小端面側の半径をt
おいて、数1の関係式で表わされる。
FIG. 3 shows another embodiment of the conical shell horn. FIG. 25 shows an embodiment of a conical shell-shaped horn in which a cross section in which inner and outer lines are formed by a combination of arcs is formed by a rotating body having a shaft 20 as a central axis. The center of the arc is on the plane including the rotation center axis 20 and on the perpendicular to the center axis passing through both end surfaces of the hollow portion of the conical shell horn. The radius of each arc is R
Putting the 1 and R 2, R 1, R 2 is the center axis length of the hollow portion of the cone-shell-like horn (height) as the chi, inner radius and y and t 1 thickness, respectively, small end face of the large end face It is expressed by the relational expression of Formula 1 with the radius of the side being t 0 .

【0013】数1のχおよびyは、伸びたわみ振動の平
均波長をλ、nを正の整数として、数2を満足する寸法
とする。円錐殻状ホーンの実際の設計に当っては、数1
および数2で粗削りの形状を決定し、同形状とその改良
形状の有限要素法による振動解析の試行を繰り返しシミ
ュレーションすることにより微調整を行う。
Χ and y in the equation 1 are dimensions satisfying the equation 2 where λ is the average wavelength of the flexural vibration and n is a positive integer. When actually designing a conical shell horn,
Then, the shape of rough cutting is determined by Equation 2 and fine adjustment is performed by repeatedly simulating trials of vibration analysis of the same shape and its improved shape by the finite element method.

【0014】上述の経過を経て設計された円錐殻状ホー
ン25の、目的とする振動モードの有限要素法によるシ
ミュレーションを85に示す。同振動モード85は、図
2の8の伸びたわみ振動に対応している。
Reference numeral 85 shows a simulation of a desired vibration mode of the conical shell horn 25 designed through the above-mentioned process by the finite element method. The vibration mode 85 corresponds to the flexural vibration 8 of FIG.

【0015】図4に円錐殻状ホーンの更に別の一実施例
を示す。同図26は、ホーンの内・外面を球殻で構成し
たもので、円弧の中心が回転中心軸上にあることが図3
の場合と異なる。球殻の平均厚さをtとおくと、同球殻
の内・外面半径RおよびRは数3の関係式で表わさ
れる。
FIG. 4 shows another embodiment of the conical shell horn. In FIG. 26, the inner and outer surfaces of the horn are formed of spherical shells, and the center of the arc is on the center axis of rotation.
Different from. Letting t be the average thickness of the spherical shell, the inner and outer surface radii R 3 and R 4 of the spherical shell can be expressed by the relational expression (3).

【0016】数3で求めた粗削りの寸法を基に、図3の
場合と同様に有限要棄法による振動解折の試行を繰り返
しシミュレーションすることにより円錐殻状ホーンの微
調整を行う。
Based on the size of the rough cut obtained by the equation 3, a trial of vibration bending by the finite waste method is repeatedly simulated as in the case of FIG. 3 to finely adjust the conical shell horn.

【0017】上述の経過を経て設計された円錐殻状ホー
ン26の、目的とする振動モードの有限要素法によるシ
ミュレーションを86に示す。同振動モード86は図2
の8の伸びたわみ振動に対応している。
A simulation 86 of a desired vibration mode of the conical shell horn 26 designed through the above-mentioned process by the finite element method is shown. The vibration mode 86 is shown in FIG.
It corresponds to the flexural vibration of 8.

【0018】図1の振動法とは別の円錐殻状ホーンの駆
動法の一実施例を図5に示す。同図は径方向駆動用振動
素子で円錐殻状ホーンを駆動する場合で、図2の矢印Y
若しくはYの駆動例である。図2から矢印Y若し
くはYを同相駆動しても、原理的には問題ないが、円
筒型PZT振動子41とホーンの当り面が小面積とな
り、効率が低い。そこで図5では、ホーン2と前面体3
2を一体構造とした円錐殻状ホーンにおいて、前面体と
ホーンの当り面に相当する部分31を同相駆動するため
に、隙間33を設置する。このため、前面体32の軸方
向は、縦振動モードとなり、径方向は同相厚み振動モー
ドとなる。円筒型PZT振動子41に内側面を僅かにテ
ーパー状とした前面体32を焼嵌め、圧入、接着等によ
り固定する。ツール12は、縦振動モードで振動する。
図5の円筒型PZT振動子41から前面体32、ホーン
2、ツール12までの振動モードは厚み振動→厚み・縦
振動→伸びたわみ・縦振動→縦振動となる。
FIG. 5 shows an embodiment of a driving method of a conical shell horn different from the vibration method of FIG. This figure shows a case where a conical shell horn is driven by a radial driving vibrating element.
This is an example of driving 1 or Y 2 . From FIG. 2, even if the arrow Y 1 or Y 2 is driven in phase, there is no problem in principle, but the contact surface of the cylindrical PZT oscillator 41 and the horn has a small area, and the efficiency is low. Therefore, in FIG. 5, the horn 2 and the front body 3 are shown.
In the conical shell-shaped horn in which 2 is integrated, a gap 33 is provided in order to drive the front body and the portion 31 corresponding to the contact surface of the horn in phase. Therefore, the axial direction of the front body 32 becomes the longitudinal vibration mode, and the radial direction becomes the in-phase thickness vibration mode. The front body 32 having a slightly tapered inner surface is shrink-fitted to the cylindrical PZT oscillator 41, and is fixed by press-fitting, bonding or the like. The tool 12 vibrates in the longitudinal vibration mode.
The vibration modes from the cylindrical PZT vibrator 41 in FIG. 5 to the front body 32, the horn 2, and the tool 12 are thickness vibration → thickness / longitudinal vibration → extensional bending / longitudinal vibration → longitudinal vibration.

【0019】本実施例では、円錐殻状ホーンとして3例
を説示したが、伸びたわみ振動体として、中心軸を含む
内・外面断面を円錐曲線若しくはその集合で構成し、軸
に垂直な断面が大端面から小端面に向けて漸減するカツ
プ形の軸対称振動体を円錐殻状ホーンとする。
In this embodiment, three examples have been explained as the conical shell horn, but as the extended flexural vibrating body, the inner and outer surface cross sections including the central axis are constituted by conical curves or a set thereof, and the cross section perpendicular to the axis is The cup-shaped axisymmetric vibrating body that gradually decreases from the large end face to the small end face is a conical shell horn.

【0020】[0020]

【発明の効果】本発明の効果を図1の場合について以下
に示す。円錐殻状ホーンおよびPZT振動子を除く振動
要素にチタン合金(6Al4V)を使用し、伸びたわみ
振動共振周波数400k Hz、ホーン大端面内・外径
14mm、20mm、ツール円板厚さ1mm、同直径1
1mmの場合のシミュレーション結果は ホーン先端と大端面の断面積比 1:2
3 ホーン先端と振動要素端面の振動振幅比 8:1 円板ツールとホーン先端の断面積比 13:1 円板ツールとホーン先端振動振幅比 4:1 となった。以上詳述したように、本発明によれば極めて
簡単な構造の円錐殻状ホーンにより、振動振幅の拡大が
実現でき、100k Hz以上のホーンタイプの高周波
用超音波振動子の提供が可能となった。
The effects of the present invention are shown below in the case of FIG. Titanium alloy (6Al4V) is used for the vibrating elements except the conical shell horn and the PZT oscillator, the flexural vibration resonance frequency is 400 kHz, the inner and outer diameters of the horn large end surface are 14 mm and 20 mm, the tool disk thickness is 1 mm, and the same diameter. 1
The simulation result in the case of 1 mm is the cross-sectional area ratio of the horn tip to the large end surface 1: 2
3 Vibration amplitude ratio between horn tip and vibrating element end face 8: 1 Cross-sectional area ratio between disc tool and horn tip 13: 1 Disc tool-horn tip vibration amplitude ratio 4: 1. As described in detail above, according to the present invention, the vibration amplitude can be expanded by the conical shell horn having an extremely simple structure, and it becomes possible to provide a horn type high frequency ultrasonic transducer of 100 kHz or more. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高周波用超音波振動子の実施例を示す
組立・断面図とその振動モードである。
FIG. 1 is an assembly / cross-sectional view showing an embodiment of a high frequency ultrasonic vibrator of the present invention and its vibration mode.

【図2】本発明の円錐殻状ホーンの説明図である。FIG. 2 is an explanatory view of a conical shell horn of the present invention.

【図3】本発明の円錐殻状ホーンの別の実施例を示す説
明図である。
FIG. 3 is an explanatory view showing another embodiment of the conical shell horn of the present invention.

【図4】本発明の円錐殻状ホーンの更に別の実施例を示
す説明図である。
FIG. 4 is an explanatory view showing still another embodiment of the conical shell horn of the present invention.

【図5】本発明の円錐殻状ホーンの別の駆動法を示す高
周波用超音波振動子の組立・断面図である。
FIG. 5 is an assembly / cross-sectional view of a high frequency ultrasonic transducer showing another driving method of the conical shell horn of the present invention.

【符号の説明】[Explanation of symbols]

1 ツール 2 円錐殻状ホーン 3 前面体 4 PZT振動子 5 電極 6 脊面体 7 締結ボルト 8 伸びたわみ振動モード 9 縦振動モード 1 Tool 2 Conical Shell Horn 3 Front Body 4 PZT Transducer 5 Electrode 6 Spine Body 7 Fastening Bolt 8 Extension Flexural Vibration Mode 9 Longitudinal Vibration Mode

【数1】 [Equation 1]

【数2】 [Equation 2]

【数3】 [Equation 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 100k Hz以上の高周波で振動する
超音波振動子において、母線方向に伸びを伴った軸対称
たわみ振動する円錐殻状ホーンの小端面にツールを設置
し、大端面に同ホーンの振動を同相駆動する振動要素を
固着することを特徴とする高周波用超音波振動子。
1. In an ultrasonic transducer vibrating at a high frequency of 100 kHz or more, a tool is installed on a small end face of a conical shell horn that vibrates in an axially symmetric flexural vibration accompanied by elongation in a generatrix direction, and a large end face of the horn is used. An ultrasonic vibrator for high frequency, characterized in that a vibrating element for driving vibration in phase is fixed.
【請求項2】 縦方向駆動用振動要素と円錐殻状ホーン
大端面との当り面を、同ホーンの軸方向に垂直な振動モ
ードの同相成分と合致するリング状構造にした請求項1
記載の高周波用超音波振動子。
2. The ring-shaped structure in which the contact surface between the longitudinal drive vibrating element and the large end face of the conical shell-shaped horn matches the in-phase component of the vibration mode perpendicular to the axial direction of the horn.
The ultrasonic transducer for high frequency described.
【請求項3】 径方向駆動用振動素子と円錐殻状ホーン
大端面側との当り面を、同ホーンの軸方向振動モードの
同相成分と合致するように同ホーン内側面に設置したリ
ング状突起の内周面とするか、若しくは同ホーン大端面
にリング状突起を介して縦続接続した縦振動共振体の内
側面とする構造にした請求項1記載の高周波用超音波振
動子。
3. A ring-shaped projection provided on the inner surface of the same horn so that the contact surfaces of the radial driving vibrating element and the large end surface of the conical shell-shaped horn coincide with the in-phase component of the axial vibration mode of the horn. 2. The ultrasonic vibrator for high frequency according to claim 1, wherein the ultrasonic vibrator for high frequency has a structure of being an inner peripheral surface of the same or an inner surface of a longitudinal vibration resonator cascade-connected to a large end surface of the horn through a ring-shaped projection.
【請求項4】 円錐殻状ホーンの軸に垂直な外側面の振
動の節線上に固定用フランジを設置し、同フランジと縦
方向駆動用振動要素をボルト締めランジュバン型振動子
の一構成要素とした請求項1および請求項2記載の高周
波用超音波振動子。
4. A fixing flange is installed on the nodal line of vibration on the outer surface perpendicular to the axis of the conical shell horn, and the flange and the vibration element for driving in the vertical direction are bolted to form a Langevin type vibrator. The ultrasonic vibrator for high frequency according to claim 1 or 2,
JP5091794A 1993-03-12 1993-03-12 High frequency ultrasonic wave vibrator Pending JPH06269077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091794A JPH06269077A (en) 1993-03-12 1993-03-12 High frequency ultrasonic wave vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091794A JPH06269077A (en) 1993-03-12 1993-03-12 High frequency ultrasonic wave vibrator

Publications (1)

Publication Number Publication Date
JPH06269077A true JPH06269077A (en) 1994-09-22

Family

ID=14036525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091794A Pending JPH06269077A (en) 1993-03-12 1993-03-12 High frequency ultrasonic wave vibrator

Country Status (1)

Country Link
JP (1) JPH06269077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719183B2 (en) * 2001-06-28 2004-04-13 Kabushiki Kaisha Shinkawa Transducer and a bonding apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719183B2 (en) * 2001-06-28 2004-04-13 Kabushiki Kaisha Shinkawa Transducer and a bonding apparatus using the same

Similar Documents

Publication Publication Date Title
WO2008080888A1 (en) Device for producing ultrasonic vibrations
JP3739418B2 (en) Sonotrode for ultrasonic processing equipment
US3257721A (en) Method and apparatus for employing torsional vibratory energy
JP2004529002A (en) Symmetrical ultrasonic rotating horn
JP4755102B2 (en) Ultrasonic horn mount
CN105263695A (en) Ultrasound welding device comprising vibration-decoupled counter tool
JPH06269077A (en) High frequency ultrasonic wave vibrator
US6626349B2 (en) Large vibration tool, especially for welding applications
JP2002282788A (en) Ultrasonic wave generator
JPH0523268Y2 (en)
JPH0760190A (en) Horn for vibrator and ultrasonic vibrator
JPH07276068A (en) Ultrasonic welding device
JPH0344311Y2 (en)
WO2023054733A2 (en) Ultrasonic composite vibration device and ultrasonic bonding device
JP6832564B2 (en) Focused sound field forming device
JPH057071B2 (en)
Tierce et al. Design of high power ultrasonic transducers for use in macrosonics
JPH0625655Y2 (en) Ultrasonic liquid atomizer
JP3529410B2 (en) Ultrasonic transducer
Khmelev et al. The general directions of development of longitudinally oscillating ultrasonic emitters for gaseous media
JP2001276738A (en) Ultrasonic machining device using higher order vibration frequency
JPH10174469A (en) Ultrasonic vibrator
Gallego-Juarez Transducer needs for macrosonics
JPH0543433B2 (en)
JPS644463Y2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040610

A521 Written amendment

Effective date: 20040818

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20050817

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101221

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131221

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131221

LAPS Cancellation because of no payment of annual fees