JPH0626882B2 - Method of manufacturing conductivity-imparting composite metal plate - Google Patents

Method of manufacturing conductivity-imparting composite metal plate

Info

Publication number
JPH0626882B2
JPH0626882B2 JP2287597A JP28759790A JPH0626882B2 JP H0626882 B2 JPH0626882 B2 JP H0626882B2 JP 2287597 A JP2287597 A JP 2287597A JP 28759790 A JP28759790 A JP 28759790A JP H0626882 B2 JPH0626882 B2 JP H0626882B2
Authority
JP
Japan
Prior art keywords
resin
conductivity
composite metal
bonding
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2287597A
Other languages
Japanese (ja)
Other versions
JPH04163043A (en
Inventor
廣士 西川
善之 柚鳥
隆一 石田
始夫 佐藤
佐藤  一雄
裕一 藤村
隆英 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2287597A priority Critical patent/JPH0626882B2/en
Publication of JPH04163043A publication Critical patent/JPH04163043A/en
Publication of JPH0626882B2 publication Critical patent/JPH0626882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性付与複合金属板の製造に係り、より詳し
くは、導電性付与接着性樹脂を2枚の金属板の中間に積
層してなる導電性に優れた複合金属板の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to the production of a conductivity-providing composite metal plate, and more specifically, by laminating a conductivity-providing adhesive resin in the middle of two metal plates. And a method for producing a composite metal plate having excellent conductivity.

(従来の技術及び解決しようとする課題) 近年、騒音に対する意識が高まるに伴い、各種機械器
具、或いはその他の部材から発生する騒音を防止するた
めに種々の対策が講じられている。
(Prior Art and Problems to Be Solved) In recent years, as awareness of noise has increased, various measures have been taken in order to prevent noise generated from various machine tools or other members.

このような状況にあって、鋼板を使用する部位には、振
動減衰性能を有する制振樹脂を中間層に配した制振複合
鋼板が有効であることが知られている。
In such a situation, it is known that a vibration-damping composite steel plate in which a damping resin having vibration damping performance is arranged in an intermediate layer is effective for a portion where the steel plate is used.

そころで、この制振複合鋼板は、中間層の制振樹脂が電
気絶縁体であるため、スポット溶接等の抵抗溶接ができ
ないという大きな欠点がある。そのため、制振複合鋼板
に導電性を付与する方法として、ゲル状若しくは液状樹
脂内又は樹脂フィルム内に導電性フィラー(繊維状又は
粒状金属類)を混和したものを2枚の鋼板の片側に供給
し又は仮接着させた後、加熱圧着ロール(本接着ロー
ル)により本接着し、積層する方法が採用されている。
On the other hand, the vibration-damping composite steel sheet has a major drawback that resistance welding such as spot welding cannot be performed because the vibration-damping resin of the intermediate layer is an electric insulator. Therefore, as a method of imparting conductivity to the vibration-damping composite steel sheet, a mixture of a conductive filler (fibrous or granular metals) in a gel or liquid resin or a resin film is supplied to one side of two steel sheets. Or temporary bonding, and then main bonding is performed by a thermocompression bonding roll (main bonding roll) and laminated.

しかしながら、導電性複合鋼板として安定したスポット
溶接性を確保するためには、樹脂内又は樹脂フィルム内
に混和されたフィラーが、積層後、積層面積内で均一に
分散されていなければならないにも拘らず、上記の積層
方法では、その分布が不均一となり、溶接性を不安定に
しているという問題がある。
However, in order to ensure stable spot weldability as the conductive composite steel sheet, the filler mixed in the resin or the resin film must be evenly dispersed in the laminated area after lamination. However, the above-mentioned lamination method has a problem that the distribution becomes non-uniform and the weldability becomes unstable.

本発明は、上記従来技術の欠点を解消し、導電性に優れ
ると共に安定した溶接性及び接着強度を有する導電性付
与複合金属板を製造する方法を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned drawbacks of the prior art and to provide a method for producing a conductivity-providing composite metal plate having excellent conductivity and stable weldability and adhesive strength.

(課題を解決するための手段) 前述の如く、従来の積層方法において溶接性が不安定に
なるのは、以下の原因によるものである。
(Means for Solving the Problems) As described above, the instability of the weldability in the conventional laminating method is due to the following causes.

まず、導電性樹脂と2枚の鋼板から構成される複合鋼板
を連続して製造するに際しては、樹脂と2枚の鋼板との
間が強固に接合されていること、樹脂の持つ望ましい機
能が複合鋼板において発揮されることが重要である。
First, when continuously manufacturing a composite steel plate composed of a conductive resin and two steel plates, the resin and the two steel plates are firmly bonded, and the desirable function of the resin is combined. It is important to be exerted on the steel plate.

樹脂と鋼板との接合強度、樹脂自身の特性はいずれも複
合鋼板製造時の受ける熱履歴により大きく支配されるた
め、製造に当たっては、前接着、本接着、更には本接着
後の徐冷時の熱履歴を厳しく設定し管理する必要があ
る。加えて、本接着時には2本の本接着ロール間で樹脂
並びに2枚の鋼板を適正な加圧力で押えることが必要で
ある。
Since the joint strength between the resin and the steel sheet and the characteristics of the resin itself are largely controlled by the heat history received during the production of the composite steel sheet, the pre-bonding, the main bonding, and further the slow cooling after the main bonding during the manufacturing. It is necessary to set and manage the heat history strictly. In addition, at the time of main bonding, it is necessary to press the resin and the two steel plates between the two main bonding rolls with an appropriate pressure.

とりわけ、本接着時の鋼板内への空気の流入は健全な複
合鋼板を製造する上で絶対避けなければならず、そのた
めには、本接着ロールの前面に常に適量の樹脂溜り(以
下、「樹脂バンク」と称す)を生成させることが必要で
ある。
In particular, inflow of air into the steel sheet during the main bonding must be absolutely avoided in order to produce a sound composite steel sheet, and for that purpose, an appropriate amount of resin pool (hereinafter referred to as "resin" It is necessary to generate a bank).

しかし、本接着時の鋼板並びに樹脂温度は、樹脂側から
みると、ガラス転位点を超え、十分に流動性を有する条
件下にあるため、加圧力のもとでは何らかの拘束がない
限り、容易に樹脂の移動が行われる。この点で、従来の
積層方法では、何らの拘束がないため、樹脂バンクが幅
方向に不均一に流動することが不可避であり、したがっ
て、フィラーが溶融樹脂バンクの表面に集約された状態
で多量に流出し、一方に片寄る結果、積層内のフィラー
密度が片寄り、特に積層幅の両サイドの密度が薄くな
り、溶接性が不安定になる。
However, the temperature of the steel sheet and the resin at the time of the main adhesion are, as viewed from the resin side, above the glass transition point and under the condition of having sufficient fluidity. The resin is transferred. In this respect, in the conventional laminating method, since there is no constraint, it is unavoidable that the resin bank flows nonuniformly in the width direction, and therefore a large amount of filler is gathered on the surface of the molten resin bank. As a result, the filler density in the stack is biased, especially the density on both sides of the stack width is reduced, and the weldability becomes unstable.

第1図はこのように樹脂バンクが不均一に生成する状況
を示したもので、一対の本接着ロール1、2の間に2枚
の鋼板3、4を連続的に供給すると共に、片側の鋼板3
に導電性付与接着性樹脂フィルム5を前接着ロール6を
介して連続的に供給しつつ本接着し、複合鋼板7を製造
するが、生成される樹脂バンク8は図示の如く幅方向に
流動し、幅方向において両サイドに大きく偏奇してい
る。
FIG. 1 shows a situation in which the resin banks are non-uniformly formed in this way. Two steel plates 3 and 4 are continuously supplied between a pair of main bonding rolls 1 and 2, and at the same time, Steel plate 3
The composite resin sheet 8 is manufactured by continuously adhering the electroconductivity-imparting adhesive resin film 5 to the main adhesive while continuously supplying it through the front bonding roll 6, and the resin bank 8 generated flows in the width direction as shown in the drawing. , Both sides are greatly eccentric in the width direction.

このため、本発明者は、樹脂バンクの流動を安定化でき
る方策について鋭意研究を重ねた結果、本接着ロールに
導電性付与接着性樹脂を供給する際に、糸又は帯体を複
数本補給し、或いは気流を供給するこそとにより、樹脂
バンクが幅方向に安定して生成可能であることを見い出
し、ここに本発明をなしたものである。
For this reason, the present inventor has conducted intensive studies on measures for stabilizing the flow of the resin bank, and as a result, when supplying the conductivity-imparting adhesive resin to the main adhesive roll, a plurality of threads or strips are supplied. The present invention is based on the finding that the resin bank can be stably generated in the width direction by supplying the air flow.

すなわち、本発明は、上下2枚の金属板の間にフィルム
状、ゲル状又は液状の導電性付与接着性樹脂を連続的に
供給し、熱ロールで加熱圧着して積層することにより導
電性付与複合金属板を製造するに際し、熱ロール前面に
糸又は帯体を2本以上補給しつつ或いは気流を補給しつ
つ本接着することにより、本接着時に発生する樹脂バン
クの流動を安定化しつつ積層することを特徴とする導電
性付与複合金属板の製造方法を要旨とするものである。
That is, the present invention is to provide a conductivity-imparting composite metal by continuously supplying a film-like, gel-like or liquid conductivity-imparting adhesive resin between upper and lower two metal plates, and thermocompressing and laminating with a heat roll. When manufacturing a board, by laminating two or more yarns or strips on the front surface of the heat roll or main adhering while replenishing an air flow, it is possible to stabilize the flow of the resin bank generated during the main adhering and stack them. The gist is a method for producing a composite metal plate having conductivity.

以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

(作用) 複合鋼板の連続製造工程の中で本接着での加熱圧着で
は、第1図に示したように、樹脂バンクは中央部が不安
定で両サイドが大きく、流動、流出し易く、このためフ
ィラーが流出し、スポット溶接性を不安定にしている。
(Function) In the thermocompression bonding with the main bonding in the continuous manufacturing process of the composite steel sheet, as shown in FIG. 1, the resin bank has an unstable central part and large both sides, which easily flow and flow out. Therefore, the filler flows out, making the spot weldability unstable.

これに対して、本発明は、要するに、安定した導電性を
付与した導電性複合金属板を製造する過程において、本
接着時に生成させる樹脂バンクの流動挙動を極力抑える
手段を講じるものである。
On the other hand, the present invention is to take measures to suppress the flow behavior of the resin bank generated at the time of the main bonding as much as possible in the process of manufacturing the conductive composite metal plate to which stable conductivity is imparted.

すなわち、第1の手段は、反対側又は同一側の鋼板に糸
又は帯体の複数本を本接着ロール部へ補給挿入する方法
であり、第2の手段は、気流を供給する方法である。
That is, the first means is a method of replenishing and inserting a plurality of threads or strips into the steel plate on the opposite side or the same side into the main bonding roll portion, and the second means is a method of supplying an air flow.

まず、第1の手段については説明する。First, the first means will be described.

複合鋼板の製造に際しては、第2図に示すように、ま
ず、2枚の鋼板3、4のうち、片側の鋼板3に予め導電
性付与接着性樹脂フィルム5を前接着(仮接着)する。
この時の鋼板は樹脂が前接着ロール6で抑えることによ
り、鋼板に貼り付く温度まで加温されていることが必要
である。樹脂が前接着された1枚の鋼板3は本接着ロー
ル1、2まで進行し、もう片方の鋼板4と合体する。本
接着時、樹脂5は、複合鋼板の樹脂膜厚から定められる
所定のロール際に設定された相対する2本の本接着ロー
ル1、2により、鋼板を介して加圧力を受けると共に、
設定された本接着温度まで昇温される。その際、前述の
如く、本接着時の鋼板内への空気の流入を避けるため
に、本接着ロール前面に適量の樹脂バンクを存在させる
必要があるが、何らの拘束もないと本接着ロール通過時
に樹脂バンク8が板幅方向に移動する。
When manufacturing the composite steel sheet, as shown in FIG. 2, first, of the two steel sheets 3 and 4, the conductivity imparting adhesive resin film 5 is pre-bonded (temporarily bonded) to the steel sheet 3 on one side.
At this time, the steel plate needs to be heated to a temperature at which it is attached to the steel plate by suppressing the resin with the front bonding roll 6. The one steel plate 3 to which the resin is pre-bonded advances to the main bonding rolls 1 and 2, and is joined with the other steel plate 4. At the time of main bonding, the resin 5 receives a pressing force via the steel plates by the two main bonding rolls 1 and 2 facing each other set at a predetermined roll determined from the resin film thickness of the composite steel plate,
The temperature is raised to the set main bonding temperature. At that time, as described above, in order to avoid the inflow of air into the steel plate during the main bonding, an appropriate amount of resin bank must be present on the front surface of the main bonding roll, but if there is no restraint, it will pass through the main bonding roll. At times, the resin bank 8 moves in the plate width direction.

このような樹脂バンクの移動をコントロールするため、
本発明では、第1の手段として、糸又は帯体9を供給機
10により、前接着ロール部若しくは本接着ロール部か
ら樹脂フィルム直近に補給するものである。第2図中、
実線で示した供給ラインが糸又は帯体9を本接着ロール
部から直接補給する態様であり点線で示した供給ライン
が糸又は帯体9を前接着ロール6を介して補給する態様
である。勿論、糸又は帯体5を反対側の鋼板4側から補
給する態様も可能である。
To control the movement of such a resin bank,
In the present invention, as a first means, the yarn or the strip 9 is replenished by the feeder 10 from the front bonding roll portion or the main bonding roll portion in the vicinity of the resin film. In Figure 2,
The supply line shown by the solid line is a mode in which the yarn or the strip 9 is directly supplied from the main bonding roll portion, and the supply line shown by a dotted line is a mode in which the line or the strip 9 is supplied through the front bonding roll 6. Of course, it is also possible to supply the thread or the strip 5 from the opposite steel plate 4 side.

補給する糸又は帯体5としては、融点又はガラス転移温
度が使用温度以上であり、かつ本接着時に加圧力下で容
易に偏平になる材質、性状のものであれば良く、例え
ば、グラスウール、カーボンファイバー、ボルンファイ
バー、耐熱性樹脂ファイバー、又はそれらの帯体、或い
は金属繊維、撚糸等々が挙げられる。勿論、本接着すべ
き導電性付与接着性樹脂の糸はフィルム或いは帯体も使
用できる。
The thread or strip 5 to be supplied may be of any material or property having a melting point or glass transition temperature higher than the use temperature and being easily flattened under pressure during the main bonding, such as glass wool or carbon. Examples thereof include fibers, born fibers, heat-resistant resin fibers, strips thereof, metal fibers, and twisted yarns. As a matter of course, as the thread of the conductivity-imparting adhesive resin to be permanently adhered, a film or a band can be used.

これにより、溶融樹脂バンク8の流動挙動を容易にコン
トロールできるので、両サイドへの樹脂バンク8の流動
が止まり、流出が防止され、全面均一に生成されて安定
化し、したがって、フィラーの片寄りもなく、均一に分
布し、安定化させることが可能となる。
As a result, the flow behavior of the molten resin bank 8 can be easily controlled, so that the flow of the resin bank 8 to both sides is stopped, the outflow is prevented, and the entire surface is uniformly generated and stabilized. Therefore, the deviation of the filler is also caused. Instead, it can be uniformly distributed and stabilized.

なお、補給すべき糸又は帯体は、樹脂バンクの生成状況
に応じてその位置、間隔、本数等を適宜決めて補給すれ
ばよく、板幅方向の樹脂フィルムエッジ直近、又は中央
部に複数本補給するのが好ましい。
It should be noted that the yarns or strips to be supplied may be appropriately determined in position, interval, number, etc. according to the generation status of the resin bank, and may be supplied. It is preferable to replenish.

次に第2の手段について説明する。Next, the second means will be described.

前述の第1手段のように糸又は帯体を補給する代わり
に、第3図に示すように、気体供給機11を用いて、本
接着ロール1、2の前面から樹脂フィルム直近に気流を
供給することによっても、樹脂バンク8の板幅方向への
移動を抑止することができる。この場合、気体としては
圧縮エアーなどを使用でき、気体の供給位置、方向、圧
力等は樹脂バンクの生成状況に応じて適宜決めるが、樹
脂フィルムエッジ直近が好ましい。
Instead of replenishing the thread or the strip as in the first means described above, as shown in FIG. 3, a gas supply device 11 is used to supply an air flow from the front of the main adhesive rolls 1 and 2 to the vicinity of the resin film. Also by doing so, the movement of the resin bank 8 in the plate width direction can be suppressed. In this case, compressed air or the like can be used as the gas, and the gas supply position, direction, pressure, etc. are appropriately determined according to the generation state of the resin bank, but the vicinity of the resin film edge is preferable.

なお、金属板、導電性付与接着性樹脂、導電性フィラー
については、その材質、サイズ等々は特に制限されるも
のではなく、他の加熱圧着条件も特に制限されないこと
は云うまでもない。
It is needless to say that the metal plate, the conductivity-imparting adhesive resin, and the conductive filler are not particularly limited in terms of material, size, etc., and other thermocompression bonding conditions are not particularly limited.

(実施例) 次に本発明の実施例を示す。(Example) Next, the Example of this invention is shown.

実施例1 0.4mm厚×914mm幅のコイル状鋼板を加熱圧着ロー
ル間に通板するに際し、上鋼板に0.07mm厚×800
mm幅の導電性付与接着性樹脂フィルムを仮接着して挿入
し、下鋼板に同一の樹脂フィルムで50mm幅のものを中
央部に200mm間隔で2本仮接着して補給挿入し、本接
着ロールにて加熱圧着(本接着)した。
Example 1 When passing a coiled steel plate having a thickness of 0.4 mm and a width of 914 mm between thermocompression-bonding rolls, 0.07 mm thickness and 800 mm thickness were applied to the upper steel plate.
Conductive adhesion adhesive resin film of mm width is temporarily adhered and inserted, and the same resin film of 50 mm width is temporarily adhered to the lower steel plate at 200 mm intervals in the central part to be replenished and inserted. Then, it was thermocompression bonded (mainly bonded).

補給位置は、生成する樹脂バンクの生成状況によって左
右の位置と間隔を調整し、本接着時の温度条件は使用す
る樹脂の溶融温度の適温とした。
The replenishment position was adjusted to the left and right positions and intervals depending on the generation status of the resin bank to be generated, and the temperature condition during the main adhesion was set to an appropriate temperature of the melting temperature of the resin used.

その結果、溶融樹脂バンクは全面に均一に生成され、流
動、流出もなく非常に安定した。
As a result, the molten resin bank was uniformly formed on the entire surface, and was very stable without flow or outflow.

実施例2 0.4mm厚×1219mm幅の鋼板に対し、0.07mm厚
の導電性付与接着性樹脂フィルム×1100mm幅を上鋼
板側より挿入し、下鋼板側より30mm幅の帯状にした該
樹脂フィルムを150mm間隔で中央部に補給挿入し、加
熱圧着した。本接着条件は実施例1と同じく該樹脂に対
する最適温度とし、本接着ロールの加圧力を若干微調整
するのみで、安定した均一な樹脂バンクが生成され、樹
脂バンクの流動もなかった。
Example 2 A 0.47 mm thick × 1219 mm wide steel plate was inserted with a 0.07 mm thick conductivity imparting adhesive resin film × 1100 mm wide from the upper steel plate side, and a resin strip having a width of 30 mm was formed from the lower steel plate side. The film was replenished and inserted into the central part at intervals of 150 mm and thermocompression bonded. Similar to Example 1, the main adhesion conditions were set to the optimum temperature for the resin, and a stable and uniform resin bank was generated only by slightly adjusting the pressure applied to the main adhesion roll, and the resin bank did not flow.

更に、導電性複合鋼板の面積内部のフィラー(金属粉)
の分布状況を調べた結果を第4図に示す。同図より、本
発明例の場合は金属粉が幅方向に均一に分布しているこ
とがわかる。一方、比較例の場合は幅方向の両サイドに
金属粉が片寄り、不均一に分布している。
Furthermore, filler (metal powder) inside the area of the conductive composite steel sheet
Fig. 4 shows the result of examination of the distribution situation of. From the figure, it can be seen that in the case of the present invention example, the metal powder is uniformly distributed in the width direction. On the other hand, in the case of the comparative example, the metal powder is unevenly distributed on both sides in the width direction and unevenly distributed.

また、剪断引張試験を行って板幅方向の接着強度を調べ
た結果を第5図に示すが、本発明例は高強度で板幅方向
で安定しているのに対し、比較例は強度が低く、板幅方
向でバラツキがある。
Further, FIG. 5 shows the results of examining the adhesive strength in the plate width direction by carrying out a shear tensile test. The invention example has high strength and is stable in the plate width direction, while the comparative example has a high strength. It is low and varies in the width direction.

実施例3 実施例1の場合と同様、0.4mm厚×914mm幅のコイ
ル状鋼板を加熱圧着ロール間に通板するに際し、上鋼板
に0.07mm厚×800mm幅の導電性付与接着性樹脂フ
ィルムを仮接着して挿入すると共に、上鋼板に耐熱性樹
脂ファイバーを前記樹脂フィルムエッジに位置するよう
に前接着ロールを介して仮接着して挿入し、本接着ロー
ルにて加熱圧着(本接着)した。本接着時の温度条件に
使用する樹脂の溶融温度の適温とした。
Example 3 As in the case of Example 1, when a 0.4 mm thick × 914 mm wide coil-shaped steel plate was passed between the thermocompression rolls, a 0.07 mm thick × 800 mm wide conductivity imparting adhesive resin was applied to the upper steel plate. The film is temporarily bonded and inserted, and at the same time, the heat-resistant resin fiber is temporarily bonded and inserted into the upper steel plate via the front bonding roll so that it is positioned at the edge of the resin film, and then thermocompression bonding (main bonding is performed with the main bonding roll. )did. The melting temperature of the resin used for the temperature condition during the main adhesion was set to an appropriate temperature.

また、比較のため、前記耐熱性樹脂ファイバーの補給を
行わずに、同様にして本接着ロールにて加熱圧着した。
For comparison, the heat-resisting resin fibers were not replenished, and they were similarly thermocompression-bonded by a main bonding roll.

本接着時の樹脂バンクを観察したところ、比較例の場合
は、第6図に示すように樹脂バンク8が板幅方向に流れ
て、樹脂フィルム幅よりも広がっていたのに対し、本発
明例の場合は、第7図に示すように樹脂バンク8が樹脂
フィルム幅と同一の幅で板幅方向に均一に形成されてい
た。
When the resin bank at the time of main adhesion was observed, in the case of the comparative example, as shown in FIG. 6, the resin bank 8 flowed in the plate width direction and was wider than the resin film width. In this case, as shown in FIG. 7, the resin bank 8 was formed uniformly in the plate width direction with the same width as the resin film width.

また、得られた導電性複合鋼板について、その板端部近
傍のT剥離強度を調べた結果、比較例の場合は第8図に
示すように板端部の強度が低下していたのに対し、本発
明例の場合は第9図に示すように板端部においても何ら
の強度低下も認められなかった。
Further, with respect to the obtained conductive composite steel sheet, as a result of examining the T-peel strength in the vicinity of the plate end, in the case of the comparative example, the strength of the plate end was decreased as shown in FIG. In the case of the example of the present invention, as shown in FIG. 9, no decrease in strength was observed even at the plate end.

更に、板端部近傍のフィラー(金属粉)分布を調べた結
果、比較例の場合は第10図に示すように板端部にフィ
ラーが片寄っていたのに対し、本発明例の場合は第11
図に示すように均一に分布していた。
Furthermore, as a result of examining the filler (metal powder) distribution in the vicinity of the plate edge, in the case of the comparative example, the filler was deviated to the plate edge as shown in FIG. 11
It was uniformly distributed as shown in the figure.

実施例4 実施例3において、糸の補給に代えて、第3図に示す要
領により、樹脂フィルムエッジ直近に気流を供給した。
なお、気体として圧縮エアーを用い、気体の供給圧力は
3kg/cm2とした。
Example 4 In Example 3, instead of replenishing the yarn, an air stream was supplied in the vicinity of the resin film edge according to the procedure shown in FIG.
Compressed air was used as the gas, and the gas supply pressure was 3 kg / cm 2 .

その結果、実施例3の場合と同様、樹脂バンクの分布は
板幅方向に均一に分布し、接着強度も板幅方向に均一で
あり、フィラーの分布も均一であった。
As a result, as in the case of Example 3, the resin bank was uniformly distributed in the plate width direction, the adhesive strength was also uniform in the plate width direction, and the filler distribution was also uniform.

なお、以上の説明では、導電性付与接着性樹脂がフィル
ム状である場合について示したが、液状又はゲル状の場
合においても同様の効果が得られることは云うまでもな
い。
In the above description, the case where the conductivity-imparting adhesive resin is in the form of a film has been described, but it goes without saying that the same effect can be obtained even in the case of a liquid or a gel.

(発明の効果) 以上詳述したように、本発明によれば、導電性に優れる
と共にフィラーの片寄りの影響を受けずに安定した高接
着強度及び溶接性を有する導電性付与複合金属板を製造
できる。
(Effects of the Invention) As described in detail above, according to the present invention, a conductivity-providing composite metal plate having excellent conductivity and stable high adhesive strength and weldability without being affected by the offset of the filler is provided. Can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本接着ロールにより導電性付与複合鋼板を積層
する態様、並びに従来法により形成される樹脂バンクの
状況を示す説明図、 第2図は本発明により糸又は帯体を本接着ロール部に補
給する態様を説明する図、 第3図は本発明により気流を本接着ロール部に補給する
態様を説明する図、 第4図は実施例2で得られた導電性鋼板におけるフィラ
ーの板幅方向の分布状況を示す図、 第5図は実施例2で得られた導電性鋼板の板幅方向の剪
断接着力を示す図、 第6図及び第7図は実施例3における樹脂バンクの生成
状況強を示す図で、第6図は比較例の場合、第7図は本
発明例の場合を示し、 第8図及び第9図は実施例3で得られた導電性鋼板の板
端部近傍のT剥離強度分布を示す図で、第8図は比較例
の場合、第9図は本発明例の場合を示し、 第10図及び第11図は実施例3で得られた導電性鋼板
の板端部近傍のフィラー分布を示す図で、第10図は比
較例の場合、第11図は本発明例の場合を示している。 1、2……加熱圧着(本接着)ロール、3、4……鋼
板、5……導電性付与接着性樹脂フィルム、6……前接
着ロール、7……導電性複合鋼板、8……樹脂バンク、
9……糸又は帯体、10……糸又は帯体供給機、11…
…気体供給機。
FIG. 1 is an explanatory view showing a mode of laminating conductivity-imparting composite steel sheets by the present adhesive roll and a state of a resin bank formed by a conventional method, and FIG. 2 is a yarn or band according to the present invention for the main adhesive roll portion. FIG. 3 is a diagram for explaining a mode of supplying air to the main bonding roll portion according to the present invention, and FIG. 4 is a plate width of the filler in the conductive steel plate obtained in Example 2. FIG. 5 is a diagram showing the distribution state in the direction, FIG. 5 is a diagram showing the shear adhesive force in the plate width direction of the conductive steel sheet obtained in Example 2, and FIGS. 6 and 7 are the generation of resin banks in Example 3. FIG. 6 shows the situation, FIG. 6 shows the case of the comparative example, FIG. 7 shows the case of the example of the present invention, and FIGS. 8 and 9 show the plate end portions of the conductive steel sheets obtained in Example 3. FIG. 8 is a diagram showing a T-peel strength distribution in the vicinity. FIG. 8 shows the case of the comparative example and FIG. 9 shows the case of the present invention. FIG. 10 and FIG. 11 are diagrams showing the filler distribution in the vicinity of the plate edge of the conductive steel sheet obtained in Example 3, FIG. 10 showing the case of the comparative example, and FIG. 11 showing the example of the present invention. The case is shown. 1, 2 ... Thermocompression bonding (main bonding) roll, 3, 4 ... Steel plate, 5 ... Conductivity imparting adhesive resin film, 6 ... Front bonding roll, 7 ... Conductive composite steel plate, 8 ... Resin bank,
9 ... yarn or band, 10 ... yarn or band feeder, 11 ...
… Gas feeder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:16 105:22 B29L 9:00 4F (72)発明者 藤村 裕一 兵庫県高砂市阿弥陀町魚橋287―18 (72)発明者 高田 隆英 兵庫県姫路市田寺6丁目10―21─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B29K 105: 16 105: 22 B29L 9:00 4F (72) Inventor Yuichi Fujimura Amida Town, Takasago City, Hyogo Prefecture Uohashi 287-18 (72) Inventor Takahide Takada 6-10-21 Tadera, Himeji City, Hyogo Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】上下2枚の金属板の間にフィルム状、ゲル
状又は液状の導電性付与接着性樹脂を連続的に供給し、
熱ロールで加熱圧着(本接着)して積層することにより
導電性付与複合金属板を製造するに際し、熱ロール前面
に糸又は帯体を2本以上補給しつつ本接着することによ
り、本接着時に発生する樹脂バンクの流動を安定化しつ
つ積層することを特徴とする導電性付与複合金属板の製
造方法。
1. A film-like, gel-like or liquid conductivity-providing adhesive resin is continuously supplied between two upper and lower metal plates,
When manufacturing a composite metal sheet with conductivity imparted by thermocompression bonding (main adhesion) with a heat roll and laminating the layers, by supplying two or more threads or strips to the front surface of the heat roll and performing main adhesion, A method of manufacturing a composite metal plate having conductivity, comprising laminating while stabilizing a flow of a resin bank generated.
【請求項2】前記糸又は帯体は、融点又はガラス転位温
度が使用温度以上であり、且つ本接着時の加圧下で容易
に偏平になる材質、性状のものである請求項1に記載の
方法。
2. The yarn or strip has a melting point or glass transition temperature which is equal to or higher than a use temperature, and is made of a material and having a property that is easily flattened under pressure during main bonding. Method.
【請求項3】上下2枚の金属板の間にフィルム状、ゲル
状又は液状の導電性付与接着性樹脂を連続的に供給し、
熱ロールで加熱圧着して積層することにより導電性付与
複合金属板を製造するに際し、熱ロール前面に気流を供
給しつつ本接着することにより、本接着時に発生する樹
脂バンクの流動を安定化しつつ積層することを特徴とす
る導電性付与複合金属板の製造方法。
3. A film-like, gel-like or liquid conductivity-providing adhesive resin is continuously supplied between two upper and lower metal plates,
When manufacturing a composite metal plate with conductivity imparted by thermocompression bonding with a heat roll, by performing main bonding while supplying airflow to the front of the heat roll, while stabilizing the flow of the resin bank that occurs during main bonding A method of manufacturing a composite metal plate having conductivity, comprising laminating.
JP2287597A 1990-10-24 1990-10-24 Method of manufacturing conductivity-imparting composite metal plate Expired - Lifetime JPH0626882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287597A JPH0626882B2 (en) 1990-10-24 1990-10-24 Method of manufacturing conductivity-imparting composite metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287597A JPH0626882B2 (en) 1990-10-24 1990-10-24 Method of manufacturing conductivity-imparting composite metal plate

Publications (2)

Publication Number Publication Date
JPH04163043A JPH04163043A (en) 1992-06-08
JPH0626882B2 true JPH0626882B2 (en) 1994-04-13

Family

ID=17719351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287597A Expired - Lifetime JPH0626882B2 (en) 1990-10-24 1990-10-24 Method of manufacturing conductivity-imparting composite metal plate

Country Status (1)

Country Link
JP (1) JPH0626882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006301A (en) * 2015-07-09 2015-10-28 苏州沃尔非自动化设备有限公司 Transmission device used for laminating machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072358B (en) * 2013-01-28 2015-07-01 任四平 Manufacturing method and equipment for micro-foaming sandwich layer steel-plastic composite plate for structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006301A (en) * 2015-07-09 2015-10-28 苏州沃尔非自动化设备有限公司 Transmission device used for laminating machine

Also Published As

Publication number Publication date
JPH04163043A (en) 1992-06-08

Similar Documents

Publication Publication Date Title
JP4561081B2 (en) Reinforcing fiber substrate, composite material, and production method thereof
JP2650071B2 (en) Method for producing unidirectional reinforced PWB laminate
JP3481261B2 (en) Method for producing a composite sheet having a cellular core and at least one outer layer
JP5250898B2 (en) Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material
US4452837A (en) Web reinforced with string-type adhesive and method of manufacturing same
US20070254546A1 (en) Nonwoven textile assembly, method of manufacture, and spirally wound press felt comprised of same
CA2480689C (en) Arrangement and methods for the manufacture of composite layer structures
WO2015072172A1 (en) Thermoplastic resin reinforcing sheet material and manufacturing process therefor
JPH06134917A (en) Expanded graphite laminated sheet, expanded graphite laminated composite material and production thereof
JPH02269131A (en) Raw material for light-weight structure, and method and device for producing honeycomb structure therefrom
JPH09511458A (en) Method of making a UD cross-ply PWB laminate with one or more internal metal layers
JPH0626882B2 (en) Method of manufacturing conductivity-imparting composite metal plate
US7951258B2 (en) Arrangement and methods for the manufacture of composite layer structures
US20070023135A1 (en) Method and device to produce a perforated web material
EP1561568A1 (en) Method and apparatus for producing laminated composite
JPS6389329A (en) Fiber-reinforced thermoplastic synthetic resin member and manufacture of melt joining joint thereof
JPH04223157A (en) Composite metal plate excellent in spot welding characteristics and manufacture thereof
JP3637761B2 (en) Manufacturing method of seat cover
JP3637762B2 (en) Manufacturing method of seat cover
JP5002641B2 (en) Method for producing adhesive-free aramid-polyphenylene sulfide laminate
JP2007216432A (en) Unidirectionally reinforced fiber sheet and its manufacturing method
JPH06155577A (en) Bonding of antistatic sheet
JPS60149450A (en) Sandwich structure
JPH03222734A (en) Unidirectionally arranged reinforcing fiber sheet and manufacture thereof
JP4879676B2 (en) Paint booth filter