JPH0626823Y2 - Load sensor by capacitance - Google Patents

Load sensor by capacitance

Info

Publication number
JPH0626823Y2
JPH0626823Y2 JP3767288U JP3767288U JPH0626823Y2 JP H0626823 Y2 JPH0626823 Y2 JP H0626823Y2 JP 3767288 U JP3767288 U JP 3767288U JP 3767288 U JP3767288 U JP 3767288U JP H0626823 Y2 JPH0626823 Y2 JP H0626823Y2
Authority
JP
Japan
Prior art keywords
load sensor
alloy
capacitance
sealing member
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3767288U
Other languages
Japanese (ja)
Other versions
JPH01141435U (en
Inventor
道夫 根本
憲太郎 堀内
光之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP3767288U priority Critical patent/JPH0626823Y2/en
Publication of JPH01141435U publication Critical patent/JPH01141435U/ja
Application granted granted Critical
Publication of JPH0626823Y2 publication Critical patent/JPH0626823Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は固定基板の電極と荷重によって変形する可動基
板の電極とで静電容量を形成し,荷重により容量の変化
を検出する荷重センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a load sensor that forms an electrostatic capacitance between an electrode of a fixed substrate and an electrode of a movable substrate that is deformed by a load, and detects a change in the capacitance due to the load. .

〔従来の技術〕[Conventional technology]

従来荷重を静電容量の変化で検出する荷重センサの例は
第6図および第7図に示すように絶縁材よりなる固定基
板1と弾性を有する絶縁材よりなる可動基板2とをリン
グ状封止部材4を挟んで所定の40〜50ミクロンの空
隙を保持対向させている。この固定基板1と可動基板2
との中央に金属電極71,72を設け,それぞれの電極
71,72より引き出し線91,92が外部に出され端
子部分11,21に接がれて容量の変化として出力され
る。また封止部材4は間隙を保つとともに気密性を保持
させ,また固定基板1には空気の通り道として小孔5を
貫設し空気コンデンサとなる荷重センサを得ている。
An example of a conventional load sensor that detects a load based on a change in capacitance is a ring-shaped sealing of a fixed substrate 1 made of an insulating material and a movable substrate 2 made of an elastic insulating material as shown in FIGS. 6 and 7. A predetermined gap of 40 to 50 microns is held and opposed to each other with the stopper member 4 interposed therebetween. This fixed substrate 1 and movable substrate 2
Metal electrodes 71 and 72 are provided at the center of the lines, and lead lines 91 and 92 are output from the electrodes 71 and 72 to the outside and are in contact with the terminal portions 11 and 21, and output as a change in capacitance. Further, the sealing member 4 maintains a gap and airtightness, and the fixed substrate 1 is provided with a small hole 5 as a passageway for air to obtain a load sensor as an air condenser.

いま第6図の空気コンデンサを形成する荷重センサの可
動基板2に矢印のように荷重Fが加わると可動基板2は
点線で示すように変形し,電極間隙が変わり静電容量が
変化する。ここで電極面積をS,電極間距離をd,空気
の誘電率をεとすると静電容量Cは で表わせる。荷重F=0の初期状態においてはd=d
であり荷重が加わると可動基板2は変形しd=dとな
るが,d<dであるので静電容量Cは増加するよう
に変化する。この容量の変化量ΔCをたとえば容量−周
波数コンバータのような検出回路で周波数の変化Δと
して取り出して判別される。
When a load F is applied to the movable substrate 2 of the load sensor forming the air condenser shown in FIG. 6 as shown by an arrow, the movable substrate 2 is deformed as shown by the dotted line, the electrode gap is changed, and the electrostatic capacitance is changed. Here, if the electrode area is S, the distance between the electrodes is d, and the permittivity of air is ε 0 , the capacitance C is Can be expressed as D = d 0 in the initial state of the load F = 0
Then, when a load is applied, the movable substrate 2 is deformed and d = d 1 , but since d 1 <d 0 , the electrostatic capacitance C changes so as to increase. This capacitance change amount ΔC is extracted and determined as a frequency change Δ by a detection circuit such as a capacitance-frequency converter.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかし従来の荷重センサにおいては可動基板2は通常ア
ルミナ材などが用いられているが,これはセラミック材
料であるので機械的,または熱的な衝撃によって割れや
すく,ヤング率の温度特性はアルミナにおいては通常−
100ppm/℃前後で,荷重センサの温度特性にも大き
な影響を与える。またセラミックよりなる可動基板2の
ヤング率は大きく,荷重Fに対して,たわみ量は通常1
キログラムに対して2マイクロ程度の変位で小さく,た
とえば1キログラムを中心とする単位荷重における,荷
重Fに対する容量Cの変化分をΔCとするとき感度ΔC/
Cを5%程度とするためには空隙長,すなわち封止部材
4の厚さは50ミクロン程度とする必要があり,製作の
上で空隙長を50ミクロンの精度に加工することは困難
である欠点がある。
However, in the conventional load sensor, the movable substrate 2 is usually made of an alumina material or the like, but since it is a ceramic material, it is easily cracked by mechanical or thermal shock, and the temperature characteristic of Young's modulus is not Usually-
Around 100 ppm / ° C also has a great influence on the temperature characteristics of the load sensor. In addition, the Young's modulus of the movable substrate 2 made of ceramic is large, and the deflection amount is usually 1 with respect to the load F.
It is small with a displacement of about 2 micrograms per kilogram. For example, when the change in capacity C with respect to load F is ΔC in a unit load centered on 1 kilogram, the sensitivity ΔC /
In order to set C to about 5%, it is necessary to set the gap length, that is, the thickness of the sealing member 4 to about 50 microns, and it is difficult to process the gap length to an accuracy of 50 microns in manufacturing. There are drawbacks.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は従来のかかる欠点を除き,一部に設けられたス
ルーホールによって下面にプリントされたリード線導体
と接続された金属電極71を上面に設けた絶縁材よりな
る固定基板1と,電極71の外縁に沿って所定の厚さで
間隙を保たせるリング状の封止部材4,または外周の一
部分を外方に突起を設けたNi42%のFe-Ni合金よりな
るリング状のスペーサを接合したリング状の封止部材4
を介して電極71に対向させNi50〜52%のFe-Ni合
金よりなる恒弾性合金によって形成された可動基板2を
重積した静電容量による荷重センサである。
The present invention eliminates the above-mentioned drawbacks of the prior art, and a fixed substrate 1 made of an insulating material having an upper surface with a metal electrode 71 connected to a lead wire conductor printed on the lower surface by a through hole provided in part, and an electrode 71. A ring-shaped sealing member 4, which keeps a gap with a predetermined thickness along the outer edge of the, or a ring-shaped spacer made of a 42% Ni-Fe alloy with a protrusion provided on the outside of the outer periphery is joined. Ring-shaped sealing member 4
It is a load sensor based on capacitance in which a movable substrate 2 formed of a constant elasticity alloy made of a Fe—Ni alloy having a Ni content of 50 to 52% is stacked so as to face the electrode 71 via a capacitor.

〔作用〕[Action]

固定基板1の上面の電極71と恒弾性合金よりなる可動
基板2とは封止部材4の厚さ,または封止部材4とスペ
ーサとの厚さを空隙間隔とする空気コンデンサを形成
し,可動基板2に荷重が加わると変位して静電容量の変
化を生じ,この変化から荷重が検出される。
The electrode 71 on the upper surface of the fixed substrate 1 and the movable substrate 2 made of a constant elastic alloy are movable by forming an air condenser having a gap between the thickness of the sealing member 4 or the thickness of the sealing member 4 and the spacer. When a load is applied to the substrate 2, the substrate 2 is displaced and the capacitance changes, and the load is detected from this change.

〔実施例〕〔Example〕

本考案の静電容量による荷重センサの実施例を第1図の
縦断正面図,および第2図の分解斜視図に示す。
An embodiment of the load sensor based on the capacitance of the present invention is shown in a vertical sectional front view of FIG. 1 and an exploded perspective view of FIG.

図面に示すようにアルミナのような絶縁材より固定基板
1の上面に円板状の金属電極71がプリントされ,金属
電極71の一部に貫設されたスルーホール8を通して下
面にプリントされたリード線導体12に電気的に接続さ
れる。このスルーホール8の中心に小孔5が貫設されて
空気の流通が行なわれている。また金属電極71の外周
に沿ってガラスあるいはエポキシ接着剤などを用いた所
定の厚さのリング状の封止部材4が接合される。この封
止部材4に恒弾性合金よりなる可動基板2が積み重ねら
れ,この可動基板2と固定基板1の金属電極71とは封
止部材4の厚さを空隙とする空気コンデンサを形成し静
電容量が発生される。
As shown in the drawing, a disk-shaped metal electrode 71 is printed on the upper surface of the fixed substrate 1 from an insulating material such as alumina, and a lead is printed on the lower surface through a through hole 8 penetrating a part of the metal electrode 71. It is electrically connected to the line conductor 12. A small hole 5 is provided at the center of the through hole 8 to allow air to flow therethrough. Further, a ring-shaped sealing member 4 having a predetermined thickness made of glass or epoxy adhesive is joined along the outer periphery of the metal electrode 71. The movable substrate 2 made of a constant elastic alloy is stacked on the sealing member 4, and the movable substrate 2 and the metal electrode 71 of the fixed substrate 1 form an air capacitor having a gap of the thickness of the sealing member 4 to form an electrostatic capacitor. Capacity is generated.

ここで可動基板2に使用されている恒弾性合金はFe,N
i,Cr,Ti系のエリンバー材で第5図の特性曲線図に示
すように熱処理温度によってヤング率の温度特性が調節
でき,図面のように610℃の熱処理を行なうと温度特性
はほぼ0ppm/℃となる。したがって従来のヤング率の
温度特性が−100ppm/℃にくらべて改善されていて
荷重に対する温度特性は有利である。
Here, the constant elastic alloy used for the movable substrate 2 is Fe, N.
As shown in the characteristic curve diagram of Fig. 5, the temperature characteristics of Young's modulus can be adjusted by the heat treatment temperature of i, Cr, and Ti-based Erinver materials, and the temperature characteristics are almost 0 ppm / ℃. Therefore, the temperature characteristic of Young's modulus is improved as compared with the conventional temperature coefficient of -100 ppm / ° C, and the temperature characteristic with respect to the load is advantageous.

また恒弾性合金のヤング率は19000kg/mm2で,従
来アルミナ材の40000kg/mm2の1/2以下であるので
同じ荷重に対して恒弾性合金の方が2倍前後変位量が大
きく,封止部材4の厚みを従来の2倍にしても感度5%
程度を確保できる。したがって封止部材4の厚さを10
0マイクロ程度にしてもよく製造が容易となる。
The Young's modulus of the constant modulus alloy is 19000kg / mm 2, it is about twice the displacement amount is large constantly elastic alloy to the same load since conventional alumina material is 1/2 or less of 40000kg / mm 2 of sealing Sensitivity 5% even if the thickness of the stop member 4 is doubled from the conventional one
The degree can be secured. Therefore, the thickness of the sealing member 4 is set to 10
It may be about 0 micro, which facilitates manufacturing.

また可動基板2は恒弾性合金であるので従来のアルミナ
材にくらべて機械的衝撃により割れが少なくなる。
Further, since the movable substrate 2 is a constant elastic alloy, it is less likely to be cracked by mechanical impact as compared with the conventional alumina material.

また本考案の静電容量による荷重センサの他の実施例を
第3図の縦断正面図および第4図の分解斜視図に示す。
Another embodiment of the capacitance-based load sensor of the present invention is shown in the vertical sectional front view of FIG. 3 and the exploded perspective view of FIG.

図面に示すように絶縁性の固定基板1上にプリントされ
た封止部材4の上にNi50〜52%のFe-Ni合金あるい
はNi42%のFe-Ni合金よりなり封止部材4とほぼ同形
で外周より外方に向け突起6を設けた金属スペーサ3を
接合する。
As shown in the drawing, on the sealing member 4 printed on the insulative fixed substrate 1, Ni 50 to 52% Fe-Ni alloy or Ni 42% Fe-Ni alloy is formed, and it has almost the same shape as the sealing member 4. The metal spacers 3 provided with the protrusions 6 are bonded outward from the outer periphery.

また恒弾性合金よりなる可動基板2と金属スペーサ3と
は抵抗溶接あるいはレーザ溶接によって接合され,スペ
ーサ3の突起6は抵抗溶接の場合,溶接機との接続にも
なり,また可動基板2の電極取り出し部ともなる。
Further, the movable substrate 2 made of a constant elastic alloy and the metal spacer 3 are joined by resistance welding or laser welding, and the protrusion 6 of the spacer 3 is also connected to a welding machine in the case of resistance welding, and the electrode of the movable substrate 2 is also connected. It also serves as a take-out section.

〔考案の効果〕[Effect of device]

以上に述べたように本考案によれば,従来のアルミナが
可動基板2に用いられるに対し恒弾性合金が用いられて
いるので機械的な衝撃に強く,温度特性が優れた量産に
適した荷重センサが得られる。
As described above, according to the present invention, since the conventional alumina is used for the movable substrate 2 and the constant elastic alloy is used, the load is suitable for mass production, which is strong against mechanical shock and has excellent temperature characteristics. A sensor is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の静電容量による荷重センサの縦断正面
図,第2図は第1図の分解斜視図,第3図は本考案によ
る他の実施例の縦断正面図,第4図は第3図の分解斜視
図,第5図は恒弾性合金の温度特性曲線図,第6図は従
来の静電容量による荷重センサの縦断正面図,第7図は
第6図の分解斜視図である。 なお 1:固定基板,2:可動基板,3:スペーサ,4:封止
部材,5:小孔,6:突起,71,72:電極,8:ス
ルーホール,91,92:引き出し線,11,21:端
子部分,12:リード線導体。
FIG. 1 is a vertical sectional front view of a capacitive load sensor of the present invention, FIG. 2 is an exploded perspective view of FIG. 1, FIG. 3 is a vertical sectional front view of another embodiment of the present invention, and FIG. Fig. 3 is an exploded perspective view, Fig. 5 is a temperature characteristic curve diagram of a constant elastic alloy, Fig. 6 is a vertical sectional front view of a load sensor with a conventional capacitance, and Fig. 7 is an exploded perspective view of Fig. 6. is there. In addition, 1: fixed substrate, 2: movable substrate, 3: spacer, 4: sealing member, 5: small hole, 6: projection, 71, 72: electrode, 8: through hole, 91, 92: lead wire, 11, 21: terminal part, 12: lead wire conductor.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一部に設けられたスルーホール8によって
下面に設けられたリード線導体12に接続された金属電
極71を上面に設けた絶縁材よりなる固定基板1に,前
記電極71の外縁に沿って所定の厚さで間隙を保たせる
封止部材4,または外周の一部分に外方に向けて突起6
を突出した金属材よりなるスペーサ3を接合した前記封
止部材4を介して恒弾性合金よりなる可動基板2を重積
してコンデンサとする静電容量による荷重センサ。
1. A fixed substrate 1 made of an insulating material having an upper surface on which a metal electrode 71 connected to a lead wire conductor 12 provided on the lower surface by a through hole 8 provided at a part thereof is attached to an outer edge of the electrode 71. Along the edge of the sealing member 4 or a part of the outer periphery of which a gap is maintained with a predetermined thickness.
A load sensor based on electrostatic capacitance, which is a capacitor formed by stacking movable substrates 2 made of a constant elastic alloy through the sealing member 4 to which a spacer 3 made of a protruding metal material is joined.
【請求項2】前記可動基板2は恒弾性合金で前記スペー
サ3はNi50〜52%のFe-Ni合金又はNi42%のFe-Ni
合金よりなる実用新案登録請求の範囲第1項記載の静電
容量による荷重センサ。
2. The movable substrate 2 is a constant elastic alloy, and the spacer 3 is a Fe—Ni alloy containing 50 to 52% Ni or a Fe—Ni containing 42% Ni.
The load sensor according to claim 1, wherein the utility model registration is made of an alloy.
JP3767288U 1988-03-24 1988-03-24 Load sensor by capacitance Expired - Lifetime JPH0626823Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3767288U JPH0626823Y2 (en) 1988-03-24 1988-03-24 Load sensor by capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3767288U JPH0626823Y2 (en) 1988-03-24 1988-03-24 Load sensor by capacitance

Publications (2)

Publication Number Publication Date
JPH01141435U JPH01141435U (en) 1989-09-28
JPH0626823Y2 true JPH0626823Y2 (en) 1994-07-20

Family

ID=31264249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3767288U Expired - Lifetime JPH0626823Y2 (en) 1988-03-24 1988-03-24 Load sensor by capacitance

Country Status (1)

Country Link
JP (1) JPH0626823Y2 (en)

Also Published As

Publication number Publication date
JPH01141435U (en) 1989-09-28

Similar Documents

Publication Publication Date Title
US6651506B2 (en) Differential capacitive pressure sensor and fabricating method therefor
US5447076A (en) Capacitive force sensor
KR0137931B1 (en) Capacitive semiconductor sensor with hinged diaphragm for planar motion
JPS60195829A (en) Electrostatic capacity type insulated pressure detector
KR0137965B1 (en) Capacitive sensor with minimized dielectric drift
JPS6034687B2 (en) Pressure electronic conversion element
JPS6140529A (en) Pressure and capacitance transducer and manufacture thereof
JPH03183963A (en) Accelerometer
JPH0324793B2 (en)
JPH01259265A (en) Capacitive accelerometer and manufacture thereof
JP3399688B2 (en) Pressure sensor
JPH0743625Y2 (en) Capacitive load sensor
JPH0626823Y2 (en) Load sensor by capacitance
JP2007101222A (en) Pressure sensor
JPH08122362A (en) Capacitive acceleration sensor
JP2004226294A (en) Static and dynamic pressure detection sensor
JPH0750685Y2 (en) Capacitive load sensor
JPH086275Y2 (en) Capacitive load sensor
JPH0542353Y2 (en)
JPH06323939A (en) Capacitance-type sensor
JPH0447272A (en) Semiconductor acceleration sensor
CN213364813U (en) Asymmetric beam resonant micro-mechanical acceleration sensor and electronic device
JP2003106919A (en) Static pressure and dynamic pressure detection sensor
JP3136549B2 (en) Capacitive pressure sensor
JPH0833330B2 (en) Capacitive load sensor and manufacturing method thereof