JPH06267721A - M-type ferrite magnetic powder and anisotropic magnet - Google Patents

M-type ferrite magnetic powder and anisotropic magnet

Info

Publication number
JPH06267721A
JPH06267721A JP5093512A JP9351293A JPH06267721A JP H06267721 A JPH06267721 A JP H06267721A JP 5093512 A JP5093512 A JP 5093512A JP 9351293 A JP9351293 A JP 9351293A JP H06267721 A JPH06267721 A JP H06267721A
Authority
JP
Japan
Prior art keywords
type ferrite
magnetic powder
magnetic
ferrite magnetic
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5093512A
Other languages
Japanese (ja)
Inventor
Osamu Kimura
修 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5093512A priority Critical patent/JPH06267721A/en
Publication of JPH06267721A publication Critical patent/JPH06267721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide M-type ferrite magnetic powder and an anisotropic magnet having high coercive force. CONSTITUTION:M-type ferrite magnetic powder is represented by a general formula of XO.nFe2O3 (in the formula, X is a mixture of Sr and Ba, and n is a real number of 5.6-6.1), wherein Sr/Ba is 8/2-5/5. An anisotropic magnet uses the powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なM型フエライト磁
性粉及び磁石に関し、さらに詳しくは高保磁力を有し、
磁気記録用などに利用できるM型フエライト磁性粉及び
それを用いた異方性磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel M-type ferrite magnetic powder and magnet, more specifically having a high coercive force,
The present invention relates to an M-type ferrite magnetic powder that can be used for magnetic recording and the like and an anisotropic magnet using the same.

【0002】[0002]

【従来の技術】M型フエライトは、上記一般式XO・n
Feで表わされ、XがSr、Ba、CaおよびP
bから選択される少なくとも一種の金属を表すとされて
いるが、従来実際に工業的にはBaもしくはSrそれぞ
れ単独のものしか用いられていない。
2. Description of the Related Art M-type ferrites are represented by the above general formula XO.n.
Fe 2 O 3 and X is Sr, Ba, Ca and P
It is said that it represents at least one metal selected from b, but in the past, only Ba or Sr alone has been used in practice.

【0003】Ba系はその原材料の安価さより、製造工
程中において磁場成形(磁化容易軸をそろえることによ
り磁気特性の向上を目的とする)することなしに製造さ
れる、いわゆる等方性磁性粉として製造されている。ま
た、Sr系はBa系に比べ、その結晶磁気異方性定数が
大きいため高保磁力が得られ、原材料はBa系にたいし
割高になるが、磁場成形することにより磁気特性がBa
系等方性磁性粉の2〜4倍となるいわゆる異方性磁性粉
として製造されている。またそれら磁性粉の高保磁力を
利用し磁気カード用磁性粉としても利用されている。
The Ba-based materials are so-called isotropic magnetic powders which are manufactured without magnetic field shaping (to improve the magnetic properties by aligning the easy axis of magnetization) during the manufacturing process because of the low cost of the raw materials. Being manufactured. Further, since the Sr system has a larger crystal magnetic anisotropy constant than the Ba system, a high coercive force can be obtained, and the raw material is relatively expensive as compared with the Ba system, but the magnetic characteristics are Ba by the magnetic field molding.
It is manufactured as a so-called anisotropic magnetic powder which is 2 to 4 times as much as the isotropic magnetic powder. Further, it is also used as magnetic powder for magnetic cards by utilizing the high coercive force of these magnetic powders.

【0004】[0004]

【発明が解決しようとする課題】近年のダウンサイジン
グ化の波に伴いそれら電子機器に組み込まれるモータ
ー、スピーカーなどに用いられる永久磁石材料も高性能
でしかも省スペースがますます要求されている。それら
の要求にあった材料としてSm−Co系、またNd−F
e−B系などのいわゆるレアアース磁石が用いられてい
る。 しかながらそれら材料は高価であり、また供給面
で不安定な原材料を使用することや、急冷法など特殊な
製造法を用いるため民生用として大量に用いられていな
い。
With the recent downsizing trend, there is an increasing demand for high performance and space saving permanent magnet materials used in motors and speakers incorporated in such electronic devices. Sm-Co based materials and Nd-F as materials that meet those requirements
So-called rare earth magnets such as e-B series are used. However, these materials are expensive, and are not used in large quantities for consumer use because they use raw materials that are unstable in terms of supply and use a special manufacturing method such as a quenching method.

【0005】そのためこれらより原材料の安価なSr系
で添加物、粒子径、成形方法などを検討することにより
高保磁力化をはかり磁気特性の向上がなされている。し
かしながらこれらの手法を用いても工業的には限界のレ
ベルまできている。
Therefore, by studying additives, particle diameters, molding methods, etc. with Sr-based materials, which are cheaper than these raw materials, a high coercive force is achieved and magnetic characteristics are improved. However, even if these methods are used, it has reached the limit level industrially.

【0006】[0006]

【課題を解決するための手段】上述のように一般式のX
がSr、Ba、CaおよびPbから選択される少なくと
も一種の金属であってもSrやBaが主で、Sr/Ba
の比についての記載はなく、実際にもSrとBaの混合
物をXとしたM型フエライトはない。
As described above, X of the general formula is used.
Is at least one metal selected from Sr, Ba, Ca, and Pb, but Sr and Ba are mainly contained, and Sr / Ba
There is no description about the ratio of M type ferrite, and actually there is no M type ferrite having X as a mixture of Sr and Ba.

【0007】本発明者は添加物、粒子径、成形方法など
従来技術の延長方法による高保磁力ではなく、まったく
新しい方法で高保磁力化が可能であることを見い出した
ものである。すなわち、M型フエライトの保磁力を説明
するのに、歪、形状、結晶の三つの磁気異方性が取り上
げられ、それぞれについて理論的な式が提示されてい
る。この中で歪磁気異方性に着眼し、イオン半径の大き
く異なり、M型フエライト結晶格子中に入ることのでき
る2価の金属であるSrおよびBaを同時に添加するこ
とによりM型フエライトに歪みが生じるのではないかと
いう考えを基に検討を重ねた結果、特定のSr/Ba比
の領域においてそれぞれ単独で添加するよりも保磁力が
増大することを見い出し本発明に到達した。
The present inventor has found that a high coercive force can be obtained by a completely new method, instead of the high coercive force obtained by the conventional extension methods such as additives, particle diameters and molding methods. That is, in order to explain the coercive force of M-type ferrite, three magnetic anisotropies of strain, shape, and crystal are taken up, and theoretical formulas are presented for each. Focusing on the strain magnetic anisotropy among them, the divalent metals Sr and Ba, which are largely different in ionic radius and can enter into the M-type ferrite crystal lattice, are added at the same time, so that the strain is generated in the M-type ferrite. As a result of repeated studies based on the idea that they may occur, they have found that the coercive force is increased in the region of a specific Sr / Ba ratio, compared with the case where they are added alone, and arrived at the present invention.

【0008】すなわち、本発明は、一般式XO・nFe
(式中X:SrとBaの混合物、n:5.6〜
6.1の実数を表わす)で示されるM型フエライトにお
いて、Sr/Baの比が8/2〜5/5であることを特
徴とするM型フエライト磁性粉であり、それを用いた異
方性磁石である。
That is, the present invention relates to the general formula XO.nFe
2 o 3 (wherein X: a mixture of Sr and Ba, n: 5.6 to
An M-type ferrite magnetic powder having a Sr / Ba ratio of 8/2 to 5/5. It is a sex magnet.

【0009】以下に本発明を詳細に説明する。本発明に
使用するSrおよびBaは最終的には酸化物の形で使用
されるので、加熱すれば酸化物となる原料たとえば水酸
化物、硝酸塩、硫酸塩、有機金属化合物、炭酸塩などが
あるが、工業的には炭酸塩(SrCOおよびBaCO
)が取扱が容易で、安価であり、かつ高純度の原料が
得られるので最も望ましい。また、Feとしては最終的
にはベンガラ(α−Fe)の形となる酸化物とし
て使用されるので、加熱すればこの形の酸化物となる原
料たとえば金属鉄、Fe、FeOOH、炭酸鉄、
硫酸鉄、塩酸鉄、有機金属鉄などがあるが工業的にはベ
ンガラが取扱が容易で安価でかつ高純度の原料が得られ
るので最も望ましい。
The present invention will be described in detail below. Since Sr and Ba used in the present invention are finally used in the form of oxides, there are raw materials such as hydroxides, nitrates, sulfates, organometallic compounds and carbonates which become oxides when heated. However, industrially, carbonate (SrCO 3 and BaCO
3 ) is most desirable because it is easy to handle, inexpensive, and high-purity raw material can be obtained. Further, since Fe is finally used as an oxide in the form of red iron oxide (α-Fe 2 O 3 ), a raw material such as metallic iron, Fe 3 O 4 , which becomes an oxide in this form when heated, FeOOH, iron carbonate,
There are iron sulfate, iron chloride, organic metal iron, etc., but industrially, red iron oxide is the most desirable because it is easy to handle, inexpensive and a high-purity raw material can be obtained.

【0010】原料の粒度は0.1−2μm程度がこれら
の原料を混合する際に取扱いやすい。本発明に係わるM
型フエライトを作製するに当たっては、SrOとBaO
のモル比が8/2から5/5になるように、SrCO
とBaCOを秤量し、かつFe/(SrCO
+BaCO)のモル比が5.6〜6.1の範囲になる
ようにFeを秤量して各粉末をボールミル等の混
合器を用いて湿式または乾式法によって混合し、これを
適当な温度で電気炉等の加熱装置内で焼成し、所望のM
型フエライトを得る方法が粉末法と呼ばれる工業的に最
も広く用いられている方法である。その際上記混合粉を
食塩の如き塩類またはガラスと混合し、加熱溶解させて
反応を生じさせてフエライトを得る溶融法も可能であ
る。又上記フエライトになるようにSr、Ba、Feの
それぞれの塩からなる水溶液を作製し、それをアルカリ
あるいは蓚酸のごとき有機酸を用いて共沈させて得られ
た沈澱を適当な温度で焼成する(共沈法)か、あるいは
該水溶液を適当な温度に加熱分解する(熱分解法)か、
または適当な加圧水蒸気下で該水溶液中の該塩類を反応
させる(水熱合成法)事によって、当該フエライトを得
ることも可能である。
The raw material having a particle size of about 0.1 to 2 μm is easy to handle when mixing these raw materials. M according to the present invention
SrO and BaO are used in the production of die-type ferrite.
So that the molar ratio of SrCO 3 is from 8/2 to 5/5.
And BaCO 3 were weighed, and Fe 2 O 3 / (SrCO 3
Fe 2 O 3 is weighed so that the molar ratio of + BaCO 3 ) is in the range of 5.6 to 6.1, and the powders are mixed by a wet or dry method using a mixer such as a ball mill. The desired M by firing in a heating device such as an electric furnace at various temperatures.
The method of obtaining type ferrite is the most widely used method industrially called the powder method. At that time, a melting method is also possible in which the mixed powder is mixed with a salt such as salt or glass and heated and dissolved to cause a reaction to obtain ferrite. Further, an aqueous solution containing salts of Sr, Ba and Fe is prepared so as to become the above ferrite, and the precipitate obtained by coprecipitating it with an organic acid such as alkali or oxalic acid is calcined at an appropriate temperature. (Coprecipitation method), or by heating and decomposing the aqueous solution at an appropriate temperature (pyrolysis method),
Alternatively, the ferrite can be obtained by reacting the salts in the aqueous solution under an appropriate pressurized steam (hydrothermal synthesis method).

【0011】[0011]

【実施例】以下に実施例を挙げて本発明を説明する。 実施例1 M型フエライトXO・nFeにおいては、XがB
aまたはSr単品である場合、nの値は通常5.6〜
6.1の範囲であるが、nの値は小さくなるにつれて磁
性粉を磁石として焼結する際の焼結温度が低下するのみ
で、磁気特性は著しく変化することはない。従って化学
量論的に最適の数値であるn=6の場合について、Sr
とBaの比を変化させて磁性粉としての特性を比較検討
した。すなわち酸化鉄(α−Fe)、炭酸ストロ
ンチウムおよび炭酸バリウムの総重量が1000gにな
るように秤量、湿式混合(Sr/Ba=7/3の場合に
ついて説明すると、SrCO=94.7g、BaCO
=26.8g、α−Fe=878.5gを秤
り、これに純水1500g、ジルコニアボール3000
gを加えて20時間湿式混合した。)、乾燥後1125
℃で1時間焼成した。
EXAMPLES The present invention will be described below with reference to examples. Example 1 In M-type ferrite XO.nFe 2 O 3 , X is B
When a or Sr is a single product, the value of n is usually 5.6 to
Although it is in the range of 6.1, as the value of n becomes smaller, the sintering temperature at the time of sintering the magnetic powder as a magnet only decreases, and the magnetic characteristics do not significantly change. Therefore, for the case of n = 6, which is the stoichiometrically optimum value, Sr
The characteristics of the magnetic powder were comparatively examined by changing the ratio of Ba and Ba. That is, when weighed so that the total weight of iron oxide (α-Fe 2 O 3 ), strontium carbonate and barium carbonate was 1000 g, and wet-mixed (Sr / Ba = 7/3), SrCO 3 = 94.7 g. , BaCO
3 = 26.8 g, α-Fe 2 O 3 = 878.5 g were weighed, and 1500 g of pure water and zirconia balls 3000 were weighed.
g and wet mixed for 20 hours. ), After drying 1125
Calcination was performed for 1 hour.

【0012】次にこの焼成物をアトマイザーにて粗砕
後、バッチ式乾式振動ミルにて、粒成長抑止剤としてS
iOを0.6wt%添加し、BET法による比表面積
測定で2.7〜3.0m/gとなるように微粉砕し
た。このようにして得られた粉にPVA10wt%溶液
を10wt%(PVAとして1wt%)添加し15mm
φの金型を用い1500kg/cmの成形圧で成形し
た。
Next, this fired product was roughly crushed by an atomizer and then S was added as a grain growth inhibitor in a batch type dry vibration mill.
0.6 wt% of iO 2 was added, and finely pulverized so as to have a specific surface area of 2.7 to 3.0 m 2 / g by BET method. To the powder thus obtained, add 10 wt% of PVA solution at 10 wt% (1 wt% as PVA) to 15 mm.
Molding was performed using a φ mold at a molding pressure of 1500 kg / cm 2 .

【0013】この成形体を大気中で昇温速度200℃/
hで昇温し、1180℃で1時間焼成した。冷却後磁気
特性を直流磁化特性自動記録装置(理研電子社製)を用
い、印加磁界10kOeで磁化曲線を測定した。
This molded body is heated in the atmosphere at a heating rate of 200 ° C. /
It heated up at h and baked at 1180 degreeC for 1 hour. After cooling, the magnetic characteristic was measured using a direct current magnetization characteristic automatic recorder (manufactured by Riken Denshi Co., Ltd.) with an applied magnetic field of 10 kOe.

【0014】これより残留磁化(Br)、磁束密度保磁
力(bHc)、磁化保磁力(iHc)、最大エネルギー
積BH(max)求めた結果を表1に示す。
Table 1 shows the results of the remanent magnetization (Br), the magnetic flux density coercive force (bHc), the magnetic coercive force (iHc), and the maximum energy product BH (max) obtained from the above.

【0015】[0015]

【表1】 [Table 1]

【0016】この結果、Sr/Baの比が8/2から5
/5の範囲に於て、Ba単品またはSr単品の場合より
も保磁力が向上することが見いだされた。
As a result, the Sr / Ba ratio is from 8/2 to 5
It was found that in the range of / 5, the coercive force is improved as compared with the case of Ba alone or Sr alone.

【0017】実施例2 次に異方性用磁性粉としては、Fe/(SrO+
BaO)のモル比が6.0でSr/Baの比については
等方性用磁性粉でiHcは7/3組成で最大となったた
め比較のため10/0、7/3、6/4組成について試
験した。方法はこれら組成となるように酸化鉄(α−F
)、炭酸ストロンチウム、および炭酸バリウム
の総重量が1000gになるように秤量湿式混合、乾燥
後1300℃にて1時間焼成した。次にこの焼成物をア
トマイザーにて粗砕後、遊星式湿式ボールミルにて焼結
の際の粒成長抑止剤としてSiOを0.36wt%、
CaOを0.45wt%添加し、BET法による比表面
積測定で3.6〜4.0m/gとなるように微粉砕し
た。このようにして得られたスラリーを5000Gの磁
場中で15mmφの金型を用い350kg/cmの成
形圧で磁場成形した。この成形体を大気中で昇温速度2
00℃/hで昇温し、1225℃で1時間焼成した。冷
却後磁気特性を直流磁化特性自動記録装置を用い、印加
磁界10kOeで測定した。表2にその測定結果を示
す。
Example 2 Next, as magnetic powder for anisotropy, Fe 2 O 3 / (SrO +
The molar ratio of BaO) is 6.0 and the ratio of Sr / Ba is the magnetic powder for isotropicity, and iHc was the maximum at 7/3 composition, so for comparison, 10/0, 7/3, 6/4 composition. Was tested. The method is iron oxide (α-F
e 2 O 3 ), strontium carbonate, and barium carbonate were weighed and wet-mixed to a total weight of 1000 g, dried, and then baked at 1300 ° C. for 1 hour. Next, after roughly crushing this fired product with an atomizer, 0.36 wt% of SiO 2 was used as a grain growth inhibitor during sintering with a planetary wet ball mill.
0.45 wt% of CaO was added and finely pulverized so that the specific surface area measured by the BET method was 3.6 to 4.0 m 2 / g. The slurry thus obtained was subjected to magnetic field molding in a magnetic field of 5000 G using a mold of 15 mmφ at a molding pressure of 350 kg / cm 2 . This molded body is heated in the atmosphere at a heating rate of 2
The temperature was raised at 00 ° C./h and firing was performed at 1225 ° C. for 1 hour. After cooling, the magnetic characteristics were measured with an applied magnetic field of 10 kOe using a DC magnetization characteristic automatic recording device. Table 2 shows the measurement results.

【0018】[0018]

【表2】 [Table 2]

【0019】これより残留磁化(Br)、磁束密度保磁
力(bHc)、磁化保磁力 (iHc)、最大エネルギ
ー積BH(max)を求めた。この結果最も特性がよい
とされるSr単品よりも磁気特性が向上していることが
認められた。
From this, remanent magnetization (Br), magnetic flux density coercive force (bHc), magnetization coercive force (iHc), and maximum energy product BH (max) were obtained. As a result, it was confirmed that the magnetic properties were improved as compared with the Sr single product, which is said to have the best properties.

【0020】[0020]

【発明の効果】本発明に係るM型フエライト中のSr/
Baの比は8/2〜5/5間であり、Sr、Baそれぞ
れ単独で使用することにより高保磁力化が可能であるた
め、これを用いることにより、より高保磁力を持った磁
気カードの作成が可能となり、また高性能な焼結磁性材
料としても利用価値がある。しかも割高なSr単独で製
造することなく安価なBaを一部用いることにより高性
能化でき、かつ通常の工業的なセラミックス製造法で製
造できるので、コスト的にも有利である。
EFFECT OF THE INVENTION Sr / in M-type ferrite according to the present invention
The ratio of Ba is between 8/2 and 5/5, and high coercive force can be obtained by using Sr and Ba alone. Therefore, by using this, a magnetic card having higher coercive force can be produced. It is also possible to use it as a high-performance sintered magnetic material. In addition, since it is possible to improve the performance by using a part of inexpensive Ba without producing the expensive Sr alone and to produce it by the usual industrial ceramics production method, it is also advantageous in terms of cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式XO・nFe(式中X:S
rとBaの混合物、n:5.6〜6.1の実数を表わ
す)で示されるマグネトプランバイト型フエライト(以
下M型フエライトと称する)において、Sr/Baの比
が8/2〜5/5であることを特徴とするM型フエライ
ト磁性粉。
1. The general formula XO.nFe 2 O 3 (wherein X: S
In a magnetoplumbite type ferrite (hereinafter referred to as M type ferrite) represented by a mixture of r and Ba, n: representing a real number of 5.6 to 6.1, the ratio of Sr / Ba is 8/2 to 5 /. 5. An M-type ferrite magnetic powder characterized by being No. 5.
【請求項2】 請求項1のM型フエライト磁性粉を用い
て製造した異方性磁石。
2. An anisotropic magnet produced by using the M-type ferrite magnetic powder according to claim 1.
JP5093512A 1993-03-16 1993-03-16 M-type ferrite magnetic powder and anisotropic magnet Pending JPH06267721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5093512A JPH06267721A (en) 1993-03-16 1993-03-16 M-type ferrite magnetic powder and anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5093512A JPH06267721A (en) 1993-03-16 1993-03-16 M-type ferrite magnetic powder and anisotropic magnet

Publications (1)

Publication Number Publication Date
JPH06267721A true JPH06267721A (en) 1994-09-22

Family

ID=12882879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5093512A Pending JPH06267721A (en) 1993-03-16 1993-03-16 M-type ferrite magnetic powder and anisotropic magnet

Country Status (1)

Country Link
JP (1) JPH06267721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052585A1 (en) * 2000-12-15 2002-07-04 Sumitomo Special Metals Co., Ltd. Permanent magnet and method for preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052585A1 (en) * 2000-12-15 2002-07-04 Sumitomo Special Metals Co., Ltd. Permanent magnet and method for preparation thereof
US6929758B2 (en) 2000-12-15 2005-08-16 Neomax Co., Ltd. Permanent magnet and method for preparation thereof
CN100403461C (en) * 2000-12-15 2008-07-16 日立金属株式会社 Permanent magnet and method for preparation thereof

Similar Documents

Publication Publication Date Title
US6955768B2 (en) Permanent magnet and method for preparation thereof
EP1365425B1 (en) Permanent magnet
EP2450922A1 (en) Ferrite sintered magnet producing method and ferrite sintered magnet
MXPA06015044A (en) Oxide magnetic material and sintered magnet.
CN100403461C (en) Permanent magnet and method for preparation thereof
JP4194013B2 (en) Ferrite magnet manufacturing method
JP2005259751A (en) Ferrite magnet and its manufacturing method
WO2001035424A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
KR20150048256A (en) Magnet powders, production methods thereof, and magnets including the same
WO2000031756A1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
JPS61256967A (en) Manufacture of mn-zn ferrite
JP3262109B2 (en) Magnet powder and method for producing the same
JP3835729B2 (en) Ferrite sintered magnet and manufacturing method thereof
JP2008187184A (en) Production process of ferrite magnet
JPH06267721A (en) M-type ferrite magnetic powder and anisotropic magnet
Chien et al. Preparation and Properties of Barium Ferrite Using Hot‐Rolled Mill Scale
JP2002334803A (en) Permanent magnet and manufacturing method therefor
JPH01112705A (en) Manufacture of oxide permanent magnet
JP2006203260A (en) Ferrite magnet
JPS6217841B2 (en)
JP2002141212A (en) Rotating machine
KR100538874B1 (en) High performance ferrite sintered magnet and producing method of the same
JPH11307331A (en) Ferrite magnet
JP2001006912A (en) Hard ferrite magnet and its manufacture
JP2001093716A (en) Powder for magnetic recording medium and method for manufacturing thereof