JPH06265672A - Reactor container - Google Patents

Reactor container

Info

Publication number
JPH06265672A
JPH06265672A JP5055412A JP5541293A JPH06265672A JP H06265672 A JPH06265672 A JP H06265672A JP 5055412 A JP5055412 A JP 5055412A JP 5541293 A JP5541293 A JP 5541293A JP H06265672 A JPH06265672 A JP H06265672A
Authority
JP
Japan
Prior art keywords
containment vessel
cooling water
reactor
storage container
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5055412A
Other languages
Japanese (ja)
Inventor
Kenichi Sato
憲一 佐藤
Shozo Yamanari
省三 山成
Takeshi Shinno
毅 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5055412A priority Critical patent/JPH06265672A/en
Publication of JPH06265672A publication Critical patent/JPH06265672A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable cooling the whole outer wall of a container evenly and uniformly. CONSTITUTION:A reactor container 1 contains a reactor 2 and is provided with a dry well 7, a suppression pool 3 and vent pipes 8 connecting the dry well 7 and the suppression pool 3. The whole reactor plant including the containment l is placed underground below the ground level 9. On the outer wall of the containment 1, a plurality of steel-made cooling water channel 4 are multiplly placed on the upper part and the side of the containment 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電プラントに
おける原子炉格納容器に係り、特に、通常運転中および
万一の事故発生時における原子炉格納容器内の冷却技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor containment vessel in a nuclear power plant, and more particularly to a cooling technique for the reactor containment vessel during normal operation and in the event of an accident.

【0002】[0002]

【従来の技術】従来の原子炉格納容器の冷却技術に関す
るものには、例えば、特開平2− 122300号公報があ
る。
2. Description of the Related Art A conventional cooling technique for a containment vessel is disclosed in, for example, Japanese Patent Laid-Open No. 122300/1990.

【0003】ここでは、従来の原子炉格納容器の冷却技
術について、上記従来例に基づいて、沸騰水型原子炉の
例を示す。
Here, an example of a boiling water reactor will be described based on the above-mentioned conventional example regarding the conventional cooling technique for the reactor containment vessel.

【0004】従来例における沸騰水型原子炉の格納容器
および格納容器冷却システムにおける主要な機器を図3
に示す。図3に示すように、従来例における原子炉格納
容器1は、原子炉2を格納し、また、サプレッションプ
ール3が設けられている。格納容器1の上部には冷却水
路4が設けられ、やはり、格納容器1の外側に設けられ
た外周プール5を水源として給水ユニット6によって冷
却水を供給することができるように構成されている。
FIG. 3 shows the main components of the containment vessel of the boiling water reactor and the containment vessel cooling system in the conventional example.
Shown in. As shown in FIG. 3, the reactor containment vessel 1 in the conventional example stores a reactor 2 and is provided with a suppression pool 3. A cooling water channel 4 is provided in the upper part of the storage container 1, and the cooling water can be supplied by the water supply unit 6 using the outer pool 5 provided outside the storage container 1 as a water source.

【0005】このような構成の原子炉格納容器におい
て、万一、事故が発生した場合、原子炉2から高温の蒸
気が放出されて格納容器1内の雰囲気の温度および圧力
が上昇することが考えられる。このとき、給水ユニット
6により冷却水を格納容器1の上部に供給すると、この
冷却水は冷却水路4を流れ、格納容器1の壁面を冷却す
る。格納容器1の壁面温度が低下すると、原子炉2から
格納容器1の内部に放出された蒸気は凝縮・冷却され、
格納容器1の内部の温度・圧力が低下し、冷却が達成さ
れる。
If an accident occurs in the reactor containment vessel having such a structure, it is conceivable that high temperature steam will be released from the reactor 2 and the temperature and pressure of the atmosphere inside the containment vessel 1 will rise. To be At this time, when cooling water is supplied to the upper part of the storage container 1 by the water supply unit 6, this cooling water flows through the cooling water passage 4 and cools the wall surface of the storage container 1. When the wall temperature of the containment vessel 1 decreases, the steam discharged from the reactor 2 into the containment vessel 1 is condensed and cooled,
The temperature and pressure inside the storage container 1 are reduced, and cooling is achieved.

【0006】[0006]

【発明が解決しようとする課題】上従の従来例では、格
納容器上部に冷却水路を設ける事となりこれを鋼製格納
容器に適用すると上部の構造物重量が過大となるという
問題点が生じる。また、従来技術によれば、格納容器1
の側壁面には均一に冷却水が行きわたる可能性が低く、
格納容器1の側壁面からの除熱が有効に行われないとい
う問題点が生じる。また、従来技術では、冷却水路中の
水位を制御できず、鋼製の格納容器に適用する場合、外
圧の制御ができないという問題点がある。
In the conventional example of the above, a cooling water channel is provided in the upper part of the containment vessel, and when this is applied to a steel containment vessel, the weight of the upper structure becomes excessively large. Also, according to the prior art, the storage container 1
Cooling water is less likely to spread evenly on the side wall surface of
There is a problem that the heat removal from the side wall surface of the storage container 1 is not effectively performed. Further, the conventional technique has a problem that the water level in the cooling water channel cannot be controlled, and when applied to a steel containment vessel, the external pressure cannot be controlled.

【0007】また、従来の技術によれば、格納容器1の
外壁を冷却する際に、格納容器1の上部に設けた冷却水
路4の冷却水は継続して蒸発するものと考えられるが、
給水ユニット6は格納容器1の外側に設けた外周プール
5を水源としており、この水量は有限である。したがっ
て、長時間にわたって、前述した方法に基づく冷却を継
続すると、いずれ前記外周プール5内の保有水は枯渇す
るため、何等かの方法により冷却水を補給する必要が生
じる。さらに、従来例では給水ユニットは格納容器1の
頂部から数十メートル低い位置から冷却水を補給しなけ
ればならず、ポンプ等の動的機器を利用しなければなら
ず、実現するに当たっては、これら動的機器の動力源の
確保や制御方法の確立等が必要となり、事故時において
使用することを前提として考えた場合、その運用が煩雑
になるという問題点が生じる。
Further, according to the prior art, when cooling the outer wall of the storage container 1, it is considered that the cooling water in the cooling water passage 4 provided in the upper part of the storage container 1 is continuously evaporated.
The water supply unit 6 uses a peripheral pool 5 provided outside the storage container 1 as a water source, and the amount of this water is finite. Therefore, if the cooling based on the above-described method is continued for a long time, the retained water in the outer peripheral pool 5 will eventually be exhausted, so that it becomes necessary to supplement the cooling water by some method. Furthermore, in the conventional example, the water supply unit must supply cooling water from a position several tens of meters lower than the top of the containment vessel 1, and must use a dynamic device such as a pump. It is necessary to secure the power source of the dynamic equipment and to establish the control method, and if it is assumed that it will be used in the event of an accident, its operation will be complicated.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1では、
前述の問題点のうち鋼製格納容器に適用するときの格納
容器上部の重量過大を抑制しつつ、これに加えて格納容
器側壁面での除熱を有効とするため、リング状の冷却水
路を格納容器上部のみならず格納容器側壁面に設ける構
成とした。
According to claim 1 of the present invention,
Among the above-mentioned problems, while suppressing the excessive weight of the upper part of the containment vessel when applying it to the steel containment vessel, in addition to this, in order to effectively remove heat from the side wall surface of the containment vessel The structure is provided not only on the upper part of the storage container but also on the side wall surface of the storage container.

【0009】次に、本発明の請求項2では、鋼製の格納
容器に適用した際の外圧制御の問題点を解決するため
に、リング状の冷却水路の深さを1.4m 以下とする。
Next, in claim 2 of the present invention, in order to solve the problem of external pressure control when applied to a steel containment vessel, the depth of the ring-shaped cooling water passage is set to 1.4 m or less. .

【0010】本発明の請求項3では、前述の問題点のう
ち、長時間運転時の冷却水補給の問題および動的機器を
用いなければならないという問題点を解決するため、発
電プラントを地下設置式とすると共に、地上から重力を
利用して冷却水を補給できる構成とした。
According to claim 3 of the present invention, among the above-mentioned problems, a power plant is installed underground in order to solve the problems of cooling water supply during long-term operation and the problem that dynamic equipment must be used. In addition to the formula, it was configured to be able to replenish cooling water from the ground using gravity.

【0011】さらに、本発明の請求項4では、格納容器
外壁冷却水の補給が必要であるという問題点ならびに動
的機器を用いなければならないという問題点を解決する
ため、格納容器外壁を冷却した際に蒸発する蒸気を大気
へ放散せずに凝縮させた後に、再び、格納容器外壁冷却
に利用することが可能な構成とした。
Further, in claim 4 of the present invention, in order to solve the problem that the containment wall outer wall cooling water needs to be replenished and that the dynamic equipment must be used, the containment container outer wall is cooled. The vapor that evaporates at this time is condensed without being dissipated into the atmosphere, and then can be reused for cooling the outer wall of the containment vessel.

【0012】[0012]

【作用】原子炉格納容器を請求項1に記載した構成とす
ることにより、万一事故が発生し、格納容器内が高温高
圧状態となった場合にも、格納容器外壁に多段に設けた
冷却水路に冷却水を導くことによって格納容器の上部お
よび側面の外壁全体を冷却し、格納容器内の蒸気凝縮を
行い、最終的に格納容器を冷却することができる。ま
た、このとき、原子炉格納容器を請求項2に記載したよ
うに構成することによって、多段に設けた冷却水路の高
さを1.4m 以下としているため、格納容器への外圧は
鋼製格納容器の設計外圧である0.14kg/cm2gに制限
され、格納容器の外圧を制御することが可能となる。
By configuring the reactor containment vessel as set forth in claim 1, even if an accident occurs and the temperature inside the containment vessel becomes high temperature and high pressure, the multi-stage cooling provided on the outer wall of the containment vessel. It is possible to cool the entire upper and side outer walls of the containment vessel by introducing the cooling water to the water channel, to perform vapor condensation in the containment vessel, and finally to cool the containment vessel. Further, at this time, since the reactor containment vessel is configured as described in claim 2 and the height of the cooling water passages provided in multiple stages is 1.4 m or less, the external pressure on the containment vessel is made of steel. It is possible to control the external pressure of the containment vessel by limiting the design external pressure of the vessel to 0.14 kg / cm 2 g.

【0013】原子炉格納容器を請求項3に記載したよう
に構成することによって、請求項1と同様の作用を得る
とともに、事故時の格納容器冷却時における格納容器外
壁冷却用冷却水の補給は、地上から動的な機器を使用す
ることなく、冷却水を落下させることによって達成され
る。
By constructing the reactor containment vessel as set forth in claim 3, the same operation as in claim 1 is obtained, and the cooling water for cooling the outer wall of the containment vessel at the time of cooling the containment vessel at the time of accident is replenished. , By dropping cooling water from the ground without using dynamic equipment.

【0014】さらに、原子炉格納容器を請求項4に記載
したように構成することによって、格納容器内の熱を冷
却する際に発生する格納容器壁面上に設けた冷却水炉の
冷却水が蒸発して発生する蒸気は、大気によって凝縮さ
れた後、再び、格納容器壁面上の冷却水炉に戻る。この
ようにして、事故時の格納容器冷却の際に冷却水補給無
しに実施することが可能となり、事故後の対応操作が簡
易なものになる。
Further, by constructing the reactor containment vessel as described in claim 4, the cooling water of the cooling water reactor provided on the wall surface of the containment vessel generated when cooling the heat in the containment vessel is evaporated. The generated steam is condensed by the atmosphere and then returns to the cooling water reactor on the wall surface of the containment vessel again. In this way, it is possible to carry out the cooling of the containment vessel in the event of an accident without replenishing the cooling water, and the handling operation after the accident becomes simple.

【0015】[0015]

【実施例】本発明の第1の実施例を図1を用いて以下に
説明する。
EXAMPLE A first example of the present invention will be described below with reference to FIG.

【0016】原子炉格納容器1は、原子炉2を格納し、
また、ドライウェル7,サプレッションプール3、およ
びドライウェル7とサプレッションプール3を連通する
ベント管8が設けられている。格納容器1を含む原子力
プラント全体は、地上面9より下方に設置される地下設
置式である。格納容器1には、その外壁上に、複数の鋼
製の冷却水路4が格納容器1の上部および側面に多段に
設置されている。この冷却水路4のそれぞれは、格納容
器1の全周にわたってリング状に接合され、各々の冷却
水路4の高さは、各々の冷却水路4の一段上方に位置す
る冷却水路4の格納容器1への接合位置より低く、か
つ、この高さが1.4m を越えないようにしている。さ
らに最上段の冷却水路41の高さは格納容器1の高さを
越えないように設置している。地上面9上にはタンク1
0が設けられており、タンク10には格納容器1の頂部
に冷却水を補給するために配管11が接続されている。
タンク10には予め冷却水が貯蔵されている。配管11
上には冷却水の注入を開始するための弁12が地上面に
設置されている。また、格納容器1の上部には、地上面
9と連通する配管13がタンク10と格納容器1頂部を
連通する配管11とは別に設けている。
The reactor containment vessel 1 stores the reactor 2,
Further, a dry well 7, a suppression pool 3, and a vent pipe 8 that connects the dry well 7 and the suppression pool 3 are provided. The entire nuclear power plant including the containment vessel 1 is an underground installation type installed below the ground surface 9. On the outer wall of the storage container 1, a plurality of cooling water channels 4 made of steel are installed in multiple stages on the top and side surfaces of the storage container 1. Each of the cooling water channels 4 is joined in a ring shape over the entire circumference of the containment vessel 1, and the height of each cooling water channel 4 is equal to that of the cooling water channel 4 located one step above each cooling water channel 4. It is lower than the joint position and the height does not exceed 1.4m. Further, the height of the cooling water channel 41 at the uppermost stage is set so as not to exceed the height of the storage container 1. Tank 1 on the ground surface 9
0 is provided, and a pipe 11 is connected to the tank 10 for supplying cooling water to the top of the storage container 1.
Cooling water is stored in the tank 10 in advance. Piping 11
A valve 12 for starting the injection of the cooling water is installed above the ground surface. In addition, a pipe 13 that communicates with the ground surface 9 is provided above the containment vessel 1 separately from the pipe 11 that communicates the tank 10 with the top of the containment vessel 1.

【0017】このように構成した原子力発電プラントに
おいて、万一、冷却材喪失事故が発生したと仮定する
と、原子炉2内の蒸気はドライウェル7に放出され格納
容器1内の温度および圧力は上昇する。放出された蒸気
の一部はベント管8を通ってサプレッションプール3に
導かれて凝縮されるが、ここで述べるような蒸気放出が
長時間継続するとサプレッションプール3内の保有水は
飽和状態となり、以後、格納容器圧力は、流入する蒸気
によって上昇する飽和温度にしたがって上昇する。この
とき、地上面9上に設置した弁12を開放するとタンク
10内に予め貯蔵していた冷却水が配管11を通って格
納容器1の頂部に導かれる。格納容器1の頂部に達した
冷却水は多段に設けた冷却水路4において、前述のよう
に最上段の冷却水路41の高さを格納容器1の頂部以下
としており、さらに、各段の高さは各段の上段の冷却水
路4の高さより低くなるように設置しているために、上
段の水路から、順次、水位を形成してゆく。なお、タン
ク14内の冷却水量は、冷却水路4の全てに水位を形成
するようにしておく。このようにして格納容器1の外面
全体が一様に冷却水で覆われることとなり、この冷却水
が蒸発することによって格納容器1の壁面温度を低下さ
せ、格納容器1の内壁面での蒸気凝縮を可能にする。冷
却水路4にて蒸発した蒸気は配管13を通じて大気に放
出されるため=格納容器1の外部空間の内圧が上昇する
ことはない。このような除熱を継続的に実施することに
より、格納容器1内に原子炉2から放出された蒸気の熱
を除去し、格納容器1内の温度・圧力を低下させ、格納
容器1の健全性は確保される。また、冷却水路4内の冷
却水の全てが蒸発した場合には、格納容器1内の圧力の
低下が停止するかあるいは上昇に転じるため、この際に
はタンク10へ冷却水を補給することで対応することが
可能である。
In the nuclear power plant configured as described above, assuming that a coolant loss accident should occur, the steam in the reactor 2 is discharged to the dry well 7 and the temperature and pressure in the containment vessel 1 rise. To do. A part of the discharged steam is guided to the suppression pool 3 through the vent pipe 8 and condensed, but if the steam discharge as described here continues for a long time, the retained water in the suppression pool 3 becomes saturated, After that, the PCV pressure increases according to the saturation temperature increased by the inflowing steam. At this time, when the valve 12 installed on the ground surface 9 is opened, the cooling water previously stored in the tank 10 is guided to the top of the storage container 1 through the pipe 11. The cooling water reaching the top of the containment vessel 1 has the height of the uppermost cooling water passage 41 in the cooling water passages 4 provided in multiple stages as described above, and the height of each stage. Is installed so that it is lower than the height of the cooling water channel 4 at the upper level of each level, so that the water level is formed sequentially from the upper level water channel. The amount of cooling water in the tank 14 is set so as to form a water level in all the cooling water passages 4. In this way, the entire outer surface of the containment vessel 1 is uniformly covered with the cooling water, and the temperature of the wall surface of the containment vessel 1 is lowered by the evaporation of this cooling water, and vapor condensation on the inner wall surface of the containment vessel 1 is performed. To enable. Since the vapor evaporated in the cooling water passage 4 is released to the atmosphere through the pipe 13, the internal pressure of the external space of the storage container 1 does not rise. By continuously carrying out such heat removal, the heat of the steam released from the reactor 2 into the containment vessel 1 is removed, the temperature and pressure in the containment vessel 1 are lowered, and the soundness of the containment vessel 1 is reduced. Sex is secured. Further, when all the cooling water in the cooling water passage 4 is evaporated, the decrease in the pressure in the containment vessel 1 stops or starts to increase. Therefore, at this time, by supplying the cooling water to the tank 10. It is possible to respond.

【0018】本実施例によれば、鋼製の格納容器1の周
囲に複数の鋼製のリングを冷却水路4として設置したこ
とによって、後述する発明本来の効果に加えて、格納容
器1の機械的強度を補強することができる。
According to the present embodiment, by installing a plurality of steel rings around the steel containment vessel 1 as the cooling water passages 4, in addition to the original effect of the invention described later, the machine of the containment vessel 1 is improved. Strength can be reinforced.

【0019】本発明の第2の実施例を図2を用いて以下
に説明する。
A second embodiment of the present invention will be described below with reference to FIG.

【0020】本実施例では、第1の実施例と同様に構成
した原子炉格納容器1において、配管13を大気に直接
連通させずに、これに代わって地上面13上に凝縮器1
4を設置し、これに配管13を連通させている。凝縮器
14には、配管13から流入した蒸気を凝縮した水を格
納容器1の頂部に連通されている配管11に戻すための
配管15が設けられている。
In this embodiment, in the reactor containment vessel 1 constructed in the same manner as in the first embodiment, the pipe 13 is not directly connected to the atmosphere, but instead, the condenser 1 is placed on the ground surface 13.
4 is installed, and the pipe 13 is connected to this. The condenser 14 is provided with a pipe 15 for returning the water, which is obtained by condensing the steam flowing from the pipe 13 to the pipe 11 communicating with the top of the storage container 1.

【0021】このように構成した原子力発電プラントに
おいて、万一、冷却材喪失事故が発生したと仮定する
と、原子炉2内の蒸気はドライウェル7に放出され格納
容器1内の温度および圧力は上昇する。放出された蒸気
の一部はベント管8を通ってサプレッションプール3に
導かれて凝縮されるが、ここで述べるような蒸気放出が
長時間継続するとサプレッションプール3内の保有水は
飽和状態となり、以後、格納容器圧力は、流入する蒸気
によって上昇する飽和温度にしたがって上昇する。この
とき、地上面9上に設置した弁12を開放するとタンク
10内に予め貯蔵していた冷却水が配管11を通って格
納容器1の頂部に導かれる。格納容器1の頂部に達した
冷却水は多段に設けた冷却水路4において、前述のよう
に最上段の冷却水路41の高さを格納容器1の頂部以下
としており、さらに、各段の高さは各段の上段の冷却水
路4の高さより低くなるように設置しているために、上
段の水路から、順次、水位を形成してゆく。このように
して格納容器1の外面全体が一様に冷却水で覆われるこ
ととなり、この冷却水が蒸発することによって格納容器
1の壁面温度を低下させ、格納容器1の内壁面での蒸気
凝縮を可能にする。冷却水路4で蒸発した蒸気は配管1
2を通じて地上面9に設けた凝縮器14に導かれ、大気
によって冷却・凝縮されるため、格納容器1の外部空間
の内圧が上昇することはない。このような除熱を継続的
に実施することにより、格納容器1内に原子炉2から放
出された蒸気の熱を除去し、格納容器1内の温度・圧力
を低下させ、格納容器1の健全性は確保される。また、
冷却水路4内の冷却水が蒸発しても、この蒸気は凝縮器
14において凝縮され、この凝縮水は凝縮器14から配
管11に連通する配管15を通って格納容器1の頂部に
導かれ、再び冷却水路4に戻るため、冷却水のタンク1
0への補給は不要となる。
In the nuclear power plant constructed as described above, assuming that a coolant loss accident should occur, the steam in the reactor 2 is discharged to the dry well 7 and the temperature and pressure in the containment vessel 1 rise. To do. A part of the discharged steam is guided to the suppression pool 3 through the vent pipe 8 and condensed, but if the steam discharge as described here continues for a long time, the retained water in the suppression pool 3 becomes saturated, After that, the PCV pressure increases according to the saturation temperature increased by the inflowing steam. At this time, when the valve 12 installed on the ground surface 9 is opened, the cooling water previously stored in the tank 10 is guided to the top of the storage container 1 through the pipe 11. The cooling water reaching the top of the containment vessel 1 has the height of the uppermost cooling water passage 41 in the cooling water passages 4 provided in multiple stages as described above, and the height of each stage. Is installed so that it is lower than the height of the cooling water channel 4 at the upper level of each level, so that the water level is formed sequentially from the upper level water channel. In this way, the entire outer surface of the containment vessel 1 is uniformly covered with the cooling water, and the temperature of the wall surface of the containment vessel 1 is lowered by the evaporation of this cooling water, and the vapor condensation on the inner wall surface of the containment vessel 1 is performed. To enable. The steam evaporated in the cooling water channel 4 is the pipe 1
Since it is guided to the condenser 14 provided on the ground surface 9 through 2 and is cooled and condensed by the atmosphere, the internal pressure of the external space of the storage container 1 does not rise. By continuously performing such heat removal, the heat of the steam released from the reactor 2 into the containment vessel 1 is removed, the temperature and pressure in the containment vessel 1 are lowered, and the soundness of the containment vessel 1 is reduced. Sex is secured. Also,
Even if the cooling water in the cooling water passage 4 evaporates, this vapor is condensed in the condenser 14, and this condensed water is guided to the top of the containment vessel 1 from the condenser 14 through the pipe 15 communicating with the pipe 11. Because it returns to the cooling water channel 4 again, the cooling water tank 1
No need to replenish to zero.

【0022】本実施例によれば、第1の実施例と同様に
鋼製の格納容器1の周囲に複数の鋼製のリングを冷却水
路4として設置したことによって、後述する発明本来の
効果に加えて、格納容器1の機械的強度を補強すること
ができる。
According to the present embodiment, a plurality of steel rings are installed as the cooling water passages 4 around the steel containment vessel 1 as in the first embodiment. In addition, the mechanical strength of the storage container 1 can be reinforced.

【0023】[0023]

【発明の効果】本発明によれば、格納容器の外壁全体を
均一かつ一様に有効に冷却することが可能となる。
According to the present invention, it becomes possible to effectively and uniformly cool the entire outer wall of the storage container.

【0024】また、本発明によれば、格納容器に対する
外圧を0.14kg/cm2g以上に高くすることなく、格納
容器の外壁全体を均一かつ一様に有効に冷却することが
可能となる。
Further, according to the present invention, the entire outer wall of the storage container can be effectively cooled uniformly and uniformly without increasing the external pressure to the storage container to 0.14 kg / cm 2 g or more. .

【0025】本発明の第3の請求項によれば、動的機器
を使用することなく、本発明の第4の請求項によれば、
最小限の対応操作のみによって、それぞれ、第1の請求
項と同様の効果を得ることができる。
According to a third aspect of the invention, without the use of dynamic equipment, according to a fourth aspect of the invention,
The same effect as in the first claim can be obtained by only a minimum of corresponding operations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原子炉格納容器の縦断面図。FIG. 1 is a longitudinal sectional view of a reactor containment vessel according to the present invention.

【図2】本発明の第2の実施例の格納容器の縦断面図。FIG. 2 is a vertical sectional view of a storage container according to a second embodiment of the present invention.

【図3】従来の原子炉格納容器冷却システムの縦断面
図。
FIG. 3 is a vertical cross-sectional view of a conventional reactor containment vessel cooling system.

【符号の説明】[Explanation of symbols]

1…原子炉格納容器、2…原子炉、3…サプレッション
プール、4…冷却水炉、41…最上段冷却水路、5…外
周プール、6…給水ユニット、7…ドライウェル、8…
ベント管、9…地上面、10…タンク、11,13,1
5…配管、12…弁、14…凝縮器。
DESCRIPTION OF SYMBOLS 1 ... Reactor containment vessel, 2 ... Reactor, 3 ... Suppression pool, 4 ... Cooling water reactor, 41 ... Top cooling water channel, 5 ... Peripheral pool, 6 ... Water supply unit, 7 ... Dry well, 8 ...
Vent pipe, 9 ... Ground surface, 10 ... Tank, 11, 13, 1
5 ... Piping, 12 ... Valve, 14 ... Condenser.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原子力発電プラントにおいて、鋼製の格納
容器と、前記格納容器頂部に冷却水を供給する給水設備
と、前記格納容器の外壁面にリング状に設けられ前記給
水設備により供給される冷却水を格納容器壁面上に保持
する多段の冷却水路から構成されることを特徴とする原
子炉格納容器。
1. In a nuclear power plant, a steel containment vessel, a water supply facility for supplying cooling water to the top of the containment vessel, and a ring-shaped water supply facility provided on the outer wall surface of the containment vessel. A reactor containment vessel comprising a multi-stage cooling water channel for holding cooling water on the wall surface of the containment vessel.
【請求項2】請求項1において、前記リング状の冷却水
路の水位が1.4m 以下となるように前記水路深さを構
成した原子炉格納容器。
2. The reactor containment vessel according to claim 1, wherein the depth of the water channel is configured such that the water level of the ring-shaped cooling water channel is 1.4 m or less.
【請求項3】請求項1において、原子力発電プラントを
地下設置式とするとともに、格納容器頂部に冷却水を供
給する給水設備を地上から補給する構成とする原子炉格
納容器。
3. The reactor containment vessel according to claim 1, wherein the nuclear power plant is of an underground installation type and a water supply facility for supplying cooling water to the top of the containment vessel is replenished from the ground.
【請求項4】請求項3において、格納容器上部から地上
に連通する配管と、前記配管に連結されかつ地上面に設
置される凝縮器と、前記配管とは別に、前記凝縮器から
前記格納容器の頂部へ連通される配管を設けた原子炉格
納容器。
4. The pipe from the upper part of the containment vessel to the ground, the condenser connected to the pipe and installed on the ground surface, and the pipe, separately from the condenser, to the containment vessel. Reactor containment vessel with piping that communicates with the top of the reactor.
JP5055412A 1993-03-16 1993-03-16 Reactor container Pending JPH06265672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055412A JPH06265672A (en) 1993-03-16 1993-03-16 Reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055412A JPH06265672A (en) 1993-03-16 1993-03-16 Reactor container

Publications (1)

Publication Number Publication Date
JPH06265672A true JPH06265672A (en) 1994-09-22

Family

ID=12997853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055412A Pending JPH06265672A (en) 1993-03-16 1993-03-16 Reactor container

Country Status (1)

Country Link
JP (1) JPH06265672A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732062A1 (en) * 1995-03-15 1996-09-18 Colgate-Palmolive Company Method and apparatus for the manufacture of a pet food product having a fibrous striated structural matrix
US20090129531A1 (en) * 2007-11-15 2009-05-21 The State Of Or Acting By And Through The State System Of Higher Education On Behalf Of Or State U Submerged containment vessel for a nuclear reactor
CN102237148A (en) * 2011-06-28 2011-11-09 关盛栋 Design of safety facilities of nuclear power plant
JP2012202988A (en) * 2011-03-28 2012-10-22 Koji Horimoto New nuclear reactor building
US9870838B2 (en) 2007-11-15 2018-01-16 Nuscale Power, Llc Evacuated containment vessel for a nuclear reactor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732062A1 (en) * 1995-03-15 1996-09-18 Colgate-Palmolive Company Method and apparatus for the manufacture of a pet food product having a fibrous striated structural matrix
US20090129531A1 (en) * 2007-11-15 2009-05-21 The State Of Or Acting By And Through The State System Of Higher Education On Behalf Of Or State U Submerged containment vessel for a nuclear reactor
US8687759B2 (en) 2007-11-15 2014-04-01 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Internal dry containment vessel for a nuclear reactor
JP2014059317A (en) * 2007-11-15 2014-04-03 State Of Oregon Acting By And Through The State Board Of Higher Educ Ation On Behalf Of Oregon S:The Nuclear reactor immersion containment vessel
US9870838B2 (en) 2007-11-15 2018-01-16 Nuscale Power, Llc Evacuated containment vessel for a nuclear reactor
US10186334B2 (en) 2007-11-15 2019-01-22 Nuscale Power, Llc Internal dry containment vessel for a nuclear reactor
US11594342B2 (en) 2007-11-15 2023-02-28 Nuscale Power, Llc Evacuated containment vessel for nuclear reactor
JP2012202988A (en) * 2011-03-28 2012-10-22 Koji Horimoto New nuclear reactor building
CN102237148A (en) * 2011-06-28 2011-11-09 关盛栋 Design of safety facilities of nuclear power plant

Similar Documents

Publication Publication Date Title
KR950009881B1 (en) Neclear power facilities
JP2015508486A (en) Emergency reactor core cooling system (ECCS) using closed heat transfer path
JP2009150846A (en) Reactor containment vessel and nuclear power plant using it
EP0475700A1 (en) Passive cooling means for water cooled nuclear reactor plants
JP6071404B2 (en) Nuclear plant and static containment cooling system
JP3159820B2 (en) Reactor containment equipment
JP2014010080A (en) Nuclear power plant and static containment vessel cooling system
CA2150275C (en) Passive emergency water system for water-cooled nuclear reactors
JPH0727055B2 (en) Passive heat removal system for reactor vessels
KR100856174B1 (en) Cooling system
KR101742644B1 (en) Passive Auxiliary Feedwater Cooling System having Air-Cooled Double Containments
JPH06265672A (en) Reactor container
JP2012154644A (en) Heat transportation device of reactor container and method of the same
JPH05180974A (en) Reactor, reactor cooling system and reactor power plant and its operational method
JP6771402B2 (en) Nuclear plant
JP5279325B2 (en) Hybrid safety system for boiling water reactors
JP2000180582A (en) Reactor power plant
JP2003043176A (en) Decay heat removing device of cooling system integrated nuclear reactor
JP3149553B2 (en) Reactor equipment
JP2004245763A (en) Nuclear reactor cooling equipment
KR102458247B1 (en) Passive cooling installation of atomic reactor and passive cooling method thereof
JP2019095450A (en) Nuclear power plant
JP6670005B2 (en) Post-Use Nuclear Fuel Passive Cooling System Using Heat Pipe
JPH0511091A (en) Reactor containment cooling equipment
JPH05172979A (en) Pressure suppression device for reactor container