JPH06265464A - Corrosion tester - Google Patents

Corrosion tester

Info

Publication number
JPH06265464A
JPH06265464A JP4813292A JP4813292A JPH06265464A JP H06265464 A JPH06265464 A JP H06265464A JP 4813292 A JP4813292 A JP 4813292A JP 4813292 A JP4813292 A JP 4813292A JP H06265464 A JPH06265464 A JP H06265464A
Authority
JP
Japan
Prior art keywords
tank
saturated
temperature
water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4813292A
Other languages
Japanese (ja)
Inventor
Shigeru Kokubo
茂 小久保
Mijizou Futagami
未次三 二神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwa Electronic Ind Co Ltd
Original Assignee
Hanwa Electronic Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwa Electronic Ind Co Ltd filed Critical Hanwa Electronic Ind Co Ltd
Priority to JP4813292A priority Critical patent/JPH06265464A/en
Publication of JPH06265464A publication Critical patent/JPH06265464A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make pressure and steam pressure in a test tank controllable simply and accurately by interconnecting a saturated water tank, forcing air into saturated steam pressure by way of making water and inflow air at the preset temperature contact with each other, with this test tank. CONSTITUTION:A desired flow rate of air is fed to a saturated tank 1 from its lower part. This air passes through a filter 2 and comes to fine bubbles, passing through a water current 3 at the preset temperature in the underwater, and finally it is reached to an upper space of the saturated tank 1. This air passes through a pipe 5, joining with a corrosive gas from a pipe 6, coming into a test tank 8. Here, a temperature in the saturated tank 1 is kept constant by a constant tenperature water tank, while the air run past the saturated tank 1 has constant steam pressure to be determined by the temperature of the saturated tank 1, therefore it comes 9.206mmHg, 92.596mmHg each at temperatures of 10 deg.C and 50 deg.C, by way of example. As for the air, if it is preset so as to be saturated at the maximum flow rate and temperature, it is fully saturated with water vapor, and a fact that temperature control over the water tank 4 is set to + or -0.1 deg. is not so hard to be done. With this constitution, temperature and steam pressure in the test tank 8 can be controlled simply and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一定の対象物に対する
腐食性ガス、温度、水蒸気圧に基づく腐蝕試験を可能と
する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus which enables a corrosion test based on corrosive gas, temperature and water vapor pressure for a certain object.

【0002】[0002]

【従来の技術】種々の材料、特に金属は環境中のH
S、SO、等の微量成分によって表面が腐蝕され、
このような材料を使用した電子部等も性能が徐々に劣化
する。近時、排気ガスなどが増加していることもあっ
て、その使用環境はますます酷しい。これに対応して新
材料や製品が開発されているが、果たして十分な性能が
あるかどうか短時間に評価することが重要である。
2. Description of the Related Art Various materials, especially metals, are used as H in the environment.
The surface is corroded by trace elements such as 2 S, SO 2 , etc.,
The performance of the electronic part and the like using such a material gradually deteriorates. Recently, the exhaust gas has been increasing, and the environment in which it is used is becoming more and more severe. In response to this, new materials and products have been developed, but it is important to evaluate whether or not they have sufficient performance in a short time.

【0003】金属等の腐蝕はHS、SO、等の腐蝕
性ガスの濃度だけではなく、その雰囲気の温度や湿度に
よっても支配されることから所望の温度、湿度に設定で
きる恒温恒湿度槽に腐蝕性ガスを導入し、その中に試料
をおいてその特性の変化を調べることが従来行われてい
る。そして一般に恒温恒湿槽といわれるものはその中に
加湿用の水槽があるが、腐蝕性のガスは水によく溶ける
とけるものが多いので、試験時間が長く、ガス濃度が高
くなるとガスは水に吸蔵されることになる。
Corrosion of metals is controlled not only by the concentration of corrosive gases such as H 2 S, SO 2 , etc., but also by the temperature and humidity of the atmosphere, so a constant temperature and humidity can be set to a desired temperature and humidity. It has been conventionally practiced to introduce a corrosive gas into a tank, place a sample therein, and examine a change in its characteristics. And what is generally called a constant temperature and humidity tank has a water tank for humidification in it, but since corrosive gas often dissolves well in water, the test time is long and the gas becomes water when the gas concentration becomes high. It will be occluded.

【0004】逆にガス濃度を低くしたい場合には水がガ
スの発生源となってガスを低濃度とすることの障害とな
る。従って槽内のガス濃度を一定に保つために、ガス濃
度を測定してガスの補給量を調整したり、加湿用水槽の
水を交換したりすることも必要になってくる。また、恒
温恒湿槽の湿度の測定、制御は多く乾湿球が利用されて
いる。しかし、湿球は常時水にぬれており、ガスを吸蔵
するので、その水蒸気は純水とは異なり正しい相対温度
を示さない。
On the contrary, when it is desired to reduce the gas concentration, water becomes a source of gas generation, which is an obstacle to lowering the gas concentration. Therefore, in order to keep the gas concentration in the tank constant, it is necessary to measure the gas concentration to adjust the amount of gas replenishment and to replace the water in the humidifying water tank. In addition, a wet and dry bulb is often used for measuring and controlling the humidity in a constant temperature and humidity chamber. However, since the wet bulb is always wet with water and absorbs gas, its water vapor does not show the correct relative temperature unlike pure water.

【0005】前記の如き点を解決するために図1に示す
ように試料を入れる試験槽20の外に空調器10を置
き、一定の相対湿度ガス濃度の気体を試験槽に挿入する
方法がいわゆる「定流量方式」として使用されている。
即ち、定流量方式では、予め空気を調湿水槽(図1では
特に図示していない)を通過させて、一定の相対湿度と
し、逆に、調湿水槽を通過した空気は水面上に還流又は
逆流しない構造を特徴とするものである。しかしなが
ら、実際には調湿水槽及び空調器を通過した空気の湿度
の精度は、せいぜい3%RHである。
In order to solve the above-mentioned problems, there is a so-called method in which the air conditioner 10 is placed outside the test tank 20 containing the sample as shown in FIG. 1 and a gas having a constant relative humidity gas concentration is inserted into the test tank. It is used as a "constant flow rate method".
That is, in the constant flow rate system, air is previously passed through a humidity control water tank (not particularly shown in FIG. 1) to have a constant relative humidity, and conversely, air that has passed through the humidity control water tank recirculates on the water surface or It is characterized by a structure that does not backflow. However, actually, the accuracy of the humidity of the air that has passed through the humidity control tank and the air conditioner is at most 3% RH.

【0006】又、空調器10と試験槽20の温度に差が
あると試験槽の相対湿度は違った値になるのでせっかく
空調器で一定湿度にしても無駄なことになる。
Further, if there is a difference in temperature between the air conditioner 10 and the test tank 20, the relative humidity of the test tank will have different values, so even if the air conditioner has a constant humidity, it will be useless.

【0007】このように図1に示す定流量方式では、定
湿度とすること自体困難性があるが、本来、腐蝕試験に
おいて腐蝕の進行の要因となるのは、資料表面に吸着さ
れる水と腐蝕ガスであって、試験槽内における相対湿度
自体ではない。
As described above, in the constant flow rate system shown in FIG. 1, it is difficult to maintain constant humidity, but originally, the cause of the progress of corrosion in the corrosion test is that water adsorbed on the surface of the material. Corrosion gas, not relative humidity in the test chamber.

【0008】他方、試料表面に吸着される水の量は、試
料自体の温度と、雰囲気中の水蒸気圧によって決められ
る。
On the other hand, the amount of water adsorbed on the sample surface is determined by the temperature of the sample itself and the water vapor pressure in the atmosphere.

【0009】即ち、腐食試験の信頼性は、雰囲気中の水
蒸気圧と試料の温度を如何に正しく安定に、又再現性よ
く設定できるかに依存しているのであり、雰囲気中の温
度や相対湿度は本質的なものではない点を考慮するなら
ば、定流量方式において、相対湿度を一定な値に設定す
ること自体、腐食試験の問題の要請から外れたものとい
わねばならない。
That is, the reliability of the corrosion test depends on how correctly and stably the water vapor pressure in the atmosphere and the temperature of the sample can be set with good reproducibility. Considering that it is not essential, it must be said that setting the relative humidity to a constant value in the constant flow method itself is out of the requirement of the corrosion test problem.

【0010】又、図1に示す空調器に水が貯留した場合
には、前記作用が恒温恒湿槽を試験槽に設けたと同様の
現象及びこれに基づく欠点を免れることができない。
Further, when water is stored in the air conditioner shown in FIG. 1, the above-mentioned action cannot avoid the same phenomenon as that of providing a constant temperature and constant humidity tank in the test tank and a defect based on this phenomenon.

【0011】[0011]

【発明が解決しようとする課題】本発明は、従来技術と
前記の如き欠点を克服し、試験槽内の温度及び水蒸気圧
を簡単且つ正確に制御できる腐食試験装置を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a corrosion test apparatus which overcomes the above-mentioned drawbacks of the prior art and the temperature and water vapor pressure in a test tank easily and accurately. It is a thing.

【0012】[0012]

【課題を解決するための手段】前記の如き課題を解決す
る為、本発明の構成は、予め設定した温度の水と、流入
する空気等を接触させて該空気を飽和水蒸気圧とする飽
和水槽を設け、該飽和槽と試験槽とを連通したことによ
る腐蝕試験装置からなる。
In order to solve the above-mentioned problems, the structure of the present invention is a saturated water tank in which water having a preset temperature is brought into contact with inflowing air or the like to bring the air to a saturated vapor pressure. And a corrosion test device by connecting the saturation tank and the test tank.

【0013】上記課題を解決するための手段に則して、
本発明の原理について説明するに、飽和水槽と試験槽と
が連通している以上、両者の水蒸気圧は等しく、結局試
験槽の水蒸気圧は飽和水槽の飽和水蒸気圧と等しいこと
になるが、これは専ら飽和水槽の温度に依存し、他の外
部的条件に依存しない。
According to the means for solving the above problems,
To explain the principle of the present invention, as long as the saturated water tank and the test tank are in communication with each other, the water vapor pressures of both are equal, and eventually the water vapor pressure of the test tank is equal to the saturated water vapor pressure of the saturated water tank. Depends exclusively on the temperature of the saturated water bath and not on other external conditions.

【0014】即ち、腐食試験の条件を、試験槽内の試料
の温度と飽和水槽の温度の二つのパラメーターのみによ
って、設定できる点に本発明の原理上の特色が存在す
る。
That is, there is a characteristic feature of the principle of the present invention in that the condition of the corrosion test can be set only by two parameters of the temperature of the sample in the test tank and the temperature of the saturated water tank.

【0015】[0015]

【実施例1】第2図は、飽和槽において、水中に気体を
通して気体中に水蒸気を飽和させたことによる気体と腐
食性ガスとが合流した上で、試験槽に流入する実施例を
示す。
EXAMPLE 1 FIG. 2 shows an example in which a gas obtained by passing gas through water and saturating water vapor into the gas merges with a corrosive gas and then flows into the test tank in the saturation tank.

【0016】ここで、所望の流量の空気を飽和槽1の下
部から飽和槽に送る。
Here, a desired flow rate of air is sent from the lower part of the saturation tank 1 to the saturation tank.

【0017】空気はフィルター2を通過して細い気泡と
なり、水中3を通り飽和槽の上部空間に達し、外部導管
5、7を通って試験槽に送られる。
The air passes through the filter 2 to form fine bubbles, passes through the water 3 to reach the upper space of the saturation tank, and is sent to the test tank through the external conduits 5 and 7.

【0018】飽和槽を通過した空気は、飽和槽の温度で
決まる一定の水蒸気圧をもっている。
The air that has passed through the saturation tank has a constant water vapor pressure determined by the temperature of the saturation tank.

【0019】例えば、10℃、30℃、50℃でそれぞ
れ水蒸気圧は9.206mmHg、31.839mmH
g、92.596mmHgになる。
For example, the water vapor pressures at 10.degree. C., 30.degree. C. and 50.degree. C. are 9.206 mmHg and 31.839 mmH, respectively.
g, 92.596 mmHg.

【0020】飽和槽の温度を一定にする為、一般には飽
和槽は恒温水槽内に納めてある。
In order to keep the temperature of the saturation tank constant, the saturation tank is generally contained in a constant temperature water tank.

【0021】空気は水蒸気で完全に飽和しなければなら
ないが、使用最大流量、最高温度で十分飽和するように
設定しておけば、それ以下の流量、温度の場合何ら問題
は起こらない。
The air must be completely saturated with water vapor, but if it is set so as to be sufficiently saturated at the maximum flow rate and maximum temperature used, no problems will occur at flow rates and temperatures below that.

【0022】恒温水槽の温度制御は、その程度を±0.
1℃とすることはさして困難ではない。
The temperature of the constant temperature water tank is controlled to ± 0.
It is not difficult to set the temperature to 1 ° C.

【0023】これに対し、図1に示すような、空調器1
0によって一定の湿度の気体を得ようとする場合には、
先ず空調器内で気体の温度を一定とし、更に空調器内の
湿度を乾湿球等の湿度センサーで測定し、所望の湿度に
なるように加湿あるいは減湿しなければならない。
On the other hand, the air conditioner 1 as shown in FIG.
When trying to obtain a gas with constant humidity by 0,
First, the temperature of the gas inside the air conditioner must be kept constant, and the humidity inside the air conditioner must be measured by a humidity sensor such as a wet and dry bulb to humidify or dehumidify the air to the desired humidity.

【0024】しかしながら、前記の如き加湿・減湿の制
御は複雑であると共に、その精度は精々±3%RHとさ
れている点は前述の通りである。
However, as described above, the control of humidification / dehumidification as described above is complicated, and the accuracy is at most ± 3% RH.

【0025】例えば、試験槽の温度を50℃、相対湿度
を75%に設定した場合、試験槽内の水蒸気圧の精度を
実施例1と、図1に示す空調器の場合を比較した場合に
は、実施例1では75%の湿度は69.427mmHg
(92.596×0.75)であり、これは44.3℃
における飽和水蒸気圧に該当することから、飽和槽(及
び恒温水槽)は44.3℃に設定すれば良いことにな
る。
For example, when the temperature of the test tank is set to 50 ° C. and the relative humidity is set to 75%, the accuracy of the water vapor pressure in the test tank is compared between Example 1 and the case of the air conditioner shown in FIG. In Example 1, 75% humidity is 69.427 mmHg
(92.596 × 0.75), which is 44.3 ° C.
Since it corresponds to the saturated water vapor pressure in, the saturation tank (and constant temperature water tank) should be set to 44.3 ° C.

【0026】上述のように、飽和槽の温度の誤差範囲を
±0.1℃としても、44.4℃(44.3℃+0.1
℃)の場合の飽和水蒸気圧は69.741mmHgであ
り、44.2℃(44.3℃−0.1℃)の飽和水蒸気
圧が69.024mmHgであることを考慮するなら
ば、その誤差の範囲は69.4mmHgに対し精々±
0.4mmHgである。
As described above, even if the error range of the temperature of the saturation tank is ± 0.1 ° C., it is 44.4 ° C. (44.3 ° C. + 0.1).
Saturation water vapor pressure in the case of (° C) is 69.741 mmHg, and considering that the saturated water vapor pressure at 44.2 ° C (44.3 ° C-0.1 ° C) is 69.024 mmHg, the error of Range is at best ± 69.4mmHg
It is 0.4 mmHg.

【0027】これに対し、図1に示す空調器を使用した
場合には、±3%RHの誤差範囲が存在することから、
69.4±2.8mmHgの精度となり、実施例1の場
合との差は明らかである。
On the other hand, when the air conditioner shown in FIG. 1 is used, there is an error range of ± 3% RH.
The accuracy is 69.4 ± 2.8 mmHg, and the difference from the case of Example 1 is clear.

【0028】[0028]

【実施例2】図3は、実施例1のような飽和槽の水中に
空気を通過させることに代えて、水面に空気を充満させ
て飽和水蒸気圧とする実施例を示す。
[Embodiment 2] FIG. 3 shows an embodiment in which the saturated water vapor pressure is obtained by filling the water surface with air instead of passing the air through the water in the saturated tank as in Embodiment 1.

【0029】この場合には、実施例1の場合に比し、水
面を広く設計し且つ水面上に空気が滞留する時間を長く
設計することが必要である。
In this case, it is necessary to design the water surface wider and design the time for the air to stay on the water surface longer than in the first embodiment.

【0030】試験槽の湿度の制御が容易であり且つ精度
が高い点は、実施例1の場合と変わりはない。
The fact that the humidity of the test tank can be easily controlled and the accuracy is high is the same as that of the first embodiment.

【0031】[0031]

【実施例3】実施例1、同2は、飽和水蒸気圧を有する
気体と腐食性ガスとがパイプ5、6を介して合流して試
験槽に流入される構成であるのに対し、実施例3は、両
者がパイプ5、6によって個別に流入する構成を示す。
[Third Embodiment] In the first and second embodiments, a gas having a saturated water vapor pressure and a corrosive gas are merged through the pipes 5 and 6 and flowed into the test tank. Reference numeral 3 shows a configuration in which both of them flow into each other by the pipes 5 and 6.

【0032】実施例3においても、試験槽の湿度の制御
は容易であり、且つその精度が高い点は改めて説明する
までもない。
In the third embodiment as well, it is needless to reiterate that the humidity of the test tank can be easily controlled and its accuracy is high.

【0033】[0033]

【発明の効果】以上の構成による本発明によれば、試験
槽において湿度センサーを使用しないで簡単な制御及び
精度を以って所望温湿度の下に、信頼性の高いガス試験
を行うことができる。
According to the present invention having the above-described structure, a highly reliable gas test can be performed under desired temperature and humidity with simple control and accuracy without using a humidity sensor in a test tank. it can.

【0034】又、恒温槽の温度変化によって、試験槽の
水蒸気の量(湿度)を制御できるので、設定できる湿度
の範囲も広範囲である。
Further, since the amount of water vapor (humidity) in the test tank can be controlled by changing the temperature of the constant temperature tank, the range of humidity that can be set is wide.

【0035】又、腐食ガスが加湿装置たる飽和槽を汚染
することがないので、所望のガス濃度、水蒸気圧の試験
環境を得ることができる。
Further, since the corrosive gas does not contaminate the saturated tank which is the humidifier, it is possible to obtain a test environment having a desired gas concentration and water vapor pressure.

【0036】以上のように、本願発明は、従来装置に比
し、様々な長所を有し、その価値は絶大である。
As described above, the present invention has various advantages as compared with the conventional device and its value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ブロック図 従来の空調器を使用した試験装置の構成を示す。FIG. 1 is a block diagram showing a configuration of a test device using a conventional air conditioner.

【図2】、[Fig. 2]

【図3】、[Fig. 3]

【図4】 ブロック図 本願発明の腐食試験装置を示す。FIG. 4 is a block diagram showing a corrosion test apparatus of the present invention.

【符合の説明】[Explanation of sign]

1:飽和槽 2:フィルター 3:水 4:恒温水槽 5、6、7:パイプ 8:試験槽 9:空気の流入パイプ 10:従来技術における空調器 20:従来技術における試験槽 30、40、50:従来技術におけるパイプ(但し、3
0は空気が流入するパイプであり、40は腐食性ガスが
流入するパイプである)
1: Saturation tank 2: Filter 3: Water 4: Constant temperature water tank 5, 6, 7: Pipe 8: Test tank 9: Air inflow pipe 10: Air conditioner in conventional technology 20: Test tank in conventional technology 30, 40, 50 : Pipe in the prior art (however, 3
(0 is a pipe into which air flows in, 40 is a pipe into which corrosive gas flows in)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 予め設定した温度の水と、流入する空気
とを接触させて該空気を飽和水蒸気圧とする飽和水槽を
設け、該飽和槽と試験槽とを連通したことによる腐蝕試
験装置
1. A corrosion test apparatus by providing a saturated water tank in which water having a preset temperature is brought into contact with inflowing air to bring the air to a saturated vapor pressure, and the saturated tank and the test tank are communicated with each other.
【請求項2】 飽和槽に流入する空気を、水中を通過さ
せることを特徴とする請求項1記載の腐蝕試験装置
2. The corrosion test apparatus according to claim 1, wherein the air flowing into the saturation tank passes through water.
【請求項3】飽和槽に流入する空気を、水面上に貯溜さ
せることを特徴とする腐蝕試験装置
3. A corrosion test apparatus for storing air flowing into a saturated tank on the surface of water.
【請求項4】 飽和槽と試験槽とを連通させるパイプ
に、腐蝕性ガスが流入するパイプとを合流させたことを
特徴とする請求項1記載の腐蝕試験装置
4. The corrosion test apparatus according to claim 1, wherein a pipe connecting the saturated tank and the test tank is joined with a pipe into which a corrosive gas flows.
【請求項5】 試験槽に対し、腐食性ガスからの流入パ
イプと飽和槽とを連通するパイプとを、併設させたこと
を特徴とする請求項1記載の腐蝕試験装置
5. The corrosion test apparatus according to claim 1, wherein a pipe for inflowing a corrosive gas and a pipe for connecting the saturated tank to the test tank are provided side by side.
JP4813292A 1992-01-21 1992-01-21 Corrosion tester Pending JPH06265464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4813292A JPH06265464A (en) 1992-01-21 1992-01-21 Corrosion tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4813292A JPH06265464A (en) 1992-01-21 1992-01-21 Corrosion tester

Publications (1)

Publication Number Publication Date
JPH06265464A true JPH06265464A (en) 1994-09-22

Family

ID=12794810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4813292A Pending JPH06265464A (en) 1992-01-21 1992-01-21 Corrosion tester

Country Status (1)

Country Link
JP (1) JPH06265464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218639A (en) * 2006-02-14 2007-08-30 National Institute For Materials Science Sea salt particle generator of high-speed high-precision
JP2010256311A (en) * 2009-04-28 2010-11-11 Espec Corp Test method and testing equipment
JP2010256312A (en) * 2009-04-28 2010-11-11 Espec Corp Test method, organic gas supply device, and testing equipment
CN107219164A (en) * 2017-05-22 2017-09-29 江苏大学 A kind of electrochemical corrosion experimental temperature control equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572735A (en) * 1978-11-27 1980-05-31 Chuo Riken:Kk Humidifier in humidistat
JPS59193338A (en) * 1983-04-19 1984-11-01 Kazuharu Sano Testing apparatus of corrosive gas environment
JPS61155727A (en) * 1984-12-27 1986-07-15 Suga Shikenki Kk Compound corrosion cycle tester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572735A (en) * 1978-11-27 1980-05-31 Chuo Riken:Kk Humidifier in humidistat
JPS59193338A (en) * 1983-04-19 1984-11-01 Kazuharu Sano Testing apparatus of corrosive gas environment
JPS61155727A (en) * 1984-12-27 1986-07-15 Suga Shikenki Kk Compound corrosion cycle tester

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218639A (en) * 2006-02-14 2007-08-30 National Institute For Materials Science Sea salt particle generator of high-speed high-precision
JP2010256311A (en) * 2009-04-28 2010-11-11 Espec Corp Test method and testing equipment
JP2010256312A (en) * 2009-04-28 2010-11-11 Espec Corp Test method, organic gas supply device, and testing equipment
CN107219164A (en) * 2017-05-22 2017-09-29 江苏大学 A kind of electrochemical corrosion experimental temperature control equipment

Similar Documents

Publication Publication Date Title
US4713618A (en) On-line calibration system for chemical monitors
US2949345A (en) Sulfur dioxide determination
JPH06265464A (en) Corrosion tester
JPH04353761A (en) Method and apparatus for measuring quantity of impurity in specific gas
EP0732587B1 (en) Electrochemical gas sensor assembly
US3833016A (en) Apparatus for precisely controlled dilution of fluid samples
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
US6330819B1 (en) Method and apparatus for calibrating a dissolved oxygen analyzer
JPH0237984B2 (en)
JP3138009B2 (en) Method and apparatus for evaluating impurity adsorption amount
US4478080A (en) Dewpoint measurement system for near saturation conditions
JPH11118750A (en) Apparatus for setting of reference electrode
JP2757322B2 (en) How to measure gas permeability of film
WO2002036251A1 (en) Method and apparatus for providing a precise amount of gas at a precise humidity
CN113933213A (en) Binary mixed gas mixing ratio measuring method and device based on gas substitution method
JP2946800B2 (en) Carbon dioxide measuring device
US4908105A (en) Flow-compensated electrochemical cell and method of analysis
JP2893797B2 (en) Humidifier
EP0007733B1 (en) Method and apparatus for use in ion-selective electrode measurements
Berkenbosch Measurement of carbon dioxide tension in poorly buffered solutions with the p CO 2 electrode
JPS6130194Y2 (en)
JPH11174035A (en) Gas chromatograph device
Meyer et al. An electrochemical method for monitoring the oxygen content of aqueous streams at the part-per-billion level
JPH0688772A (en) Foul odor/gas analysis measurement system
JPS6271839A (en) Oxygen analyzer