JPH06265392A - Gamma-ray level meter - Google Patents

Gamma-ray level meter

Info

Publication number
JPH06265392A
JPH06265392A JP5536493A JP5536493A JPH06265392A JP H06265392 A JPH06265392 A JP H06265392A JP 5536493 A JP5536493 A JP 5536493A JP 5536493 A JP5536493 A JP 5536493A JP H06265392 A JPH06265392 A JP H06265392A
Authority
JP
Japan
Prior art keywords
scintillator
level meter
gamma
light
ray source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5536493A
Other languages
Japanese (ja)
Inventor
省三 ▲葛▼西
Shozo Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5536493A priority Critical patent/JPH06265392A/en
Publication of JPH06265392A publication Critical patent/JPH06265392A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the gain of a signal amplifying loop constant when a bar-like scintillator, is used for a gamma-ray measuring instrument which measures the level of a fluid or powder by optically connecting an inorganic scintillator having large light emitting energy to the top of a plastic scintillator and irradiating both scintillators with gamma rays, and then controlling the gain of the loop so that optical signals can become constant. CONSTITUTION:An inorganic scintillator 17 is connected to the top of a plastic scintillator 5 and both scintillators 17 and 5 are irradiated with gamma rays from a gamma-ray source 4. Optical signals from both scintillators 17 and 5 are amplified by means of a photomultiplier 6 and amplifier 10 and the signals from the inorganic scintillator 17 are discriminated by means of an energy discriminator 18. Then a second comparator 13 and computing element B14 perform arithmetic operation so that the signals can become constant and control an HV control circuit 16 and high-voltage power source 15 so that level signals can be always amplified constantly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非接触で液体のレベル
を測定するもので可燃性化学物質や防爆性能が要求され
るプラント、または、高温等の悪環境で計測をするもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to non-contact measurement of liquid level, and to a plant requiring flammable chemical substances and explosion-proof performance, or measurement in a bad environment such as high temperature.

【0002】[0002]

【従来の技術】γ線源とγ線の減衰を利用した、レベル
計,密度計,厚さ計等ではγ線源から発せられるγ線の
減衰を利用して物理量の変化を計測する。この減衰され
たγ線は電離箱やシンチレータと光電子像倍管と組み合
わせたγ線検出器により電気信号に変換され、物理量の
変化として計測できる。現在一般的に使用されている。
シンチレータとしては液体,固体が多く使用され、特
に、アルカリ金属の塩にタリウムを混合したNaI(T
l)やCsI(Tl)等があり、使用量も大きい。又、
近年は高精度の測定や大形の検出器用としてプラスチッ
クにタリウムを混合したプラスチックシンチレータが使
用されることも多くある。図2は特開平2−74827 号公
報にも示された従来から実施されているレベル計の構成
を示すものである。容器1内にはレベルを測定する液体
2があり、プラントの運転状況によりレベルは変化す
る。容器の一方には線源容器3内に入れられたコバルト
やセシュウム等のγ線源4があり、容器をθで示す角度
で照射する。容器の他方にはプラスチックシンチレータ
5と光電子増倍管6とからなる一点鎖線で示す検出器7
があり、それぞれのレベル的配置は図2に示す場合が多
い、容器の形状等によりγ線源を測定レベルの中間の位
置に設けたりすることもある。
2. Description of the Related Art A level meter, a densitometer, a thickness meter, or the like that utilizes a γ-ray source and γ-ray attenuation measures the change in physical quantity by utilizing the γ-ray attenuation emitted from the γ-ray source. This attenuated γ-ray is converted into an electric signal by an γ-ray detector combined with an ionization chamber or a scintillator and a photomultiplier, and can be measured as a change in physical quantity. Currently in common use.
Liquids and solids are often used as scintillators, and especially NaI (T
1), CsI (Tl), etc., and the amount used is large. or,
In recent years, a plastic scintillator, which is a mixture of plastic and thallium, is often used for high-accuracy measurement and large-sized detectors. FIG. 2 shows the structure of a conventional level meter disclosed in Japanese Patent Laid-Open No. 2-74827. In the container 1, there is a liquid 2 whose level is to be measured, and the level changes depending on the operating conditions of the plant. There is a γ-ray source 4 such as cobalt or cesium contained in a radiation source container 3 on one side of the container, and the container is irradiated at an angle indicated by θ. On the other side of the container, there is a detector 7 shown by a one-dot chain line, which comprises a plastic scintillator 5 and a photomultiplier tube 6.
However, depending on the shape of the container, the γ-ray source may be provided at an intermediate position of the measurement level.

【0003】プラスチックシンチレータ(以下プラシン
と略記する。)と光電子増倍管の間にはライトガイド8
があり、プラシンがγ線の照射により発光した数10ナ
ノ秒(ns)の光パルスが光電子増倍管に効率良く伝達
されるようにしている。プラシンとライトガイドの接触
面近傍にはライトパルサ9が光学的に結合して組み込ま
れる。ライトパルサはNaIシンチレータと線源量が微
量のアメリシウム(Amエネルギー3.4MeV)を組み
合わせた非常に強い光パルスを出すもので、かつ、半減
期が433年と長いAm線源を使用している。したがっ
て、長期的にも安定な光源である。このような構成の検
出器の光パルス信号は更に、増幅器10で増幅される。
図3はプリアンプの出力信号をマルチチャンネル波高分
析器で分析した例を示すものである。横軸が光パルス信
号の波高PH(パルスの長さ)、縦軸に各波高における光
パルス数Nを示す。図中には2つの波高分布集団があ
り、波高B以下と以上に分けられる。波高B以下の光パ
ルスはコバルトやセシウム等の一般にγ線源として使用
される線源から放射されたγ線が測定物体によって減衰
され、プラシンに入射して発生するプラシン光のレベル
信号である。したがって、この波高分布集団はレベルに
よって光パルス数と波高分布が変化する。波高B以上の
光パルスの集団はライトパルサによるものである。ライ
トパルサの光はエネルギーが3.4MeVとコバルトに
比べ約2.5倍大きいため、波高がコバルトやセシウム
に比べ高く、かつ、シンチレータがNaIの無機物を使
用しているため、波高分布も比較的幅の狭いガウス分布
をしており、レベル信号と混じることもない。このライ
トパルサの光信号を利用して、以下述べる測定系の外乱
による影響や経時変化をなくするように測定系の増幅度
を自動補正し、安定な測定を実現している。すなわち、
図2において、増幅器の光パルス出力は2つのコンパレ
ータで分離される。第1のコンパレータ11は比較波高
を図3のCの値とは、ノイズ成分以上の波高の信号を通
過させ、演算器A12でパルス数をレベル信号に演算変
換し、出力する。第2のコンパレータ13は比較波高を
ライトパルサによる光パルス集団の中心波高値Aとし、
Aより波高の大きい光パルスのみ通過させて、演算器B
14であらかじめ設定されたパルス数と第2のコンパレ
ータで波高A以上の通過したパルス数、すなわち、図3
に斜線でハッチングした部分のパルス数を比較演算し、
設定値との差がなくなるように光電子増倍管に印加する
高圧電源15を制御するHV制御回路16に信号を出力
する。ライトパルサの発する光パルスの数は半減期が4
33年と長いため非常に安定であるため、上記のように
第2のコンパレータを通過するパルス数を一定になるよ
うに光電子増倍管の高圧電源を制御することにより、レ
ベル信号を含めた光パルスの測定系の増幅度を一定に保
持でき、例えば、光電子増倍管の温度による増幅度変化
約−0.2〜−0.4(%/℃)や経年変化による増幅度変
化プラシン内の光透過率の変化、及び、増幅器の増幅度
温度変化が生じたとしても、全体としては光電子増倍管
の増幅度を高圧電源を変えて補正できる。したがって、
レベルを安定に測定できる。
A light guide 8 is provided between the plastic scintillator (hereinafter abbreviated as "plasmin") and the photomultiplier tube.
Therefore, an optical pulse of tens of nanoseconds (ns) emitted by plasin upon irradiation with γ-rays is efficiently transmitted to the photomultiplier tube. A light pulser 9 is optically coupled and incorporated in the vicinity of the contact surface between the plasticine and the light guide. The light pulsar emits a very strong light pulse that combines NaI scintillator and americium (Am energy 3.4 MeV) with a very small amount of radiation source, and uses an Am radiation source with a long half-life of 433 years. Therefore, it is a stable light source in the long term. The optical pulse signal of the detector having such a configuration is further amplified by the amplifier 10.
FIG. 3 shows an example in which the output signal of the preamplifier is analyzed by a multi-channel wave height analyzer. The horizontal axis shows the wave height P H (pulse length) of the optical pulse signal, and the vertical axis shows the number N of light pulses at each wave height. In the figure, there are two wave height distribution groups, which are divided into wave height B and below and above. The light pulse having a wave height B or less is a level signal of a plasin light generated when a gamma ray emitted from a gamma ray source such as cobalt or cesium which is generally used as a gamma ray source is attenuated by a measurement object and is incident on plasin. Therefore, the number of light pulses and the wave height distribution of this wave height distribution group change depending on the level. The group of light pulses having a wave height B or higher is due to the light pulser. The light of the light pulser has an energy of 3.4 MeV, which is about 2.5 times larger than that of cobalt, so the wave height is higher than that of cobalt or cesium, and the scintillator uses an inorganic substance of NaI, so the wave height distribution is relatively wide. Has a narrow Gaussian distribution and does not mix with the level signal. Using the optical signal of this light pulser, the amplification degree of the measurement system is automatically corrected so as to eliminate the influence of the disturbance of the measurement system described below and the change over time, and stable measurement is realized. That is,
In FIG. 2, the optical pulse output of the amplifier is separated by two comparators. The first comparator 11 passes a signal having a wave height equal to or higher than a noise component when the comparison wave height is the value of C in FIG. 3, and the arithmetic unit A12 arithmetically converts the pulse number into a level signal and outputs the level signal. The second comparator 13 sets the comparison wave height to the center wave height value A of the optical pulse group by the light pulser,
Only the optical pulse whose wave height is larger than A is passed, and the arithmetic unit B
14 and the number of pulses that have passed through the second comparator and have a wave height of A or higher, that is, FIG.
Compare and calculate the number of pulses in the hatched area
A signal is output to the HV control circuit 16 that controls the high-voltage power supply 15 applied to the photomultiplier tube so that there is no difference from the set value. The number of light pulses emitted by the light pulser has a half-life of 4
Since it is very stable for 33 years, the high-voltage power supply of the photomultiplier tube is controlled so that the number of pulses passing through the second comparator becomes constant as described above, so that the light including the level signal is controlled. The amplification of the pulse measurement system can be kept constant. For example, the amplification change due to the temperature of the photomultiplier tube is about -0.2 to -0.4 (% / ° C) and the change in amplification due to secular change. Even if a change in the rate and a change in the amplification factor temperature of the amplifier occur, the amplification factor of the photomultiplier tube can be corrected by changing the high-voltage power supply as a whole. Therefore,
The level can be measured stably.

【0004】しかし、計測系を構成するためには、測定
用のγ線源とライトパルサ用のγ線源と2種類のγ線源
が必要となり、γ線源の管理上も問題となる。更に、測
定用のγ線源であるCsやCoは経時的に線源の強さが
減少し、半減期が5年とか30年であり、安定な測定と
するためには、定期的に減衰補正が必要であった。
However, in order to configure the measurement system, two types of γ-ray sources, a γ-ray source for measurement and a γ-ray source for a light pulser, are required, which causes a problem in management of the γ-ray source. Furthermore, the intensity of the γ-ray source for measurement, Cs and Co, decreases with time and has a half-life of 5 years or 30 years. Correction was necessary.

【0005】[0005]

【発明が解決しようとする課題】本発明では、第1の課
題として光パルスの発光源として測定用のγ線をそのま
ま使用し、従来のように2種類のγ線源を使用しなくて
も良いようにしたことにある。第2の課題はγ線源の放
射強度の変動による出力変化を無くすることで、1秒〜
数分オーダの短時間変動として、統計ノイズといわれる
放射強度のランダム変動に起因する出力変化と、数ケ月
〜数年オーダの長時間変動としてγ線源の自然減衰にと
もなう、計器の減衰補正を不要にするところにある。
The first object of the present invention is to use γ-rays for measurement as they are as light-emission sources of optical pulses without using two types of γ-ray sources as in the prior art. I have done something good. The second problem is to eliminate the output change due to the fluctuation of the radiation intensity of the γ-ray source,
As short-term fluctuations of the order of a few minutes, output changes caused by random fluctuations of the radiant intensity, which is called statistical noise, and long-term fluctuations of the order of several months to years are compensated for by the natural attenuation of the γ-ray source. It's about making it unnecessary.

【0006】[0006]

【課題を解決するための手段】本発明を達成するため
に、従来より使用されているプラシンの頂部にプラシン
に比べて発光エネルギーの大きい無機シンチレータ17
を付け、測定用のγ線源で同時に照射発光させるもので
ある。
In order to achieve the present invention, an inorganic scintillator 17 having a larger emission energy than that of Plasin is used at the top of Plasin which has been conventionally used.
The γ-ray source for measurement is used to simultaneously irradiate and emit light.

【0007】[0007]

【作用】シンチレータの発光エネルギーは、発光輝度と
発光パルス幅の積で表わされ、プラシンに比べて発光エ
ネルギーが大きなものとしては、無機シンチレータであ
るよう化ナトリウムNaIやよう化セシウムCsIがあ
る。下表はNaIとプラシンの特性比較を示すものであ
る。
The light emission energy of the scintillator is represented by the product of the light emission luminance and the light emission pulse width. As the light emission energy larger than that of plasin, there are inorganic scintillator sodium iodide NaI and cesium iodide CsI. The table below shows a comparison of the properties of NaI and plasin.

【0008】[0008]

【表1】 [Table 1]

【0009】このような構成で、プラシンとNaIを測
定用のγ線源で照射すると光電子増倍管へ入射するプラ
シンとNaIによる光パルスは図4に示すようなパルス
ハイト分布となり、図に斜線で示すパルス高さ以上のパ
ルスのみ計数し、その値が常に一定になるように信号増
幅器ループのゲインを制御すれば、従来装置と同じ結果
が得られる。プラシンとNaIのパルスハイト分布の差
が発光エネルギー差とならないのは、プラシンの透過率
が波長410nm付近で急激に悪いこと、NaIとプラシ
ン間の境界面での反射による。
With such a structure, when irradiating plasin and NaI with a γ-ray source for measurement, the light pulse due to plasin and NaI incident on the photomultiplier has a pulse height distribution as shown in FIG. By counting only the pulses having a pulse height equal to or higher than that indicated by and controlling the gain of the signal amplifier loop so that the value is always constant, the same result as the conventional device can be obtained. The difference between the pulse height distributions of plasin and NaI does not become the difference in luminescence energy because the transmittance of plasin is abruptly bad near the wavelength of 410 nm and the reflection at the interface between NaI and plasin.

【0010】また、測定用のγ線源でNaIを照射して
いるため、γ線源の放射が長短時間的に変動しても、信
号増幅ループで自動補正されるため、γ線源放射変動に
よる統計ノイズや減衰の影響を皆無とすことができる。
Further, since the γ-ray source for measurement irradiates NaI, even if the γ-ray source radiation fluctuates for a short time, it is automatically corrected by the signal amplification loop. It is possible to eliminate the influence of statistical noise and attenuation due to.

【0011】[0011]

【実施例】以下、図1を用いて、本発明の実施例を述べ
る。プラシン頂部に光学的に接続された無機シンチレー
タはγ線源の照射角をθ+θ′と上側にθ′だけ照射範
囲を拡げることにより、レベルによらず、常時γ線で照
射される。また、従来は増幅器で増幅された信号を直接
第2のコンパレータで分離していたが、この間に静電容
量と抵抗を用いたCR時定数を有する増幅器からなるパ
ルスエネルギー弁別器18を付加し、パルスエネルギー
弁別器の前後の信号をマルチチャンネル波高分析器で分
析すると、図4(入力)と図5(出力)のように、パル
スエネルギーの大きい、NaIの信号のパルス高さとプ
ラシンのパルス高さを弁別しやすいように分離でき、N
aIの信号量も大きく得られ、より安定な制御が可能と
なった。また、図6はプラシンへ無機シンチレータを付
ける別の実施例を示し、プラシンの一部を小形の無機シ
ンチレータに置替えたものである。このようにしても、
パルス数は少なくなるが、パルスの高さは変わらないた
め、制御は十分行なわれる。なお、γ線源が減衰した場
合は、図5のNaI信号も比例して小さくなるため、信
号増幅系のゲインを自動的に大きくし、従来装置のよう
にγ線源減衰補正をする必要はない。但し、統計変動ノ
イズをなくするためには光信号増幅器,演算器,高圧電
源を含めたループゲインの応答時定数は統計変動ノイズ
の時間変化と比べ、同等以下としないとフィードバック
出来ない。従って、数秒以下とする必要がある。
Embodiments of the present invention will be described below with reference to FIG. The inorganic scintillator optically connected to the top of the plasticine is always irradiated with γ-rays regardless of the level by expanding the irradiation range of the γ-ray source by θ + θ 'and the upper side by θ'. Further, conventionally, the signal amplified by the amplifier was directly separated by the second comparator, but in the meantime, a pulse energy discriminator 18 including an amplifier having a CR time constant using a capacitance and a resistor is added, When the signals before and after the pulse energy discriminator are analyzed by the multi-channel wave height analyzer, the pulse height of the NaI signal and the pulse height of the plasin with large pulse energy are as shown in Fig. 4 (input) and Fig. 5 (output). Can be separated for easy discrimination, and N
A large signal amount of aI was obtained, and more stable control became possible. Further, FIG. 6 shows another embodiment in which an inorganic scintillator is attached to a plasticine, and a part of the plasticine is replaced with a small-sized inorganic scintillator. Even with this,
Although the number of pulses is reduced, the height of the pulse does not change, so that the control is sufficiently performed. When the γ-ray source attenuates, the NaI signal in FIG. 5 also decreases in proportion, so it is not necessary to automatically increase the gain of the signal amplification system and perform the γ-ray source attenuation correction as in the conventional device. Absent. However, in order to eliminate the statistical fluctuation noise, the response time constant of the loop gain including the optical signal amplifier, the arithmetic unit, and the high-voltage power supply cannot be fed back unless it is equal to or less than the time fluctuation of the statistical fluctuation noise. Therefore, it is necessary to set it to several seconds or less.

【0012】[0012]

【発明の効果】本発明によれば、1種類のγ線源で発光
エネルギーの異なる2つの光信号が得られ、無機シンチ
レータの光信号を一定に制御することにより信号増幅器
系のゲインを一定にすることにより、レベル測定を安定
に行なうことができた。また、統計変動ノイズをなく
し、γ線源の減衰補正も同時に実施できる効果も得られ
た。
According to the present invention, two kinds of light signals having different emission energies can be obtained by one kind of γ-ray source, and the gain of the signal amplifier system can be made constant by controlling the light signal of the inorganic scintillator to be constant. By doing so, the level measurement could be performed stably. In addition, the effect of eliminating statistical fluctuation noise and simultaneously performing attenuation correction of the γ-ray source was also obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】従来装置の説明図である。FIG. 2 is an explanatory diagram of a conventional device.

【図3】従来装置の説明図である。FIG. 3 is an explanatory diagram of a conventional device.

【図4】本発明を説明する図である。FIG. 4 is a diagram illustrating the present invention.

【図5】本発明を説明する図である。FIG. 5 is a diagram illustrating the present invention.

【図6】本発明の他の実施例を示す図である。FIG. 6 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…容器、2…液体、3…線源容器、4…γ線源、5…
プラスチックシンチレータ、6…光電子増倍管、7…検
出器、8…ライトガイド、9…ライトパルサ、10…増
幅器、11…第1のコンパレータ、12…演算器A、1
3…第2にコンパレータ、14…演算器B、15…高圧
電源、16…HV制御回路、17…無機シンチレータ、
18…エネルギー弁別器。
1 ... Container, 2 ... Liquid, 3 ... Radiation source container, 4 ... γ-ray source, 5 ...
Plastic scintillator, 6 ... Photomultiplier tube, 7 ... Detector, 8 ... Light guide, 9 ... Light pulser, 10 ... Amplifier, 11 ... First comparator, 12 ... Operation unit A, 1
3 ... second comparator, 14 ... arithmetic unit B, 15 ... high-voltage power supply, 16 ... HV control circuit, 17 ... inorganic scintillator,
18 ... Energy discriminator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】容器の一方の側に配置されたγ線源と容器
を挟んで、上記γ線源と対向する位置に配置された棒状
プラスチックシンチレータの一端に直接又はライトガイ
ドを介して光信号を受光増幅する光電子増倍管を光学的
に接続し、上記光電子増倍管の出力パルスの計数率によ
り、上記容器内のレベル変化を計測するγ線レベル計に
おいて、プラスチックシンチレータの頂部に無機シンチ
レータを光学的に接続し、両シンチレータを1個のγ源
で照射し、無機シンチレータ光の波高分布が常に同一形
状となるように光信号増幅部のゲインを制御したことを
特徴とするγ線レベル計。
1. An optical signal directly or via a light guide to one end of a rod-shaped plastic scintillator arranged at a position facing the γ-ray source with the γ-ray source arranged on one side of the container sandwiching the container. A photomultiplier tube for optically receiving and amplifying a photomultiplier tube is optically connected, and in a γ-ray level meter for measuring the level change in the container by the counting rate of the output pulse of the photomultiplier tube, an inorganic scintillator is provided on the top of the plastic scintillator. Is optically connected, both scintillators are irradiated with one γ source, and the gain of the optical signal amplification part is controlled so that the wave height distribution of the inorganic scintillator light is always the same shape. Total.
【請求項2】請求項1において、光信号を電気的に増幅
する増幅器とHV制御信号を弁別する第2コンパレータ
の間にエネルギー弁別器を設けたことを特徴とするγ線
レベル計。
2. A gamma ray level meter according to claim 1, further comprising an energy discriminator provided between an amplifier for electrically amplifying an optical signal and a second comparator for discriminating an HV control signal.
【請求項3】請求項1において、無機シンチレータがN
aI又はCsIであることを特徴とするγ線レベル計。
3. The inorganic scintillator according to claim 1, wherein the inorganic scintillator is N.
A gamma ray level meter characterized by being aI or CsI.
【請求項4】請求項1において、光信号増幅系の応答時
間が統計変動ノイズの変化時間に比べ小さいことを特徴
とするγ線レベル計。
4. The gamma ray level meter according to claim 1, wherein the response time of the optical signal amplification system is smaller than the change time of the statistical fluctuation noise.
JP5536493A 1993-03-16 1993-03-16 Gamma-ray level meter Pending JPH06265392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5536493A JPH06265392A (en) 1993-03-16 1993-03-16 Gamma-ray level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5536493A JPH06265392A (en) 1993-03-16 1993-03-16 Gamma-ray level meter

Publications (1)

Publication Number Publication Date
JPH06265392A true JPH06265392A (en) 1994-09-20

Family

ID=12996441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5536493A Pending JPH06265392A (en) 1993-03-16 1993-03-16 Gamma-ray level meter

Country Status (1)

Country Link
JP (1) JPH06265392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042828A (en) * 2001-07-30 2003-02-13 Hitachi Medical Corp Rejected container expulsion confirmation apparatus and liquid level inspection apparatus
DE102022122499A1 (en) 2022-09-06 2024-03-07 Endress+Hauser SE+Co. KG Radiometric level measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042828A (en) * 2001-07-30 2003-02-13 Hitachi Medical Corp Rejected container expulsion confirmation apparatus and liquid level inspection apparatus
DE102022122499A1 (en) 2022-09-06 2024-03-07 Endress+Hauser SE+Co. KG Radiometric level measurement

Similar Documents

Publication Publication Date Title
US6879425B2 (en) Device for determining and/or monitoring the density and/or the level of a filling material in a container
US3124679A (en) Nuclear determination of
US5218202A (en) Method for automatic drift stabilization in radiation measurement with a detector
US20090236536A1 (en) Radioactivity dose calibrator
JP4061367B2 (en) ZnS (Ag) scintillation detector
US11105940B2 (en) System and method of stabilization of a gamma and neutron detecting device
Bircher et al. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual‐ended‐scintillator readout
US10386499B2 (en) Device for determining a deposited dose and associated method
Hyodo Backscattering of gamma rays
JPH06265392A (en) Gamma-ray level meter
US3296438A (en) Nuclear particle detection system and calibration means therefor
US5412217A (en) Density-moisture measuring apparatus
Peng Quenching correction in liquid scintillation counting
US8249214B2 (en) Device for the online determination of the contents of a substance, and method for using such a device
JP2895330B2 (en) Gamma ray measuring device
US4292520A (en) Liquid scintillation spectrometry process and apparatus
US3470372A (en) Fog density measurement by x-ray scattering
JP3063488B2 (en) γ-ray level meter
US4817122A (en) Apparatus for radiation analysis
US4633088A (en) Reverse sum quench measurement using a liquid scintillation counter
Mayer et al. A scintillation counter technique for the X-ray determination of bone mineral content
US3154684A (en) X-ray analysis system with means to detect only the coherently scattered X-rays
JPH06265393A (en) Gamma-ray level meter
US8592771B2 (en) Procedures to minimize the orientation dependency of automatic drift compensation of a scintillation counter
JPH06186343A (en) Gain stabilizing system for detector