JPH06265206A - Temperature control device for hot water feeder - Google Patents

Temperature control device for hot water feeder

Info

Publication number
JPH06265206A
JPH06265206A JP5050682A JP5068293A JPH06265206A JP H06265206 A JPH06265206 A JP H06265206A JP 5050682 A JP5050682 A JP 5050682A JP 5068293 A JP5068293 A JP 5068293A JP H06265206 A JPH06265206 A JP H06265206A
Authority
JP
Japan
Prior art keywords
water
temperature
amount
hot water
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5050682A
Other languages
Japanese (ja)
Other versions
JP2820583B2 (en
Inventor
Shinji Kuroda
紳司 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP5068293A priority Critical patent/JP2820583B2/en
Publication of JPH06265206A publication Critical patent/JPH06265206A/en
Application granted granted Critical
Publication of JP2820583B2 publication Critical patent/JP2820583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve a rising or a lowering of a hot water temperature at an initial time of hot water feeding in a hot water feeder in which a heating is controlled under a feed-forward control while assuring a stable state of fed-out hot water temperature. CONSTITUTION:In a system in which a distributor 11 for adjusting only a flow rate of a bypassing pipe 13 is controlled in response to a deviation between a hot water feeding-out temperature sensed by a hot water feeding-out temperature thermistor 19, its control is not carried out until the hot water temperature detected by the hot water feeding-out temperature thermistor 19 reaches a set temperature of -1 deg.C after detecting the starting of the hot water feeding, but it is carried out after the temperature reaches the set temperature of -1 deg.C. After starting of control once, the control is continued until a predetermined time (about 8 minutes) after detecting a stopped state of the hot water feeding elapses. Since the limiting of the water amount at a bypassing pipe 13 is not carried out at the initial time of the hot water feeding, a high heating amount corresponding to the amount of water can be attained and as the hot water feeding temperature is changed by changing an amount of water during the hot water feeding, the amount of water is changed by the distributor 11 and the set temperature is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、給湯器において、熱交
換器と並列のバイパス管を有し、熱交換器とバイパス管
との分岐点でバイパス管の水量のみを調節することによ
って出湯温度を制御する温度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heater having a bypass pipe in parallel with a heat exchanger, and adjusting the water amount in the bypass pipe only at the branch point between the heat exchanger and the bypass pipe. The present invention relates to a temperature control device for controlling the temperature.

【0002】[0002]

【従来の技術】給湯器では、バーナ等の加熱手段に加熱
される熱交換器に対してバイパス管を並列に設けて、熱
交換器側を通過する水とバイパス管側を通過する水とを
混合させて、目標の出湯温度を得るものがある。また、
この種の給湯器において、出湯温度の制御を容易にする
ために、熱交換器側の水量を一定にした状態でバイパス
管側の水量のみを調節するバイパス水量調節器(分配
器)を設けて、バイパス管側の水量を調節することによ
って、全体の給湯水量が制御でき、且つ出湯温度の制御
も同時にできるようにしたものがある。この場合、バー
ナ等の加熱量は、設定温度、給湯水量、給水温度に基づ
くフィードフォワード制御値として決定され、その際、
加熱量を決定するための基礎となる給湯水量は、熱交換
器側のみの水量ではなく、バイパス管側の水量も含めた
総水量となっている。さらに、本願発明者は、上記の給
湯器において、設定温度の変更時に速やかに出湯温度を
変更するとともに、水栓開度の変更に伴う水量変動時に
出湯温度の変動を少なくし安定した湯温が得られるよう
にするために、出湯温度を検知して、出湯温度と設定温
度との偏差に応じてバイパス管側の水量を増減させるフ
ィードバック制御するものを提案した。
2. Description of the Related Art In a water heater, a bypass pipe is provided in parallel with a heat exchanger heated by a heating means such as a burner so that water passing through the heat exchanger side and water passing through the bypass pipe side can be separated from each other. Some of them are mixed to obtain a target hot water temperature. Also,
In this kind of water heater, in order to facilitate control of the hot water temperature, a bypass water amount controller (distributor) is provided to adjust only the water amount on the bypass pipe side while keeping the water amount on the heat exchanger side constant. By adjusting the amount of water on the side of the bypass pipe, there is a system in which the total amount of hot water supplied can be controlled, and at the same time, the hot water discharge temperature can be controlled. In this case, the heating amount of the burner or the like is determined as a feedforward control value based on the set temperature, the hot water supply amount, and the water supply temperature.
The amount of hot water supplied as the basis for determining the heating amount is not the amount of water only on the heat exchanger side, but the total amount of water including the amount of water on the bypass pipe side. Furthermore, the inventor of the present application, in the above water heater, changes the hot water temperature promptly when the set temperature is changed, and when the amount of water changes due to the change in the faucet opening, the fluctuation of the hot water temperature is reduced to provide a stable hot water temperature. In order to obtain it, we proposed a feedback control that detects the hot water temperature and increases or decreases the amount of water on the bypass pipe side according to the deviation between the hot water temperature and the set temperature.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のよう
に、出湯温度に基づいてバイパス管側の水量をフィード
バック制御すると、それ以前に給湯が行われていない一
般の給湯時(コールドスタート)には、バーナ、熱交換
器等の温度が低く、給湯初期の出湯温度が設定温度に対
して著しく低いために、バイパス水量調節器によってバ
イパス管側の水量が制限されて、給湯水量が少なくな
る。このため、バーナ等の加熱量は、バイパス管の水量
が制限された少ない給湯水量に基づいてバーナ等の最大
加熱能力に満たない制限された加熱量に制御されるた
め、熱交換器への加熱量が小さくなり、熱交換器の温度
の立ち上がりが悪くなる。この結果、余剰の加熱能力が
ありながら出湯温度の立ち上がりが悪くなり、バーナ等
の加熱能力に見合った十分な水量が得られるのに時間が
掛かり、例えば、シャワー使用時などにおいて目的の水
量がなかなか得られず、水量の設定に時間がかかる等の
不具合が生じ、使い勝手が悪くなる場合が生じるという
問題がある。
However, as described above, if the amount of water on the bypass pipe side is feedback-controlled based on the hot water temperature, during normal hot water supply (cold start) before hot water supply is not performed. Since the temperatures of the burner, the heat exchanger, etc. are low and the hot water discharge temperature in the initial stage of hot water supply is significantly lower than the set temperature, the amount of water supplied on the bypass pipe side is limited by the bypass water amount controller, and the amount of hot water supplied decreases. Therefore, the heating amount of the burner, etc. is controlled to a limited heating amount that is less than the maximum heating capacity of the burner, etc., based on the small amount of hot water supply with a limited amount of water in the bypass pipe. The amount becomes small and the rise of the temperature of the heat exchanger deteriorates. As a result, the hot water outlet temperature rises poorly even though there is excess heating capacity, and it takes time to obtain a sufficient amount of water commensurate with the heating capacity of the burner, etc. However, there is a problem in that it is not possible to obtain the water content and it takes time to set the amount of water, resulting in poor usability.

【0004】本発明は、出湯温度の変動が少なく、しか
も、給湯初期においては、立ち上がりに優れた給湯器の
温度制御装置を提供することを目的とする。
An object of the present invention is to provide a temperature control device for a water heater, which has a small fluctuation in hot water temperature and which is excellent in rising at the initial stage of hot water supply.

【0005】[0005]

【課題を解決するための手段】本発明は、加熱手段によ
り加熱される熱交換器とバイパス管とを並列接続し、前
記熱交換器と前記バイパス管との分岐点に前記バイパス
管の通過水量を調節するバイパス水量調節器が備えられ
た水加熱回路を有する給湯器の温度制御装置において、
前記水加熱回路の通水を検知する通水検知手段の通水検
知時に前記加熱手段による加熱を行い、前記加熱手段の
加熱量を設定温度、前記水加熱回路への給水温度、前記
水加熱回路への給水水量に基づいて制御する加熱制御手
段と、前記加熱手段の最大加熱能力に対する前記設定温
度と前記給水温度との偏差に基づいて前記水加熱回路の
最大水量基準値を算出する基準値算出手段と、前記通水
検知手段が前記水加熱回路の通水を検知し、且つ、前記
出湯温度が前記設定温度に対して一定温度だけ低く設定
された所定温度以上の場合に、前記設定温度と前記水加
熱回路の出湯温度との偏差に比例した水量補正値の算出
を開始し、前記通水検知手段が通水停止を検知してから
所定時間後に前記水量補正値の算出を終了する補正値算
出手段と、前記基準値算出手段の前記最大水量基準値と
前記補正値算出手段の前記水量補正値との和に基づいて
前記水量調節手段を制御する水量制御手段とを具備する
ことを技術的手段とする。
According to the present invention, a heat exchanger heated by heating means and a bypass pipe are connected in parallel, and the amount of water passing through the bypass pipe at a branch point between the heat exchanger and the bypass pipe. In a water heater temperature control device having a water heating circuit provided with a bypass water amount controller for adjusting
When the water flow detection means for detecting water flow in the water heating circuit detects the water flow, the heating means performs heating, and the heating amount of the heating means is a set temperature, the water supply temperature to the water heating circuit, and the water heating circuit. Heating control means for controlling based on the amount of water supplied to the water, and a reference value calculation for calculating the maximum water amount reference value of the water heating circuit based on the deviation between the set temperature and the water supply temperature with respect to the maximum heating capacity of the heating means. Means and the water flow detection means detects water flow in the water heating circuit, and when the hot water discharge temperature is equal to or higher than a predetermined temperature set lower than the set temperature by a certain temperature, A correction value that starts the calculation of the water amount correction value proportional to the deviation from the hot water temperature of the water heating circuit, and ends the calculation of the water amount correction value after a predetermined time after the water flow detecting means detects the water flow stop. Calculating means and the base The technical means to and a water amount controlling means for controlling the water amount adjusting means based on a sum of the maximum water amount reference value value calculating means and said water amount correction value of the correction value calculating means.

【0006】[0006]

【作用】本発明では、それ以前に給湯が行われていない
一般の給湯時(コールドスタート時)に、給湯が開始さ
れて、通水検知手段によって水加熱回路の通水が検知さ
れると、設定温度、給水温度、給水水量に基づいて制御
された加熱量で、加熱手段による加熱が開始される。こ
のとき、加熱手段の最大加熱能力に対する設定温度と給
水温度との偏差に基づいて水加熱回路の最大水量基準値
が基準値算出手段によって算出されるが、加熱開始の初
期においては、熱交換器は加熱されてまもないためその
温度は低く、出湯温度は設定温度に対して十分高くなっ
ておらず、設定温度より低く設定された所定温度に達し
ないため、補正値算出手段による水量補正値の算出は開
始されない。従って、バイパス管の水量は、バイパス水
量調節器によって、最大水量基準値のみに対応した水量
に制御されるため、水加熱回路には、加熱手段の最大加
熱能力に応じた最大限の水が通過し、このとき加熱手段
の加熱量は、最大加熱能力が得られる。従って、熱交換
器は、加熱手段の最大加熱能力で加熱されるため、熱交
換器には多くの熱量が与えられ、水加熱回路を通過する
水の温度は速やかに上昇し、且つ、加熱能力に応じた十
分な水量が得られ、出湯温度の立ち上がりが遅れること
がない。
In the present invention, when hot water supply is started before normal hot water supply (cold start) and hot water supply is detected by the water flow detecting means, The heating by the heating means is started with the heating amount controlled based on the set temperature, the feed water temperature, and the feed water amount. At this time, the maximum water amount reference value of the water heating circuit is calculated by the reference value calculation means based on the deviation between the set temperature and the feed water temperature with respect to the maximum heating capacity of the heating means. The temperature is low because it is not heated, the hot water temperature is not sufficiently higher than the set temperature, and it does not reach the predetermined temperature set lower than the set temperature. The calculation of does not start. Therefore, the amount of water in the bypass pipe is controlled by the bypass water amount controller to the amount of water that corresponds only to the maximum water amount reference value, so the maximum amount of water according to the maximum heating capacity of the heating means passes through the water heating circuit. However, at this time, the heating amount of the heating means obtains the maximum heating capacity. Therefore, since the heat exchanger is heated by the maximum heating capacity of the heating means, a large amount of heat is given to the heat exchanger, the temperature of the water passing through the water heating circuit rises quickly, and the heating capacity is high. A sufficient amount of water can be obtained in accordance with the above, and rising of the hot water temperature does not delay.

【0007】従って、加熱手段は加熱開始時からその最
大加熱能力で加熱を行うため、熱交換器に与えられる熱
量が多くなり、その結果、出湯温度の立ち上がりがよ
く、しかも、その際の水量が、著しく低下することがな
く、十分な水量が得られる。給湯が継続され、熱交換器
の温度が十分に上昇して、それとともに、水加熱回路を
通過する水の温度が上昇して、その出湯温度が所定温度
以上になると、補正値算出手段による水量補正値の算出
が開始される。このとき、出湯温度は設定温度より低
く、水量補正値は負の値になるため、水加熱回路を通過
する水量は減少し、このとき、出湯温度に対して一定温
度差まで上昇していた出湯温度は速やかに設定温度に達
する。この場合、水量が一時的に減少するが、熱交換器
の温度が十分に高くなっているため、その後まもなく設
定温度と出湯温度との偏差がなくなり、水量補正値が負
の値から0へ変化するため、水量は、最大水量基準値と
して算出された加熱手段の最大加熱能力に応じた最大限
の水量へ出湯水量が増大する。
Therefore, since the heating means performs heating with the maximum heating capacity from the start of heating, the amount of heat given to the heat exchanger increases, and as a result, the rising temperature of the hot water discharge is good and the amount of water at that time is high. A sufficient amount of water can be obtained without a significant decrease. When hot water supply continues, the temperature of the heat exchanger rises sufficiently, and along with that, the temperature of the water passing through the water heating circuit rises, and when the hot water temperature rises above a predetermined temperature, the amount of water by the correction value calculation means Calculation of the correction value is started. At this time, the tap water temperature is lower than the set temperature, and the water amount correction value becomes a negative value, so the amount of water passing through the water heating circuit decreases, and at this time, the tap water temperature has risen to a certain temperature difference with respect to the tap water temperature. The temperature quickly reaches the set temperature. In this case, the amount of water decreases temporarily, but since the temperature of the heat exchanger is sufficiently high, the deviation between the set temperature and the tap water temperature disappears shortly thereafter, and the water amount correction value changes from a negative value to 0. Therefore, the amount of tap water increases to the maximum amount of water according to the maximum heating capacity of the heating means calculated as the maximum water amount reference value.

【0008】この給湯中に、使用者が水栓の開度を変更
して、給湯水量が変化した場合には、出湯温度が一時的
に変化するが、算出される水量補正値によってバイパス
水量が変更されるため、出湯温度は速やかに設定温度に
戻り、加熱量を急激に変更しなくても、安定した出湯温
度が容易に得られる。また、同様に、設定温度が変更さ
れた場合においても、水量補正値によってバイパス水量
が速やかに変更されるため、出湯温度は新たな設定温度
に速やかに変更され、このとき、加熱量を大きく変更す
る必要がないため、出湯温度が不安定にならない。
When the user changes the opening degree of the faucet during hot water supply to change the hot water supply amount, the hot water outlet temperature temporarily changes, but the bypass water amount is changed by the calculated water amount correction value. Since the hot water is changed, the hot water temperature quickly returns to the set temperature, and a stable hot water temperature can be easily obtained without rapidly changing the heating amount. Similarly, when the set temperature is changed, the tap water temperature is quickly changed to the new set temperature because the bypass water amount is quickly changed by the water amount correction value, and at this time, the heating amount is largely changed. Since there is no need to do so, the tap water temperature does not become unstable.

【0009】一方、一旦給湯を行って、出湯温度が設定
温度より一定温度だけ低い所定温度以上に達した後に、
給湯が停止された場合には、補正値算出手段は、給湯停
止後に所定時間が経過するまでは、出湯温度に関係な
く、継続して水量補正値を算出する。このとき、水加熱
回路の通水が停止しているため、水加熱回路では熱交換
器に残存する熱により出口温度は設定温度より高くなる
場合があり、そのときの水量補正値は正の値となる。こ
の状態で、再び給湯を行った場合には、バイパス水量調
節器は、熱交換器を通過する水量に対してバイパス水量
を多くするように作動するため、出湯温度は速やかに低
下し、過剰加熱された湯水が流出することがない。
On the other hand, once hot water is supplied and after the hot water temperature reaches a predetermined temperature which is lower than the set temperature by a certain temperature,
When the hot water supply is stopped, the correction value calculation means continuously calculates the water amount correction value regardless of the hot water outlet temperature until a predetermined time elapses after the hot water supply is stopped. At this time, since water flow in the water heating circuit is stopped, the outlet temperature may become higher than the set temperature due to the heat remaining in the heat exchanger in the water heating circuit, and the water amount correction value at that time is a positive value. Becomes When hot water is supplied again in this state, the bypass water amount adjuster operates to increase the amount of bypass water relative to the amount of water passing through the heat exchanger, so the hot water outlet temperature drops rapidly and overheating occurs. The generated hot water does not flow out.

【0010】給湯停止後、所定時間以上が経過した場合
には、補正値算出手段は水量補正値の算出を終了し、こ
れ以降、再給湯が行われても、水量調節器は最大水量基
準値のみに基づいて制御される。この場合、水加熱回路
の一部のみに熱が残存していて、熱交換器の出口付近の
温度のみが給水温度に対して多少高くなっていても、加
熱停止後に十分な時間が経過しており、水加熱回路を通
過する水の温度を上昇させるには不十分であるため、全
く問題がなく、逆に、残存熱による水量補正値が算出さ
れないため、立ち上がりがよくなる。
After a lapse of a predetermined time after the hot water supply is stopped, the correction value calculating means finishes the calculation of the water amount correction value, and even if the hot water is reheated thereafter, the water amount controller keeps the maximum water amount reference value. Controlled only on the basis of. In this case, even if the heat remains only in a part of the water heating circuit and only the temperature near the outlet of the heat exchanger is slightly higher than the feed water temperature, sufficient time has elapsed after the heating was stopped. However, since it is insufficient to raise the temperature of the water passing through the water heating circuit, there is no problem at all, and conversely, since the water amount correction value due to the residual heat is not calculated, the rise is improved.

【0011】[0011]

【発明の効果】本発明では、水加熱回路のバイパス管を
通過するバイパス水量を調節するバイパス水量調節器
を、基準値算出手段の最大水量基準値と補正値算出手段
の水量補正値との和によって制御し、しかも、補正値算
出手段の水量補正値の算出を、通水検知手段が水加熱回
路の通水を検知し、且つ、出湯温度が設定温度より一定
温度だけ低く設定された所定温度以上の場合に開始し、
通水検知手段が通水停止を検知してから所定時間後にこ
の算出を終了するため、コールドスタートにおいては、
加熱手段が最大加熱量で加熱を行うことができ、その結
果、出湯温度の立ち上がりを損なうことなく、速やかに
出湯温度を上昇させることができる。また、給湯中にお
いては、設定温度の変更や給湯水量の変更が行われた場
合には、これらの変更に伴って出湯温度が変動すると、
それに応じて速やかにバイパス水量が変更されるため、
出湯温度の変動を小さくすることができ、安定した出湯
温度が得られる。
According to the present invention, a bypass water amount controller for adjusting the amount of bypass water passing through the bypass pipe of the water heating circuit is used as a sum of the maximum water amount reference value of the reference value calculation means and the water amount correction value of the correction value calculation means. In addition, the water flow correction means detects the water flow in the water heating circuit and calculates the water amount correction value of the correction value calculation means, and the hot water outlet temperature is set lower than the set temperature by a predetermined temperature. Start in the above cases,
Since the calculation is completed a predetermined time after the water flow detection means detects the water flow stop, at cold start,
The heating means can perform heating with the maximum heating amount, and as a result, the outlet heated water temperature can be quickly raised without impairing the rise of the outlet heated water temperature. Also, during hot water supply, when the set temperature or the amount of hot water supply is changed, if the hot water outlet temperature fluctuates due to these changes,
Since the amount of bypass water is changed accordingly,
Fluctuations in the tapping temperature can be reduced, and a stable tapping temperature can be obtained.

【0012】[0012]

【実施例】次に本発明を図に示す実施例に基づいて説明
する。図1は、追焚き機能付きガス給湯器における給湯
部1のみを示す。図1において、給水管10は、分配器
11を介して熱交換器12およびバイパス管13と連通
し、熱交換器12の下流側とバイパス管13とが合流し
て出湯管14と接続されており、以上により本発明の水
加熱回路が構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described based on the embodiments shown in the drawings. FIG. 1 shows only a hot water supply unit 1 in a gas water heater with a reheating function. In FIG. 1, the water supply pipe 10 communicates with the heat exchanger 12 and the bypass pipe 13 via the distributor 11, and the downstream side of the heat exchanger 12 and the bypass pipe 13 join and are connected to the hot water outlet pipe 14. The water heating circuit of the present invention is configured as described above.

【0013】分配器11は、弁体の回動角度に応じて熱
交換器12の水量およびバイパス管13の水量を調節す
る水量調節器であって、回動角度と熱交換器12の水量
およびバイパス管13の水量と出湯管14の総水量との
関係は、図2に示すとおり、0〜90度では、熱交換器
12の水量のみが回動角度に応じて増加し、バイパス管
13の水量はほぼ全閉状態として死水をなくすために設
定された微量水量(0.5リットル/分)に固定され、
90〜270度では、熱交換器12の水量は90度にお
ける水量で一定になり、バイパス管13の水量のみが回
動角度に応じて増加するように設定されている。ここ
で、分配器11は、ステッピングモータによって駆動さ
れ、上記のとおり設定される各水量に対応した回動角が
演算によって与えられると、その回動角に対応したステ
ップ数だけ駆動される。
The distributor 11 is a water quantity controller for adjusting the water quantity of the heat exchanger 12 and the water quantity of the bypass pipe 13 in accordance with the turning angle of the valve body, and the turning angle and the water quantity of the heat exchanger 12 and As shown in FIG. 2, the relationship between the amount of water in the bypass pipe 13 and the total amount of water in the hot water outlet pipe 14 is 0 to 90 degrees, and only the amount of water in the heat exchanger 12 increases in accordance with the rotation angle. The amount of water is fixed to a very small amount of water (0.5 liters / minute) set to eliminate dead water in a nearly fully closed state.
From 90 to 270 degrees, the amount of water in the heat exchanger 12 is constant at 90 degrees, and only the amount of water in the bypass pipe 13 is set to increase according to the rotation angle. Here, the distributor 11 is driven by a stepping motor, and when a rotation angle corresponding to each water amount set as described above is given by calculation, it is driven by the number of steps corresponding to the rotation angle.

【0014】これによって、バイパス管13の水量に対
する熱交換器12の水量の比(バイパス比)は、図3に
示すとおり、0〜90度では、角度に応じて微小減少
し、90〜270度では、角度に比例して増加する。な
お、15は水量センサ、16は給水温サーミスタ、17
は水ガバナ、18は熱交換器出口サーミスタ、19は出
湯温サーミスタである。
As a result, as shown in FIG. 3, the ratio of the amount of water in the heat exchanger 12 to the amount of water in the bypass pipe 13 (bypass ratio) is slightly reduced from 0 to 90 degrees depending on the angle, and 90 to 270 degrees. Then, it increases in proportion to the angle. In addition, 15 is a water amount sensor, 16 is a water supply temperature thermistor, 17
Is a water governor, 18 is a heat exchanger outlet thermistor, and 19 is a hot water outlet thermistor.

【0015】熱交換器12を加熱するための加熱手段
は、燃料管20に備えられた比例弁21により供給され
る燃料ガス量が制御される2連のバーナ22、23から
なり、また、燃料管20から分岐して各バーナ22、2
3へ燃料ガスを供給する分岐燃料管24、25には、各
バーナ22、23の燃焼をそれぞれ制御する小電磁弁2
6、27が備えられている。なお、28は燃焼用空気を
供給する送風機、29は元電磁弁、30はイグナイタの
点火用電極、31は着火検知のためのフレームロッドで
ある。
The heating means for heating the heat exchanger 12 is composed of two burners 22 and 23 in which the amount of fuel gas supplied by a proportional valve 21 provided in the fuel pipe 20 is controlled, and the fuel is also used. Each burner 22, 2 branches from the pipe 20.
The branch fuel pipes 24, 25 for supplying the fuel gas to the fuel cell 3 are provided with small solenoid valves 2 for controlling the combustion of the burners 22, 23, respectively.
6, 27 are provided. Reference numeral 28 is a blower for supplying combustion air, 29 is a main solenoid valve, 30 is an igniter ignition electrode, and 31 is a flame rod for ignition detection.

【0016】以上の構成からなる給湯部1は、図示しな
い追焚き部とともに、制御装置40により制御される。
制御装置40は、バーナ22、23の燃焼制御と、分配
器11による水量制御とを行い、これらの制御の組合せ
によって出湯温度制御を行う。
The hot water supply unit 1 having the above structure is controlled by the control device 40 together with the reheating unit (not shown).
The control device 40 controls the combustion of the burners 22 and 23 and the water amount control by the distributor 11, and controls the outlet heated water temperature by a combination of these controls.

【0017】燃焼制御では、水量センサ15による通水
検知に応じてバーナ22、23の点消火制御を行うとと
もに、図示しないリモコンによる設定温度Tset 、給水
温サーミスタ16に検知される給水温度Tin、水量セン
サ15に検知される水量とからバーナ22、23の加熱
量のフィードフォワード制御量を演算して、各小電磁弁
26、27を開閉制御するとともに、比例弁21の開度
および送風機28の回転数を制御する燃焼量制御を行
う。また、出湯温度Tout が設定温度Tset に達した後
には、出湯温度Tout に基づいたフィードバック制御量
の一部をフィードフォワード制御量に加算した燃焼量制
御を行う。
In the combustion control, the point extinguishing control of the burners 22 and 23 is performed in response to the water flow detection by the water amount sensor 15, and the set temperature Tset by the remote controller (not shown), the water supply temperature Tin detected by the water supply temperature thermistor 16, and the water amount. The feedforward control amount of the heating amount of the burners 22 and 23 is calculated from the amount of water detected by the sensor 15 to control the opening and closing of the small solenoid valves 26 and 27, and the opening degree of the proportional valve 21 and the rotation of the blower 28. The combustion amount control for controlling the number is performed. After the outlet heated water temperature Tout reaches the set temperature Tset, the combustion amount control is performed by adding a part of the feedback control amount based on the outlet heated water temperature Tout to the feedforward control amount.

【0018】水量制御では、設定温度Tset 、給水温度
Tin、バーナ22、23の最大加熱能力によって最大水
量基準値Lffを算出する基準値算出と、設定温度Tset
と出湯温度Tout の偏差から水量補正値Lp を算出する
補正値算出とを行い、さらにこれらによって算出された
最大水量基準値Lffと水量補正値Lp との和を最大水量
値Lとしてその水量に応じた回動角度に分配器11を制
御する。基準値算出は、水加熱回路の水量が設定温度T
set に対して加熱能力を越えないようにするための最大
水量基準値Lffを決めるもので、次のとおり、
In the water amount control, a reference value calculation for calculating the maximum water amount reference value Lff by the set temperature Tset, the feed water temperature Tin, and the maximum heating capacity of the burners 22 and 23, and the set temperature Tset.
And the correction value calculation for calculating the water amount correction value Lp from the deviation of the outlet hot water temperature Tout, and the sum of the maximum water amount reference value Lff and the water amount correction value Lp calculated by these is set as the maximum water amount value L according to the water amount. The distributor 11 is controlled to a different rotation angle. The reference value is calculated by setting the amount of water in the water heating circuit to the set temperature T.
It determines the maximum water amount reference value Lff so as not to exceed the heating capacity for the set.

【数1】Lff=(OPmax ×a)/(Tset −Tin) の演算式によって求める。(但し、OPmax はバーナ2
2、23の最大加熱量、aは設定温度Tset によって決
まる係数である。
## EQU1 ## It is obtained by the arithmetic expression of Lff = (OPmax * a) / (Tset-Tin). (However, OPmax is burner 2
The maximum heating amount of 2, 23, a is a coefficient determined by the set temperature Tset.

【0019】補正値算出は、給湯中に使用者が水栓を操
作して水量が変化した場合に出湯温度の変動を防止する
とともに、設定温度が変更された場合に出湯温度の安定
性を向上させるために行うもので、水量補正値Lp を、
The correction value calculation prevents the variation of the hot water outlet temperature when the user operates the faucet during hot water supply to change the amount of water, and improves the stability of the hot water outlet temperature when the set temperature is changed. The water amount correction value Lp is

【数2】 Lp =p1×Lff×(To −Tset )/(Tset −Tin) の演算式によって求める。(但し、p1は定数項であ
り、To は出湯温サーミスタ19に検知される出湯温度
Tout によってTo =Tout −温度補正量(℃)で決ま
る値である。なお、この数式2は、Tset −Tin≧10
℃の場合に限って用いられる。)この補正値算出は、コ
ールドスタートにおいて、できるだけ速く設定温度が得
られるようにするために、出湯温度が設定温度に達する
までの過渡期においては、上記数式2による水量補正値
Lp の算出に制限を設けて、出湯温度Tout が、Tout
<Tset −1の間は、水量補正値Lp =0とし、Tout
≧Tset −1を満たした時点で、上記数式2による水量
補正値Lp の算出を開始する。また、止水に伴う消火動
作後は、約8分経過するまでのポストパージの期間は、
継続して数式2による水量補正値Lp の算出を行い、約
8分経過後は、水量補正値Lp =0として水量制御を行
う。
## EQU00002 ## Lp = p1.times.Lff.times. (To-Tset) / (Tset-Tin) is calculated. (However, p1 is a constant term, and To is a value determined by To = Tout−temperature correction amount (° C.) depending on the tapping temperature Tout detected by the tapping temperature thermistor 19. Note that this equation 2 is Tset−Tin. ≧ 10
Used only at ° C. ) This correction value calculation is limited to the calculation of the water amount correction value Lp by the above-mentioned mathematical expression 2 in the transition period until the outlet heated water temperature reaches the set temperature in order to obtain the set temperature as quickly as possible at the cold start. The hot water temperature Tout is set to Tout
During <Tset −1, the water amount correction value Lp = 0 is set, and Tout is set.
At the time when ≧ Tset −1 is satisfied, the calculation of the water amount correction value Lp according to the above mathematical expression 2 is started. In addition, after the fire extinguishing operation due to water stoppage, the post-purge period until about 8 minutes has passed is
The water amount correction value Lp is continuously calculated by the equation 2, and after about 8 minutes, the water amount correction value Lp is set to 0 and the water amount control is performed.

【0020】なお、上記の数式2における温度補正量
は、以下の条件が全て満たされた場合に限って出湯温度
Tout を適温設定時における止水中の熱交換器12内の
湯温測定試験の結果に基づいて補正するために求められ
るものであって、図4に示すとおり、消火後約30秒以
降は、次の数式3により算出される最大補正量を補正量
とし、消火後約30秒までは、その経過時間に応じて消
火時を0として数式3の最大補正量を比例配分して求め
る。条件消火検知状態、条件ポストパージ中(消火
後約8分間)、条件消火後に設定温度の変更がないこ
と、条件Tout >(Tset −Tin)×A+Tin(但し
A=0.0〜1.0)であること。
The temperature correction amount in the above equation 2 is the result of the hot water temperature measurement test in the heat exchanger 12 in still water when the hot water outlet temperature Tout is set to an appropriate temperature only when all the following conditions are satisfied. As shown in FIG. 4, after 30 seconds after extinguishing the fire, the maximum correction amount calculated by the following mathematical formula 3 is used as the correction amount, and up to about 30 seconds after the fire extinguishing. Is obtained by proportionally distributing the maximum correction amount of Equation 3 with the extinguishing time as 0 according to the elapsed time. Condition extinguishing detection condition, condition post-purging (about 8 minutes after extinguishing), no change of set temperature after condition extinguishing, condition Tout> (Tset-Tin) x A + Tin (A = 0.0 to 1.0) To be.

【数3】最大補正量=(Tset −Tin)×C+D (但し、C=1/40、D=1.0)## EQU00003 ## Maximum correction amount = (Tset-Tin) .times.C + D (where C = 1/40, D = 1.0)

【0021】本実施例では、上記のとおり、水量補正値
Lp の算出に制限を設けているが、出湯温度Tout が設
定温度Tset より低い場合には、最大水量値Lにおける
水量補正値Lp 成分によって最大水量値Lが小さくな
り、水量が制限された後に、出湯温度Tout の上昇に伴
って最大水量値Lが大きくなり、水量が次第に多くなる
水量の漸増現象が生じる虞があるため、給湯初期におけ
る水量の漸増現象を防止し、水量の安定性を得るため
に、以下に示すのとおり、算出された水量補正値Lp に
関係なく、最大水量基準値Lffに応じて最大水量値Lの
最低値を制限するようにしている。 L=11〔リットル/分〕 (L<11<Lffの場合) L=Lff〔リットル/分〕 (L<Lff<11の場合) これによって、最大水量値Lが、最大水量基準値Lffに
対して極端に少なくなることがなくなり、漸増する給湯
水量を少なくすることができる。
In this embodiment, as described above, the calculation of the water amount correction value Lp is limited, but when the outlet water temperature Tout is lower than the set temperature Tset, the water amount correction value Lp component at the maximum water amount value L is used. After the maximum water amount value L is reduced and the water amount is limited, the maximum water amount value L increases as the hot water outlet temperature Tout rises, and there is a risk that a gradual increase in the water amount may occur. In order to prevent the gradual increase of the water volume and to obtain the stability of the water volume, the minimum value of the maximum water volume L is set according to the maximum water volume reference value Lff, as shown below, regardless of the calculated water volume correction value Lp. I try to limit it. L = 11 [liter / min] (in the case of L <11 <Lff) L = Lff [liter / min] (in the case of L <Lff <11) As a result, the maximum water amount value L becomes larger than the maximum water amount reference value Lff. It is possible to reduce the amount of hot water to be gradually increased.

【0022】本実施例では以上のとおり燃焼制御および
水量制御を行うことにより、図5に示すとおり、分配器
11の回動角度に対して出湯温度Tout が一義的に決ま
る。なお、以上の説明においては、上記の算出による最
大水量値L以上の水量が水栓から流出するように水栓が
開放されることを前提として説明したが、水栓から流出
する水量が、最大水量値Lに満たない場合においても、
出湯温度Tout は分配器11の回動角度に対応したもの
になる。
In the present embodiment, by performing the combustion control and the water amount control as described above, the outlet heated water temperature Tout is uniquely determined with respect to the rotation angle of the distributor 11, as shown in FIG. In the above description, it is assumed that the faucet is opened so that a water amount equal to or larger than the maximum water amount value L calculated above flows out from the faucet, but the water amount flowing out from the faucet is the maximum. Even when the water amount L is less than
The outlet heated water temperature Tout corresponds to the rotation angle of the distributor 11.

【0023】次に本実施例の給湯部1の作動を図6を参
考に説明する。使用者が水栓を開いて水加熱回路を通過
する給湯水量が点火水量に達すると(ステップS1にお
いてYES)、元電磁弁29、小電磁弁26、27が開
き、比例弁21が点火開度に制御されてバーナ22、2
3が点火され、加熱制御が開始される(ステップS
2)。一方、水量制御として、給水温サーミスタ16で
検知される給水温度Tin、設定温度Tset 、バーナ2
2、23の最大加熱能力から最大水量基準値Lffが算出
される。出湯温度Tout が設定温度Tset に対して、T
out >Tset −1℃の関係である間は、数式2による水
量補正値Lp の算出は行われず、水量補正値Lp はLp
=0とされて、最大水量基準値Lffがそのまま最大水量
値Lとして分配器11が制御される。
Next, the operation of the hot water supply unit 1 of this embodiment will be described with reference to FIG. When the user opens the faucet and the amount of hot water supplied through the water heating circuit reaches the amount of ignition water (YES in step S1), the original solenoid valve 29 and the small solenoid valves 26, 27 are opened, and the proportional valve 21 is opened by the ignition opening. Controlled by burners 22, 2
3 is ignited, and heating control is started (step S
2). On the other hand, as the water amount control, the water supply temperature Tin detected by the water supply temperature thermistor 16, the set temperature Tset, the burner 2
The maximum water amount reference value Lff is calculated from the maximum heating capacities of 2 and 23. Hot water temperature Tout is set to the set temperature Tset by T
While the relation of out> Tset-1 ° C is satisfied, the water amount correction value Lp is not calculated by the equation 2, and the water amount correction value Lp is Lp.
= 0, and the distributor 11 is controlled with the maximum water amount reference value Lff as it is as the maximum water amount value L.

【0024】出湯温度Tout が上昇して、Tout ≧Tse
t −1℃の関係になると(ステップS3においてYE
S)、数式2による水量補正値Lp の算出が開始され
(ステップS4)、以後、算出された水量補正値Lp と
最大水量基準値Lffとの和による最大水量値Lに基づい
て分配器11が制御される。従って、出湯温度Tout
が、Tout =Tset −1℃になった時点で、バイパス管
13の水量が減少するため、出湯温度Tout は設定温度
Tset に達し、その後は、徐々に水量が最大水量値Lま
で増加する。給湯中に、設定温度Tset が変更された
り、水栓の操作によって水量が変化して、出湯温度Tou
t が変動しても、その温度変化に対応して直ちに分配器
11の回動角度が変更されるため、出湯温度Tout の変
動は最小限に抑えられ、安定した湯温が得られる。
The outlet heated water temperature Tout rises, and Tout ≧ Tse
When it becomes a relation of t −1 ° C. (YE in step S3)
S), calculation of the water amount correction value Lp by the mathematical formula 2 is started (step S4), and thereafter, the distributor 11 determines the maximum water amount value L based on the sum of the calculated water amount correction value Lp and the maximum water amount reference value Lff. Controlled. Therefore, the hot water temperature Tout
However, when Tout = Tset −1 ° C., the amount of water in the bypass pipe 13 decreases, so the outlet heated water temperature Tout reaches the set temperature Tset, and thereafter, the amount of water gradually increases to the maximum water amount value L. During hot water supply, the set temperature Tset is changed, or the amount of water changes due to the operation of the faucet.
Even if t fluctuates, the rotation angle of the distributor 11 is immediately changed according to the temperature change, so that the fluctuation of the hot water outlet temperature Tout can be minimized and a stable hot water temperature can be obtained.

【0025】水栓が閉じられ、水量が消火水量以下にな
ると(ステップS5においてYES)、燃焼制御が終了
し、各電磁弁が閉じられてバーナ2、23の燃焼が停止
する(ステップS6)。その後は、約8分タイマが作動
を開始し(ステップS7)、その動作中に送風機28の
みが作動するポストパージが約8分間行われる。数式2
による水量補正値Lp の算出が行われた場合、この約8
分タイマが作動している間は(ステップS8においてN
O)、数式2による水量補正値Lp の算出が継続して行
われ、この間に、再給湯が行われた場合には、水量補正
値Lp と最大水量基準値Lffとの和による最大水量値L
に基づいて、分配器11が制御される。
When the water faucet is closed and the amount of water becomes equal to or less than the amount of fire extinguishing water (YES in step S5), the combustion control ends, each solenoid valve is closed, and the combustion of the burners 2 and 23 is stopped (step S6). After that, the 8-minute timer starts to operate (step S7), and the post-purge in which only the blower 28 operates during the operation is performed for about 8 minutes. Formula 2
When the water amount correction value Lp is calculated by
While the minute timer is operating (N in step S8
O), the calculation of the water amount correction value Lp by Equation 2 is continuously performed, and when hot water is re-supplied during this period, the maximum water amount value L obtained by the sum of the water amount correction value Lp and the maximum water amount reference value Lff.
Based on the above, the distributor 11 is controlled.

【0026】約8分タイマの計時が終わると(ステップ
S8においてYES)、送風機28によるポストパージ
が終了し、このとき、数式2による水量補正値Lp の算
出が行われている場合には、その算出動作も終了する
(ステップS9)。従って、この後、再給湯が行われた
ときには、最大水量基準値Lffのみによる最大水量値L
に基づいて分配器11が制御されるため、バイパス管1
3の水量が出湯温度Tout に基づいて制限されることが
なく、確実に最大水量値Lの水量が水加熱回路を通過す
ることになり、この水量に応じた加熱制御が行われるた
め、バーナ22、23の加熱能力が制限されることがな
く、十分大きな加熱能力で熱交換器12を加熱できる。
この結果、加熱の立ち上がりがよくなる。
When the timer for about 8 minutes is finished (YES in step S8), the post-purge by the blower 28 is finished. At this time, if the water amount correction value Lp is calculated by the equation 2, that The calculation operation also ends (step S9). Therefore, after that, when re-hot water supply is performed, the maximum water amount value L based only on the maximum water amount reference value Lff.
Since the distributor 11 is controlled based on the
The water amount of 3 is not limited based on the hot water outlet temperature Tout, and the water amount of the maximum water amount value L surely passes through the water heating circuit, and the heating control according to this water amount is performed. , 23 are not limited, and the heat exchanger 12 can be heated with a sufficiently large heating capacity.
As a result, the rise of heating is improved.

【0027】以上のとおり、本実施例では、加熱開始初
期において、水量が、バーナ22、23の最大加熱能
力、設定温度Tset 、給水温度Tinに基づいて決まる最
大水量値Lに維持され、それより少なくなることがない
ため、バーナ22、23の燃焼量を最大燃焼量にするこ
とができる。従って、給湯初期における熱交換器12に
対する加熱量が大きくなり、図7に示すとおり、出湯温
度Tout の立ち上がりがよく、短時間で設定温度Tset
の湯水が得られる。
As described above, in the present embodiment, the water amount is maintained at the maximum water amount value L determined based on the maximum heating capacity of the burners 22 and 23, the set temperature Tset, and the feed water temperature Tin at the beginning of heating, Since it does not decrease, the combustion amount of the burners 22 and 23 can be maximized. Therefore, the amount of heat applied to the heat exchanger 12 in the initial stage of hot water supply becomes large, and as shown in FIG.
You can get hot and cold water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の追焚き機能付きガス給湯器の
要部を示す部分概略図である。
FIG. 1 is a partial schematic view showing a main part of a gas water heater with a reheating function according to an embodiment of the present invention.

【図2】本発明の実施例における分配器の回動角度と熱
交換器側水量、バイパス管側水量および全水量の関係を
示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship among a rotation angle of a distributor, a heat exchanger side water amount, a bypass pipe side water amount, and a total water amount in an embodiment of the present invention.

【図3】本発明の実施例における分配器の回動角度と熱
交換器側水量に対するバイパス管側水量との関係を示す
特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the turning angle of the distributor and the amount of water on the bypass pipe side with respect to the amount of water on the heat exchanger side in the embodiment of the present invention.

【図4】本発明の実施例における水量補正値Lp の算出
に用いられる温度補正量を説明するための図である。
FIG. 4 is a diagram for explaining a temperature correction amount used for calculating a water amount correction value Lp in the embodiment of the present invention.

【図5】本発明の実施例における分配器の回動角度と出
湯温度との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the turning angle of the distributor and the hot water outlet temperature in the embodiment of the present invention.

【図6】本発明の実施例の作動を説明するための流れ図
である。
FIG. 6 is a flow chart for explaining the operation of the embodiment of the present invention.

【図7】本発明の実施例の効果を説明するための図であ
る。
FIG. 7 is a diagram for explaining the effect of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 給湯部(給湯器) 11 分配器(バイパス水量調節器) 12 熱交換器 13 バイパス管 15 水量センサ(通水検知手段) 22、23 バーナ(加熱手段) 40 制御装置(温度制御装置、加熱制御手段、基準値
算出手段、補正値算出手段、水量制御手段)
DESCRIPTION OF SYMBOLS 1 Hot water supply part (water heater) 11 Distributor (bypass water amount controller) 12 Heat exchanger 13 Bypass pipe 15 Water amount sensor (water flow detection means) 22, 23 Burner (heating means) 40 Control device (temperature control device, heating control) Means, reference value calculation means, correction value calculation means, water amount control means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段により加熱される熱交換器とバ
イパス管とを並列接続し、前記熱交換器と前記バイパス
管との分岐点に前記バイパス管の通過水量を調節するバ
イパス水量調節器が備えられた水加熱回路を有する給湯
器の温度制御装置において、 前記水加熱回路の通水を検知する通水検知手段の通水検
知時に前記加熱手段による加熱を行い、前記加熱手段の
加熱量を設定温度、前記水加熱回路への給水温度、前記
水加熱回路への給水水量に基づいて制御する加熱制御手
段と、 前記加熱手段の最大加熱能力に対する前記設定温度と前
記給水温度との偏差に基づいて前記水加熱回路の最大水
量基準値を算出する基準値算出手段と、 前記通水検知手段が前記水加熱回路の通水を検知し、且
つ、前記出湯温度が前記設定温度に対して一定温度だけ
低く設定された所定温度以上の場合に、前記設定温度と
前記水加熱回路の出湯温度との偏差に比例した水量補正
値の算出を開始し、前記通水検知手段が通水停止を検知
してから所定時間後に前記水量補正値の算出を終了する
補正値算出手段と、 前記基準値算出手段の前記最大水量基準値と前記補正値
算出手段の前記水量補正値との和に基づいて前記水量調
節手段を制御する水量制御手段とを具備することを特徴
とする給湯器の温度制御装置。
1. A bypass water amount controller for connecting a heat exchanger heated by a heating means and a bypass pipe in parallel, and for adjusting a passing water amount of the bypass pipe at a branch point between the heat exchanger and the bypass pipe. In a temperature control device of a water heater having a water heating circuit provided, heating is performed by the heating means at the time of water flow detection of a water flow detection means for detecting water flow in the water heating circuit, and the heating amount of the heating means is set. Set temperature, water supply temperature to the water heating circuit, heating control means for controlling based on the amount of water supplied to the water heating circuit, based on the deviation between the set temperature and the water supply temperature with respect to the maximum heating capacity of the heating means And a reference value calculating means for calculating a maximum water amount reference value of the water heating circuit, the water flow detecting means detects water flow in the water heating circuit, and the hot water temperature is a constant temperature with respect to the set temperature. Is When the temperature is equal to or higher than the predetermined temperature set low, the calculation of the water amount correction value proportional to the deviation between the set temperature and the hot water temperature of the water heating circuit is started, and the water flow detecting means detects the water flow stop. Correction value calculation means for ending the calculation of the water quantity correction value after a predetermined time, and the water quantity based on the sum of the maximum water quantity reference value of the reference value calculation means and the water quantity correction value of the correction value calculation means. A water temperature control device, comprising: a water amount control device for controlling the adjusting device.
JP5068293A 1993-03-11 1993-03-11 Water heater temperature control device Expired - Fee Related JP2820583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5068293A JP2820583B2 (en) 1993-03-11 1993-03-11 Water heater temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5068293A JP2820583B2 (en) 1993-03-11 1993-03-11 Water heater temperature control device

Publications (2)

Publication Number Publication Date
JPH06265206A true JPH06265206A (en) 1994-09-20
JP2820583B2 JP2820583B2 (en) 1998-11-05

Family

ID=12865700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5068293A Expired - Fee Related JP2820583B2 (en) 1993-03-11 1993-03-11 Water heater temperature control device

Country Status (1)

Country Link
JP (1) JP2820583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065913A (en) * 2008-09-10 2010-03-25 Rinnai Corp Water heater
JP2013537610A (en) * 2010-06-16 2013-10-03 ギルバート,パトリック Fluid flow control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065913A (en) * 2008-09-10 2010-03-25 Rinnai Corp Water heater
JP2013537610A (en) * 2010-06-16 2013-10-03 ギルバート,パトリック Fluid flow control system

Also Published As

Publication number Publication date
JP2820583B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US8662022B2 (en) Water heater
JP2820583B2 (en) Water heater temperature control device
JPH0810054B2 (en) Combustor controller
JPH0532652B2 (en)
JPH1047772A (en) Hot water supply device
JP2577477B2 (en) Fluid heating controller
JP3738063B2 (en) Water heater
JPH08100950A (en) Storage type hot water supply system
JP3884873B2 (en) Incomplete combustion detector for combustion equipment
JP3769660B2 (en) Water heater
JPS59212639A (en) Control device for boiler
JPH0271050A (en) Controller for hot water supplying apparatus
JPH081329B2 (en) Water heater controller
JP3157639B2 (en) Water heater
JPH0318836Y2 (en)
KR920010739B1 (en) Temperature control apparatus
JP3773706B2 (en) Water heater
JP3834391B2 (en) Combustion apparatus and control method thereof
JP3144729B2 (en) Circulating warm water heater
JP2669662B2 (en) Water heater control device
JPS6069452A (en) Temperature control device of gas water heater
JP3756997B2 (en) Hot water heater and combustion control method during re-watering
JPH06159658A (en) Hot water feeding device
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JP3226842B2 (en) Water heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees