JPH06262660A - Method and device for heating nozzle of injection molding machine - Google Patents

Method and device for heating nozzle of injection molding machine

Info

Publication number
JPH06262660A
JPH06262660A JP8018493A JP8018493A JPH06262660A JP H06262660 A JPH06262660 A JP H06262660A JP 8018493 A JP8018493 A JP 8018493A JP 8018493 A JP8018493 A JP 8018493A JP H06262660 A JPH06262660 A JP H06262660A
Authority
JP
Japan
Prior art keywords
nozzle
heating
touch
time
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8018493A
Other languages
Japanese (ja)
Other versions
JPH07108544B2 (en
Inventor
Kiyoto Takizawa
清登 滝沢
Takeshi Miyahara
武志 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP8018493A priority Critical patent/JPH07108544B2/en
Publication of JPH06262660A publication Critical patent/JPH06262660A/en
Publication of JPH07108544B2 publication Critical patent/JPH07108544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform the optimum heating to an injection nozzle by axially dividing the injection nozzle into a plurality of heating zones and making the heating quantity to the foremost heating zone at a time of the touch with the nozzle larger than that at a time of the non-touch with the nozzle. CONSTITUTION:An injection nozzle 2 is axially divided into a plurality of heating zones Za, Ab. The heating quantity of the foremost heating zone Za is set so as to become larger than that at a time of the non-touch with the nozzle and the heating quantity of the other heating zone Zb is set to the same condition at both of a time of the non-touch with the nozzle and a time of the touch with the nozzle. In this case, the foremost heating zone Za is intermittently heated at the time of the non-touch with the nozzle and continuously heated at the time of the touch with the nozzle and the other heating zone Zb is desirably heated intermittently at both times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は射出ノズルを加熱する際
に用いて好適な射出成形機のノズル加熱方法及び装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nozzle heating method and apparatus for an injection molding machine suitable for heating an injection nozzle.

【0002】[0002]

【従来技術及び課題】一般に、射出成形機における射出
装置の加熱筒には、加熱筒内の溶融樹脂を金型キャビテ
ィ内へ射出充填するための射出ノズルを備えるととも
に、この射出ノズルには内側の溶融樹脂を所望の溶融状
態に維持するためのノズル加熱装置を付設している。
2. Description of the Related Art Generally, a heating cylinder of an injection device in an injection molding machine is equipped with an injection nozzle for injecting and filling molten resin in the heating cylinder into a mold cavity. A nozzle heating device is attached to maintain the molten resin in a desired molten state.

【0003】ところで、射出ノズルの先端温度を適温に
維持することは安定した成形を行う面からも極めて重要
であり、例えば、温度が高すぎる場合には「ドルーリン
グ」を生じたり、また、温度が低すぎる場合には射出ノ
ズルに「詰まり」を生じる。一方、射出ノズルの軸方向
における温度分布は図5に示すようになる。同図から明
らかなように、射出ノズルの中間部の温度は温度センサ
により検出される実測温度に基づいてフィードバック制
御されるため、設定温度Tsに維持されるが、射出ノズ
ルの先端は、当該射出ノズルの温度よりも100〜20
0℃程度低くなるように冷却される金型に当接(ノズル
タッチ)することから、非ノズルタッチ時とノズルタッ
チ時では温度が大幅に変動する。即ち、非ノズルタッチ
時には温度分布曲線M1で示すように温度降下は比較的
小さいが、ノズルタッチ時には温度分布曲線M2で示す
ように温度は急激に低下する。なお、温度分布曲線M3
は樹脂通過時の温度を示す。
By the way, maintaining the tip temperature of the injection nozzle at an appropriate temperature is extremely important from the viewpoint of stable molding. For example, if the temperature is too high, "drulling" may occur or the temperature may rise. If is too low, the injection nozzle will "clog". On the other hand, the temperature distribution in the axial direction of the injection nozzle is as shown in FIG. As is clear from the figure, the temperature of the middle portion of the injection nozzle is feedback-controlled based on the actual measurement temperature detected by the temperature sensor, so that the temperature is maintained at the set temperature Ts. 100 ~ 20 than the temperature of the nozzle
Since the mold is abutted (nozzle touch) so as to be lowered by about 0 ° C., the temperature greatly changes between the non-nozzle touch and the nozzle touch. That is, when the nozzle is not touched, the temperature drop is relatively small as shown by the temperature distribution curve M1, but when the nozzle is touched, the temperature is drastically decreased as shown by the temperature distribution curve M2. The temperature distribution curve M3
Indicates the temperature when passing through the resin.

【0004】そこで、従来はこのような温度変動による
弊害を防止するため、射出ノズルの軸方向に複数の温度
制御領域を設定し、設定した各温度制御領域においてそ
れぞれ個別に温度制御することも行われていた(例え
ば、実開昭63−154210公報等参照)。
Therefore, conventionally, in order to prevent the adverse effect caused by such temperature fluctuation, it is also possible to set a plurality of temperature control regions in the axial direction of the injection nozzle and individually control the temperature in each set temperature control region. (See, for example, Japanese Utility Model Laid-Open No. 63-154210).

【0005】しかし、このような従来の方法は独立した
複数の制御装置が必要になることから、温度センサ及び
制御系の構成部品もそれぞれ対応して複数必要になり、
大幅なコストアップを生ずる難点があった。
However, since such a conventional method requires a plurality of independent control devices, a plurality of temperature sensor components and control system components are also required.
There was a drawback that the cost was significantly increased.

【0006】本発明はこのような従来技術に存在する課
題を解決したものであり、射出ノズルに対して最適な加
熱を行うことができるとともに、大幅なコストダウンを
図ることができる射出成形機のノズル加熱方法及び装置
の提供を目的とする。
The present invention has solved the problems existing in the prior art as described above, and provides an injection molding machine capable of optimally heating an injection nozzle and significantly reducing the cost. A nozzle heating method and apparatus are provided.

【0007】[0007]

【課題を解決するための手段】本発明に係る射出成形機
のノズル加熱方法は、射出ノズル2を加熱するに際し、
射出ノズル2を軸方向に複数の加熱ゾーンZa、Zbに
分け、最前部の加熱ゾーンZaに対するノズルタッチ時
の加熱量を非ノズルタッチ時の加熱量よりも大きく設定
するとともに、他の加熱ゾーンZbに対する加熱量を非
ノズルタッチ時及びノズルタッチ時とも同一条件に設定
することを特徴とする。この場合、最前部の加熱ゾーン
Zaは非ノズルタッチ時に間欠的に加熱し、かつノズル
タッチ時に連続的に加熱するとともに、他の加熱ゾーン
Zbは非ノズルタッチ時及びノズルタッチ時とも間欠的
に加熱することが望ましい。
A method for heating a nozzle of an injection molding machine according to the present invention includes:
The injection nozzle 2 is divided into a plurality of heating zones Za and Zb in the axial direction, the heating amount at the time of nozzle touch to the frontmost heating zone Za is set to be larger than the heating amount at the time of non-nozzle touch, and the other heating zones Zb are set. The heating amount is set to the same condition when the nozzle is not touched and when the nozzle is touched. In this case, the frontmost heating zone Za is intermittently heated during non-nozzle touch and is continuously heated during nozzle touch, and the other heating zone Zb is intermittently heated during non-nozzle touch and during nozzle touch. It is desirable to do.

【0008】また、本発明に係る射出成形機のノズル加
熱装置1は、射出ノズル2の軸方向に付設した複数のヒ
ータ3a、3bと、最前部のヒータ3aに対するノズル
タッチ時の給電量を非ノズルタッチ時の給電量よりも大
きくなるように制御し、かつ他のヒータ3bに対する給
電量を非ノズルタッチ時及びノズルタッチ時とも同一条
件に制御する制御機能部4を備えてなることを特徴とす
る。この場合、制御機能部4は射出ノズル2の温度を検
出する単一の温度センサ6を備え、この温度センサ6の
検出結果に基づいて全ヒータ3a、3bに対する給電量
を同時にフィードバック制御可能に構成することができ
るとともに、最前部のヒータ3aに対するノズルタッチ
時の印加電圧の大きさを調節する電圧調節部7を備えて
構成できる。また、制御機能部4は最前部のヒータ3a
に対して非ノズルタッチ時に間欠的に給電し、かつノズ
ルタッチ時に連続的に給電するとともに、他のヒータ3
bに対して非ノズルタッチ時及びノズルタッチ時とも間
欠的に給電する制御を行うことが望ましい。
Further, the nozzle heating device 1 of the injection molding machine according to the present invention is configured so that the heaters 3a and 3b attached in the axial direction of the injection nozzle 2 and the amount of power supplied to the frontmost heater 3a when the nozzle is touched are not controlled. A control function unit 4 is provided to control the power supply amount to be larger than the power supply amount when the nozzle is touched, and to control the power supply amount to the other heater 3b under the same condition during the non-nozzle touch and the nozzle touch. To do. In this case, the control function unit 4 is provided with a single temperature sensor 6 that detects the temperature of the injection nozzle 2, and based on the detection result of this temperature sensor 6, feedback control of the power supply amounts to all the heaters 3a and 3b can be performed simultaneously. In addition, it can be configured to include the voltage adjusting unit 7 that adjusts the magnitude of the applied voltage when the nozzle is touched to the frontmost heater 3a. Further, the control function unit 4 is the front heater 3a.
Power is intermittently supplied to the other heater 3 when the nozzle is not touched and continuously supplied when the nozzle is touched.
It is desirable to perform control to intermittently supply power to b in both the non-nozzle touch and the nozzle touch.

【0009】[0009]

【作用】本発明に係る射出成形機のノズル加熱方法及び
装置1によれば、射出ノズル2の軸方向に複数の加熱ゾ
ーンZa、Zbが設定される。そして、制御機能部4に
よって、まず、非ノズルタッチ時には、予め設定された
給電条件(加熱条件)により複数のヒータ3a、3bが
制御されるとともに、ノズルタッチ時には、最前部のヒ
ータ3aに対する給電量(加熱量)が非ノズルタッチ時
よりも大きくなるように制御され、また、他のヒータ3
bの給電量(加熱量)は非ノズルタッチ時と同一となる
ように制御される。これにより、射出ノズル2の先端に
金型が当接することに伴う加熱ゾーンZaの温度降下が
補償される。このように、各ヒータ3a、3bはノズル
タッチを切換点として給電制御される。
According to the nozzle heating method and apparatus 1 for the injection molding machine according to the present invention, a plurality of heating zones Za and Zb are set in the axial direction of the injection nozzle 2. Then, the control function unit 4 first controls the plurality of heaters 3a and 3b according to a preset power supply condition (heating condition) at the time of non-nozzle touch, and at the time of nozzle touch, the power supply amount to the frontmost heater 3a. The (heating amount) is controlled so as to be larger than that when the nozzle is not touched.
The power supply amount (heating amount) of b is controlled so as to be the same as that in the non-nozzle touch. This compensates for the temperature drop in the heating zone Za due to the die contacting the tip of the injection nozzle 2. In this way, the heaters 3a and 3b are controlled to supply power by using the nozzle touch as a switching point.

【0010】なお、制御機能部4によって、金型が当接
したことの影響を受けない他の加熱ゾーンZbに設けた
温度センサ6の検出温度に基づいて全ヒータ3a、3b
に対する給電量(加熱量)がフィードバック制御される
ため、各ヒータ3a、3bは単一の制御系により同時に
制御されることになる。
It should be noted that all the heaters 3a and 3b are controlled by the control function unit 4 based on the temperature detected by the temperature sensor 6 provided in another heating zone Zb which is not affected by the contact of the mold.
Since the power supply amount (heating amount) to the heaters is feedback-controlled, the heaters 3a and 3b are simultaneously controlled by a single control system.

【0011】この場合、制御機能部4により最前部のヒ
ータ3aに対しては非ノズルタッチ時に間欠的な給電が
行われるとともに、ノズルタッチ時に連続的な給電が行
われ、対応する加熱ゾーンZaの加熱が行われる。ま
た、他のヒータ3bに対しては非ノズルタッチ時及びノ
ズルタッチ時とも間欠的な給電が行われ、対応する加熱
ゾーンZbの加熱が行われる。この際、電圧調節部7に
より最前部のヒータ3aに対するノズルタッチ時の印加
電圧の大きさが最適となるように調節される。
In this case, the control function unit 4 intermittently supplies power to the frontmost heater 3a during non-nozzle touch, and also continuously supplies power during nozzle touch, thereby corresponding heating zone Za. Heating is performed. In addition, to the other heater 3b, intermittent power supply is performed both when the nozzle is not touching and when the nozzle is touching, and the corresponding heating zone Zb is heated. At this time, the voltage adjusting section 7 adjusts the magnitude of the applied voltage to the heater 3a at the frontmost portion when the nozzle is touched to be optimum.

【0012】[0012]

【実施例】次に、本発明に係る好適な実施例を挙げ、図
面に基づき詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments according to the present invention will be described in detail with reference to the drawings.

【0013】まず、本発明に係るノズル加熱装置1の構
成について、図1〜図2を参照して説明する。
First, the structure of the nozzle heating apparatus 1 according to the present invention will be described with reference to FIGS.

【0014】図1において、10は射出成形機における
射出装置である。射出装置10は加熱筒11を備え、こ
の加熱筒11の内部にはスクリュ12を挿通するととも
に、加熱筒11の先端には射出ノズル2を備える。な
お、13は金型、14は加熱筒11に付設したヒータ
(バンドヒータ等)を示す。
In FIG. 1, reference numeral 10 is an injection device in an injection molding machine. The injection device 10 includes a heating cylinder 11, the screw 12 is inserted into the heating cylinder 11, and the injection nozzle 2 is provided at the tip of the heating cylinder 11. In addition, 13 is a die, and 14 is a heater (band heater or the like) attached to the heating cylinder 11.

【0015】そして、射出ノズル2には本発明に係るノ
ズル加熱装置1を設ける。まず、射出ノズル2を軸方向
へ前後二つの加熱ゾーンZa、Zbに分け、各加熱ゾー
ンZa、Zbにはバンドヒータ等を利用したヒータ3
a、3bをそれぞれ付設する。この場合、前部の加熱ゾ
ーンZaは温度変動の大きい射出ノズル2の最前部に設
定するとともに、後部の加熱ゾーンZbは加熱ゾーンZ
aを除く射出ノズル2の全体に設定する。また、射出ノ
ズル2の軸方向略中央部(ヒータ3bの付設部位)には
熱電対等を利用した温度センサ6を付設する。一方、温
度コントローラ21を備え、この温度コントローラ21
には各ヒータ3a、3bを接続するとともに、温度セン
サ6を接続する。
The injection nozzle 2 is provided with the nozzle heating device 1 according to the present invention. First, the injection nozzle 2 is divided into two front and rear heating zones Za and Zb in the axial direction, and a heater 3 using a band heater or the like is provided in each heating zone Za and Zb.
a and 3b are attached respectively. In this case, the front heating zone Za is set at the forefront of the injection nozzle 2 having large temperature fluctuation, and the rear heating zone Zb is set at the heating zone Z.
It is set to the entire injection nozzle 2 except a. Further, a temperature sensor 6 using a thermocouple or the like is attached to a substantially central portion in the axial direction of the injection nozzle 2 (a portion where the heater 3b is attached). On the other hand, a temperature controller 21 is provided, and this temperature controller 21
To each of the heaters 3a and 3b, a temperature sensor 6 is connected.

【0016】次に、温度コントローラ21の具体的な構
成について、図2を参照して説明する。加熱ゾーンZa
に付設したヒータ3aは開閉スイッチ22、23、さら
に、電圧調節部7を介して電源部26に接続するととも
に、このヒータ3aは開閉スイッチ24、25、さら
に、給電調節部27を介して電源部26に接続する。ま
た、加熱ゾーンZbに付設したヒータ3bも給電調節部
27に接続する。一方、28は制御部であり、電源部2
6及び給電調節部27に接続するとともに、この制御部
28には前記温度センサ6を接続する。なお、開閉スイ
ッチ22、23、24及び25は制御部28により制御
される。
Next, a specific structure of the temperature controller 21 will be described with reference to FIG. Heating zone Za
The heater 3a attached to the power supply unit 26 is connected to the power supply unit 26 via the open / close switches 22 and 23 and the voltage adjusting unit 7, and the heater 3a is connected to the power supply unit via the open / close switches 24 and 25 and the power supply adjusting unit 27. Connect to 26. Further, the heater 3b attached to the heating zone Zb is also connected to the power supply adjusting unit 27. On the other hand, 28 is a control unit, and the power supply unit
6 and the power supply adjusting unit 27, and the temperature sensor 6 is connected to the control unit 28. The open / close switches 22, 23, 24 and 25 are controlled by the control unit 28.

【0017】次に、本発明に係るノズル加熱方法を含む
加熱装置1の動作について、図2及び図3を参照して説
明する。
Next, the operation of the heating device 1 including the nozzle heating method according to the present invention will be described with reference to FIGS. 2 and 3.

【0018】まず、非ノズルタッチ時(射出ノズル2が
金型13から離れた状態)には開閉スイッチ22及び2
3は開、また、開閉スイッチ24及び25は閉となって
いる。これにより、給電調節部27からヒータ3a及び
3bの双方に同一条件(異条件でもよい)の給電が同時
に行われる。なお、図3(a)はヒータ3bに対する給
電時の電圧波形(電圧Vn)を示すとともに、図3
(b)はヒータ3aに対する給電時の電圧波形(電圧V
n)を示し、各ヒータ3a、3bにはスイッチングされ
た間欠的な給電が行われる。
First, when the nozzle is not touched (the injection nozzle 2 is separated from the mold 13), the open / close switches 22 and 2 are used.
3 is open, and the open / close switches 24 and 25 are closed. As a result, power is supplied from the power supply controller 27 to both the heaters 3a and 3b under the same conditions (different conditions may be used) at the same time. Note that FIG. 3A shows a voltage waveform (voltage Vn) at the time of feeding power to the heater 3b, and FIG.
(B) is a voltage waveform (voltage V
n), and switched intermittent power supply is performed to each heater 3a, 3b.

【0019】また、この際には、給電調節部27及び制
御部28は温度センサ6から検出される検出温度によ
り、射出ノズル2の加熱温度が設定温度となるようにヒ
ータ3a及び3bに対する給電量をフィードバック制御
する。即ち、加熱温度が設定温度よりも低い場合には間
欠的な給電における通電時間を長くし、これにより、給
電波形のデューティ比を大きくするとともに、加熱温度
が設定温度よりも高い場合には通電時間を短くし、これ
により、給電波形のデューティ比を小さくする。なお、
この場合、ディーティ比はそのままで電圧の大きさを制
御してもよい。
In addition, at this time, the power supply adjusting unit 27 and the control unit 28 use the detected temperature detected by the temperature sensor 6 to supply power to the heaters 3a and 3b so that the heating temperature of the injection nozzle 2 becomes the set temperature. Feedback control. That is, when the heating temperature is lower than the set temperature, the energization time in the intermittent power supply is lengthened, thereby increasing the duty ratio of the power supply waveform and, when the heating temperature is higher than the set temperature, the energization time. To shorten the duty ratio of the power supply waveform. In addition,
In this case, the magnitude of the voltage may be controlled without changing the duty ratio.

【0020】他方、ノズルタッチ時(射出ノズル2が金
型13に当接した状態)には射出ノズル2の位置検出等
によりノズルタッチを検出し、図3に示すPt点におい
て、制御部28は開閉スイッチ22及び23を閉、ま
た、開閉スイッチ24及び25を開にする。この結果、
ヒータ3bへの給電量は図3(a)に示すように、その
まま同一条件で継続するも、ヒータ3aには電圧調節部
7から給電され、図3(b)に示すように、電圧調節部
7によって電圧調節(低圧化)された電圧Vsによる連
続的な給電が行われる。なお、この場合、電圧調節部7
により、射出ノズル2における加熱ゾーンZaの加熱温
度が最適となるように電圧Vsの大きさが予め設定され
る。
On the other hand, when the nozzle is touched (when the injection nozzle 2 is in contact with the mold 13), the nozzle touch is detected by detecting the position of the injection nozzle 2 and the like, and at the point Pt shown in FIG. The open / close switches 22 and 23 are closed, and the open / close switches 24 and 25 are opened. As a result,
As shown in FIG. 3 (a), the amount of power supplied to the heater 3b continues under the same conditions, but the heater 3a is supplied with power from the voltage adjusting unit 7, and as shown in FIG. 3 (b), the voltage adjusting unit is supplied. Continuous power feeding is performed by the voltage Vs whose voltage is adjusted (lowered) by 7. In this case, the voltage adjustment unit 7
Thereby, the magnitude of the voltage Vs is preset so that the heating temperature of the heating zone Za in the injection nozzle 2 becomes optimum.

【0021】よって、ノズルタッチ時における加熱ゾー
ンZaの加熱温度は、図5に示す温度分布曲線M4のよ
うに改善され、従来技術下における温度分布曲線M2よ
りも温度降下が抑制される最適な加熱温度が設定される
とともに、このような加熱温度は単一の制御系により実
現される。図4は射出ノズル2の経時的な温度変化を示
し、Taは加熱ゾーンZaにおける加熱温度、Tbは加
熱ゾーンZbにおける加熱温度を示す。なお、Pt点は
ノズルタッチの始点を示すとともに、Pf点は射出直
前、Pb点は射出直後の時点を示している。また、同図
中、点線Tasは従来技術下における温度変化を示す。
Therefore, the heating temperature of the heating zone Za at the time of touching the nozzle is improved as shown by the temperature distribution curve M4 shown in FIG. 5, and the optimum heating in which the temperature drop is suppressed more than the temperature distribution curve M2 in the prior art. The temperature is set, and such a heating temperature is realized by a single control system. FIG. 4 shows the temperature change of the injection nozzle 2 with time, Ta is the heating temperature in the heating zone Za, and Tb is the heating temperature in the heating zone Zb. It should be noted that the Pt point indicates the starting point of the nozzle touch, the Pf point indicates the time immediately before the injection, and the Pb point indicates the time immediately after the injection. Further, in the figure, the dotted line Tas shows the temperature change under the conventional technique.

【0022】以上、実施例について詳細に説明したが、
本発明はこのような実施例に限定されるものではない。
例えば、ヒータに対する給電は間欠的に行う場合を例示
したが全て連続的に行ってもよい。また、他の加熱ゾー
ン及び他のヒータは複数であっもよい。さらにまた、電
源部は直流電源又は交流電源のいずれでもよく、交流電
源の場合には図3の電圧波形は交流電圧のゲート波形と
なる。その他、細部の構成、形状、手法等において、本
発明の要旨を逸脱しない範囲で任意に変更できる。
The embodiment has been described in detail above.
The present invention is not limited to such an embodiment.
For example, the case where the power supply to the heater is performed intermittently is illustrated, but all the power supply may be performed continuously. Further, there may be a plurality of other heating zones and other heaters. Furthermore, the power supply unit may be either a DC power supply or an AC power supply, and in the case of an AC power supply, the voltage waveform of FIG. 3 becomes a gate waveform of the AC voltage. In addition, the detailed configuration, shape, method, and the like can be arbitrarily changed without departing from the scope of the present invention.

【0023】[0023]

【発明の効果】このように、本発明に係る射出成形機の
ノズル加熱方法は、射出ノズルを加熱するに際し、射出
ノズルを軸方向に複数の加熱ゾーンに分け、最前部の加
熱ゾーンに対するノズルタッチ時の加熱量を非ノズルタ
ッチ時の加熱量よりも大きく設定するとともに、他の加
熱ゾーンに対する加熱量を非ノズルタッチ時及びノズル
タッチ時とも同一条件に設定し、また、本発明に係る射
出成形機のノズル加熱装置は、射出ノズルの軸方向に付
設した複数のヒータと、最前部のヒータに対するノズル
タッチ時の給電量を非ノズルタッチ時の給電量よりも大
きくなるように制御し、かつ他のヒータに対する給電量
を非ノズルタッチ時及びノズルタッチ時とも同一条件に
制御する制御機能部を備えてなるため、射出ノズルに対
して最適な加熱を行うことができるとともに、加えて単
一の制御系で足りることから大幅なコストダウンを図る
ことができるという顕著な効果を奏する。
As described above, according to the nozzle heating method for the injection molding machine of the present invention, when the injection nozzle is heated, the injection nozzle is divided into a plurality of heating zones in the axial direction, and the nozzle touch to the frontmost heating zone is performed. The heating amount during heating is set to be larger than the heating amount during non-nozzle touch, and the heating amounts for other heating zones are set to the same conditions during non-nozzle touch and during nozzle touch, and the injection molding according to the present invention is also performed. The nozzle heating device of the machine controls a plurality of heaters attached in the axial direction of the injection nozzle and the power supply amount at the time of nozzle touch to the frontmost heater to be larger than the power supply amount at the time of non-nozzle touch, and Since it has a control function unit that controls the amount of power supplied to the heater in the same condition both when the nozzle is not touching and when it is touching the nozzle, optimum heating for the injection nozzle Ukoto it is, a marked effect of being able to achieve significant cost reduction since it is sufficient a single control system in addition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るノズル加熱装置を含む射出ノズル
の周辺構成図、
FIG. 1 is a peripheral configuration diagram of an injection nozzle including a nozzle heating device according to the present invention,

【図2】同ノズル加熱装置のブロック構成図、FIG. 2 is a block diagram of the nozzle heating device,

【図3】同ノズル加熱装置におけるヒータに対する給電
波形図、
FIG. 3 is a power supply waveform diagram for a heater in the nozzle heating device,

【図4】同ノズル加熱装置により加熱した射出ノズルの
経時的な温度変化図、
FIG. 4 is a temperature change diagram of an injection nozzle heated by the nozzle heating device over time;

【図5】射出ノズルにおける軸方向の温度分布曲線図、FIG. 5 is a temperature distribution curve diagram in an axial direction in the injection nozzle,

【符号の説明】[Explanation of symbols]

1 ノズル加熱装置 2 射出ノズル 3a ヒータ(最前部のヒータ) 3b ヒータ(他のヒータ) 4 制御機能部 6 温度センサ 7 電圧調節部 Za 加熱ゾーン(最前部の加熱ゾーン) Zb 加熱ゾーン(他の加熱ゾーン) 1 Nozzle Heating Device 2 Injection Nozzle 3a Heater (Foremost Heater) 3b Heater (Other Heater) 4 Control Function Part 6 Temperature Sensor 7 Voltage Adjustment Unit Za Heating Zone (Frontmost Heating Zone) Zb Heating Zone (Other Heating) zone)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 射出ノズルを加熱するに際し、射出ノズ
ルを軸方向に複数の加熱ゾーンに分け、最前部の加熱ゾ
ーンに対するノズルタッチ時の加熱量を非ノズルタッチ
時の加熱量よりも大きく設定するとともに、他の加熱ゾ
ーンに対する加熱量を非ノズルタッチ時及びノズルタッ
チ時とも同一条件に設定することを特徴とする射出成形
機のノズル加熱方法。
1. When heating the injection nozzle, the injection nozzle is divided into a plurality of heating zones in the axial direction, and the heating amount at the time of nozzle touch to the frontmost heating zone is set to be larger than the heating amount at the time of non-nozzle touch. At the same time, the heating amount for other heating zones is set to the same condition both when the nozzle is not touched and when the nozzle is touched.
【請求項2】 最前部の加熱ゾーンは非ノズルタッチ時
に間欠的に加熱し、かつノズルタッチ時に連続的に加熱
するとともに、他の加熱ゾーンは非ノズルタッチ時及び
ノズルタッチ時とも間欠的に加熱することを特徴とする
請求項1記載の射出成形機のノズル加熱方法。
2. The foremost heating zone is intermittently heated during non-nozzle touch and is continuously heated during nozzle touch, while the other heating zones are intermittently heated during non-nozzle touch and nozzle touch. The method for heating a nozzle of an injection molding machine according to claim 1, wherein:
【請求項3】 射出ノズルの軸方向に付設した複数のヒ
ータと、最前部のヒータに対するノズルタッチ時の給電
量を非ノズルタッチ時の給電量よりも大きくなるように
制御し、かつ他のヒータに対する給電量を非ノズルタッ
チ時及びノズルタッチ時とも同一条件に制御する制御機
能部を備えてなることを特徴とする射出成形機のノズル
加熱装置。
3. A plurality of heaters attached in the axial direction of the injection nozzle, and the power supply amount at the time of nozzle touch to the frontmost heater is controlled to be larger than the power supply amount at the time of non-nozzle touch, and another heater. A nozzle heating device for an injection molding machine, comprising a control function unit for controlling the amount of power supply to the same condition under non-nozzle touch and during nozzle touch.
【請求項4】 制御機能部は射出ノズルの温度を検出す
る単一の温度センサを備え、この温度センサの検出結果
に基づいて全ヒータに対する給電量を同時にフィードバ
ック制御可能に構成することを特徴とする請求項3記載
の射出成形機のノズル加熱装置。
4. The control function unit is provided with a single temperature sensor for detecting the temperature of the injection nozzle, and the power supply amount to all the heaters can be feedback-controlled simultaneously based on the detection result of the temperature sensor. The nozzle heating device of the injection molding machine according to claim 3.
【請求項5】 制御機能部は最前部のヒータに対して非
ノズルタッチ時に間欠的に給電し、かつノズルタッチ時
に連続的に給電するとともに、他のヒータに対して非ノ
ズルタッチ時及びノズルタッチ時とも間欠的に給電する
制御を行うことを特徴とする請求項3記載の射出成形機
のノズル加熱装置。
5. The control function unit intermittently supplies power to a heater at the frontmost portion during non-nozzle touch and continuously supplies electric power to the other heater at the time of non-nozzle touch and nozzle touch. The nozzle heating device for an injection molding machine according to claim 3, wherein the control is performed to intermittently supply power.
【請求項6】 制御機能部は最前部のヒータに対するノ
ズルタッチ時の印加電圧の大きさを調節する電圧調節部
を備えることを特徴とする請求項3記載の射出成形機の
ノズル加熱装置。
6. The nozzle heating device for an injection molding machine according to claim 3, wherein the control function unit includes a voltage adjusting unit for adjusting the magnitude of the applied voltage when the nozzle touches the frontmost heater.
JP8018493A 1993-03-15 1993-03-15 Nozzle heating method and apparatus for injection molding machine Expired - Fee Related JPH07108544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8018493A JPH07108544B2 (en) 1993-03-15 1993-03-15 Nozzle heating method and apparatus for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8018493A JPH07108544B2 (en) 1993-03-15 1993-03-15 Nozzle heating method and apparatus for injection molding machine

Publications (2)

Publication Number Publication Date
JPH06262660A true JPH06262660A (en) 1994-09-20
JPH07108544B2 JPH07108544B2 (en) 1995-11-22

Family

ID=13711284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8018493A Expired - Fee Related JPH07108544B2 (en) 1993-03-15 1993-03-15 Nozzle heating method and apparatus for injection molding machine

Country Status (1)

Country Link
JP (1) JPH07108544B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098815A (en) * 2005-10-05 2007-04-19 Toshiba Mach Co Ltd Apparatus and method for controlling nozzle temperature of injection molding machine
JP2009248518A (en) * 2008-04-10 2009-10-29 Panasonic Corp Injection nozzle temperature control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098815A (en) * 2005-10-05 2007-04-19 Toshiba Mach Co Ltd Apparatus and method for controlling nozzle temperature of injection molding machine
JP2009248518A (en) * 2008-04-10 2009-10-29 Panasonic Corp Injection nozzle temperature control method

Also Published As

Publication number Publication date
JPH07108544B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
JPH10669A (en) Feedback controller for injection molding machine
AU2003202931A1 (en) Method and apparatus for measuring the temperature of molten material in a mold cavity
JPH06262660A (en) Method and device for heating nozzle of injection molding machine
KR940013788A (en) Temperature control device and method for high temperature nozzle used in runnerless injection molding process
WO2005065915A1 (en) Forming machine and its temperature controlling method
CA2431385C (en) Method for controlling/regulating the distribution of the injection molding compound, and multi-cavity injection mold
JPH06262661A (en) Method and device for heating nozzle of injection molding machine
CN103009594B (en) Injection (mo(u)lding) machine
KR101453187B1 (en) Heating apparatus for cylinder using high frequency induction heating
JP3542060B2 (en) Injection molding machine and nozzle temperature control method thereof
KR101435740B1 (en) Heating apparatus for cylinder using high frequency induction heating
JP3389248B2 (en) Temperature control method of heating cylinder of injection molding machine
JP3309345B2 (en) Nozzle heater temperature control method and its resin molding machine
JP3028281B2 (en) Temperature control method for injection molding machine
JPH0437900Y2 (en)
JPH1158481A (en) Method for controlling temperature in heater for injection molding machine
JPH05237901A (en) Injection control method for injection molding machine
JP2001079877A (en) Multicolor/multi-material molding machine
JPH0420593Y2 (en)
JPH04272818A (en) Injection process control method and its device
JPS61252124A (en) Heating control of screw heating cylinder in injection molding machine
JP2001062868A (en) Method and apparatus for cooling lower part of hopper of injection molding machine
JPH01127121A (en) Mold temperature controller
NZ529232A (en) Heated towel rail controller
JPH10109344A (en) Nozzle temperature control for injection molding machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees