JPH0626232B2 - Wafer position alignment method - Google Patents

Wafer position alignment method

Info

Publication number
JPH0626232B2
JPH0626232B2 JP63180258A JP18025888A JPH0626232B2 JP H0626232 B2 JPH0626232 B2 JP H0626232B2 JP 63180258 A JP63180258 A JP 63180258A JP 18025888 A JP18025888 A JP 18025888A JP H0626232 B2 JPH0626232 B2 JP H0626232B2
Authority
JP
Japan
Prior art keywords
wafer
outer edge
stage
detection method
point detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63180258A
Other languages
Japanese (ja)
Other versions
JPH0231443A (en
Inventor
一弘 森田
光浩 沼田
洋一 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Measurement Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Measurement Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP63180258A priority Critical patent/JPH0626232B2/en
Publication of JPH0231443A publication Critical patent/JPH0231443A/en
Publication of JPH0626232B2 publication Critical patent/JPH0626232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はウエハの位置整合方法に係り、特に半導体製造
装置においてウエハのオリエンテーシヨンフラツトの向
きとウエハ中心位置を所定の方向、位置に整合させるの
に好適なウエハ位置整合方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for aligning a wafer, and more particularly, in a semiconductor manufacturing apparatus, the orientation of the wafer orientation flat and the center position of the wafer are set to a predetermined direction and position. The present invention relates to a wafer position alignment method suitable for alignment.

〔従来の技術〕[Conventional technology]

電子線描画装置において、回路パターンをウエハ上に重
ね合わせて描画する場合、回路パターン位置合わせを正
確、かつ、高速に行う必要がある。回路パターン位置合
わせを高速に行うためには、まず、ウエハ外形を基準位
置に正確に合わせる必要がある。ウエハ整合装置は、こ
のウエハ外形位置合わせを行う装置である。ウエハ整合
は、ウエハ中心位置と結晶方向を示すために設けるオリ
エンテーシヨンフラツト(以下、オリフラという)の向
きを基準位置に合わせることによつて行う。ウエハ中心
位置合わせは、ウエハ外縁位置データからウエハ中心と
回転基準軸中心とのずれ量(偏心量)を算出することに
より行う。偏心量は、特開昭60−81613 号公報に示され
ているように、オリフラ部以外のウエハ外縁位置データ
を3点ないし4点検出した結果から算出する。
In the electron beam drawing apparatus, when a circuit pattern is overlaid and drawn on a wafer, the circuit pattern alignment needs to be performed accurately and at high speed. In order to perform the circuit pattern alignment at high speed, first, it is necessary to accurately align the wafer outer shape with the reference position. The wafer aligning device is a device for aligning the outer shape of the wafer. Wafer alignment is performed by aligning the orientation of an orientation flat (hereinafter referred to as an orientation flat) provided to indicate the center position of the wafer and the crystal direction with the reference position. The wafer center position alignment is performed by calculating the amount of deviation (eccentricity amount) between the wafer center and the rotation reference axis center from the wafer outer edge position data. The eccentricity amount is calculated from the result of detecting three or four points of the wafer outer edge position data other than the orientation flat portion, as shown in JP-A-60-81613.

まず、3点検出による方法について説明する。オリフラ
中心がウエハ外縁位置検出部に位置する角度よりもウエ
ハを90゜だけ回転させ、回転中心からウエハエツジ
(ウエハ外縁位置)までの距離ρを検出し、これをaと
する。続いてウエハを90゜づつ回転させ、同様の距離
ρを検出し、それをb,cとする。このa,b,cを用
いて演算により偏心量を求める。
First, the method of detecting three points will be described. The wafer is rotated by 90 ° from the angle at which the orientation flat center is located at the wafer outer edge position detection unit, and the distance ρ from the rotation center to the wafer edge (wafer outer edge position) is detected, and this is designated as a. Subsequently, the wafer is rotated by 90 °, and the similar distance ρ is detected, which are designated as b and c. The amount of eccentricity is calculated by using these a, b, and c.

次に、4点検出による方法について説明する。まず、オ
リフラ中心がウエハ外縁位置検出部に位置する角度より
45゜だけウエハを回転させ、回転中心からウエハエツ
ジまでの距離ρを検出し、これをaとする。続いてウエ
ハを90゜づつ回転させ、同様の距離ρを検出し、それ
をb,c,dとする。このa,b,c,dを用いて演算
により偏心量を求める。
Next, a method of detecting four points will be described. First, the wafer is rotated by 45 ° from the angle at which the orientation flat center is located at the wafer outer edge position detection unit, and the distance ρ from the rotation center to the wafer edge is detected, and this is designated as a. Subsequently, the wafer is rotated by 90 °, and the same distance ρ is detected, which are designated as b, c, and d. The amount of eccentricity is calculated by using these a, b, c and d.

以上の方法のうち、いずれを用いても偏心量を求めるこ
とができる。
The eccentricity can be obtained by using any of the above methods.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は、偏心量を求めるために必要な3点ない
し4点の外縁位置データが正しいか否か(データにウエ
ハの欠けやレジストのはく離、サブオリフラ等によるノ
イズ成分が含まれているか否か)を判断することなく、
3点ないし4点の外縁位置データはウエハ円周上にある
ものとして偏心量を求めていた。このため、検出された
ウエハ外縁位置にサブオリフラや欠け,レジストはく離
が存在する場合、外縁位置データに誤差要因が生じ、著
しく整合制度が損われるという問題があつた。
In the above-mentioned conventional technique, whether or not the outer edge position data of three or four points necessary for obtaining the eccentricity amount is correct (whether or not the data includes a noise component due to wafer chipping, resist peeling, sub orientation flat, etc.). ) Without judging
The eccentricity amount is obtained assuming that the outer edge position data of three or four points are on the circumference of the wafer. Therefore, when the detected wafer outer edge position has a sub orientation flat, a chip, or resist peeling, an error factor is generated in the outer edge position data, and the matching accuracy is significantly impaired.

本発明の目的は、ウエハ外縁に欠け,レジストはく離や
サブオリフラが存在しても正確なウエハ偏心量を求め
て、常に高精度のウエハ位置整合を実現させれることに
ある。
It is an object of the present invention to obtain an accurate wafer eccentricity amount even if there is a chip on the outer edge of the wafer, resist peeling, or sub-olifura, and it is possible to always realize highly accurate wafer position alignment.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、X,Y2軸方向に可動なX−Yステージと、
ウエハを真空吸着して回転させるθステージと、該θス
テージの回転角を検出する回転角検出器と、前記ウエハ
の外縁位置を検出するウエハ外縁位置検出器とを備え、
前記ウエハ外縁位置検出器を用いて検出した前記ウエハ
の3ないし4点でのウエハ外縁位置を検出した結果か
ら、3点検出法或いは4点検出法を用いて前記ウエハの
前記θステージに対する偏心量のX軸成分,Y軸成分を
演算し、このX軸成分,Y軸成分相当の位置修正を前記
X−Yステージを用いて行うウエハ位置整合方法におい
て、 前記ウエハ外縁位置検出器を用いてウエハ全周の外縁
位置を所定の回転角度単位に多数等分化した点(これら
の点を等分点と称し、等分点は前記3点検出法或いは4
点検出法の3ないし4点データの多数候補となり得るよ
う等分化されている)で前記θステージの回転角度と関
係させて検出し、これらのウエハ外縁位置データより
演算手段を用いてウエハ全周の前記各等分点のウエハ外
縁位置・θステージの回転中心間の距離ρを算出し、こ
の距離算出データを用いて、前記θステージの回転角A
iに対応のウエハ外縁位置・θステージの回転中心間の
距離ρiと、前記回転角Aiから180゜離れた回転角A
i+180゜に対応のウエハ外縁位置・θステージの回転中
心間の距離ρi+180゜との和を求め、この和を仮のウエ
ハ直径riとし、この仮のウエハ直径riの算出をウエハ
半周すなわち前記回転角Aiが0゜〜180゜の範囲の
各等分点で行い、これらの直径riを算出した結果か
ら前記ウエハの直径riの度数分布を作成して最頻値を
求め、該最頻値の有効範囲内に含まれるデータの平均値
を算出して、該算出値をノイズ成分判定用のウエハ直径
rとし、 前記3点検出法或いは4点検出法を実行する場合に
は、前記ウエハの3点或いは4点の外縁位置に対応の前
記仮の直径riが前記ノイズ成分判定用直径rの許容範
囲に入るか条件判定を行い、この条件を満たせば前記3
点検出法或いは4点検出法による偏心量演算を行い、前
記条件を満たさない場合には、条件を満たすまで前記θ
ステージの回転角度を変えて別の外縁位置の3点或いは
4点について前記条件判定を行うことを特徴とする。
The present invention includes an XY stage movable in X and Y two-axis directions,
A θ stage for vacuum suctioning and rotating a wafer, a rotation angle detector for detecting a rotation angle of the θ stage, and a wafer outer edge position detector for detecting an outer edge position of the wafer are provided.
An eccentric amount of the wafer with respect to the θ stage is detected by using a three-point detection method or a four-point detection method from the result of detecting the wafer outer-edge position at three or four points of the wafer detected by the wafer outer-edge position detector. In the wafer position aligning method of calculating the X-axis component and the Y-axis component of the wafer and correcting the position corresponding to the X-axis component and the Y-axis component by using the XY stage, the wafer outer edge position detector is used. Points obtained by equally dividing the outer edge position of the entire circumference into predetermined rotation angle units (these points are referred to as equal points, and the equal points are the three-point detection method or the four-point detection method described above).
It is detected in relation to the rotation angle of the θ stage by using the point detection method in such a manner that it can become a large number of candidates for 3 or 4 points data, and the whole circumference of the wafer is calculated from these wafer outer edge position data using a calculation means. A distance ρ between the wafer outer edge position at each of the equally divided points and the rotation center of the θ stage is calculated, and the rotation angle A of the θ stage is calculated using this distance calculation data.
The distance ρ i between the wafer outer edge position corresponding to i and the rotation center of the θ stage, and the rotation angle A 180 ° apart from the rotation angle A i.
to i + 180 ° calculates the sum of the distances [rho i + 180 ° between the center of rotation of the corresponding wafer outer edge position · theta stage, the sum and the wafer diameter r i of the temporary calculation of wafer diameter r i of the temporary Is performed at each half point of the wafer, that is, at each equally divided point in which the rotation angle A i is in the range of 0 ° to 180 °, and the frequency distribution of the diameter r i of the wafer is created from the result of calculating these diameters r i. A value is calculated, an average value of data included in the effective range of the mode is calculated, and the calculated value is used as a wafer diameter r for noise component determination, and the three-point detection method or the four-point detection method is executed. In this case, it is determined whether or not the provisional diameter r i corresponding to the outer edge positions of three or four points on the wafer falls within the allowable range of the diameter r for noise component determination. Three
When the eccentricity amount calculation is performed by the point detection method or the 4-point detection method and the above condition is not satisfied, the θ
The condition determination is performed for three or four points at different outer edge positions by changing the rotation angle of the stage.

〔作用〕[Action]

ウエハ全周のウエハ外縁位置の各等分点(回転角度A
i)でのθステージの回転中心からウエハ外縁位置まで
の距離ρiと、その反対側(180゜離れた点)のθス
テージの回転中心からウエハ外縁位置までの距離ρ
i+180゜の和は、ウエハ直径に近似する。
Equal division points (rotation angle A
i) the distance ρ i from the rotation center of the θ stage to the wafer outer edge position, and the distance ρ i from the rotation center of the θ stage on the opposite side (a point 180 ° apart) from the wafer outer edge position
the sum of i + 180 ° approximates to the diameter of the wafer.

しかし、ノイズ成分(ウエハ欠け、サブオリフラ、レジ
ストはく離等)が存在する場合、そのノイズ成分のある
点のρiとρi+180゜の和はウエハの本来のウエハ直径と
比較した場合、誤差が大きくなり、もはや上記近似関係
は成立しない。
However, (chipping wafer, Sabuorifura, resist peeling, etc.) noise component if there is, if the sum of the [rho i and [rho i + 180 ° of the point in the noise component is compared with the original wafer diameter of the wafer, error It becomes large, and the above approximate relation is no longer established.

このノイズ成分のある3点ないし4点データを用いて3
点検出法,4点検出法のウエハ偏心量演算を行うことは
ウエハ偏心量ひいてはウエハ整合位置精度を低下させ
る。
Using 3 or 4 points data with this noise component, 3
Performing the wafer eccentricity calculation by the point detection method and the four-point detection method deteriorates the wafer eccentricity amount and thus the wafer alignment position accuracy.

本発明は、上記の点に着目して、3点検出法或いは4点
検出法の候補となるべき3ないし4点データを多数用意
し(このデータは、上記プロセスで達成される)、3
点検出法或いは4点検出法を実行する場合には、予め、
これらの検出法の候補となるべき全ての3ないし4点の
外縁位置データの仮の直径ri=ρi+ρi+180゜を上記
プロセスによって求め、また、上記プロセスによっ
て上記riがノイズ成分のないウエハ外縁位置のもので
あるか否か判定するためのノイズ判定用直径rを求め
る。
Focusing on the above points, the present invention prepares a large number of 3 to 4 point data to be candidates for the 3 point detection method or the 4 point detection method (this data is achieved by the above process), 3
When executing the point detection method or the 4-point detection method,
Determined by these detection methods candidate with all three to four points of the outer edge position data temporary diameter ri = ρ i + ρ i + 180 ° The above process should be in and by the process described above r i is the noise component A noise determination diameter r for determining whether or not the wafer outer edge position is not present is obtained.

上記ノイズ判定用直径rは、直径ri度数分布での最頻
値の有効範囲内データの平均値を用いる。
As the noise determination diameter r, the average value of the data within the effective range of the mode in the diameter r i frequency distribution is used.

これは、多数等分化された点に対応のそれぞれの仮りの
ウエハ直径riは、ウエハがθステージに対して偏心し
ている場合には、ばらつきがあり、本来の直径に対して
誤差の大きいものや誤差の小さいものなどがあり、これ
を度数分布(正規分布)として表わせば、最も頻度の高
い直径が本来の直径に最も近いものとして統計的に求め
ることができるので、これをノイズ成分のない正規のウ
エハ直径とみなすことができるためである。
This is because each of the temporary wafer diameters r i corresponding to the points equally divided have variations when the wafer is eccentric with respect to the θ stage, and have a large error with respect to the original diameter. There is no noise component because it can be statistically determined that the most frequent diameter is the closest to the original diameter by expressing it as a frequency distribution (normal distribution). This is because it can be regarded as a regular wafer diameter.

そして、上記ノイズ成分判定用直径rを用いて、のプ
ロセスにより、3点或いは4点検出法の候補となる各点
の仮の直径ri=ρi+ρi+180゜が判定用直径rの許容
範囲に入るか否か条件判定することができ、この条件を
満たせば、上記候補点の外縁位置データはノイズ成分の
ない信頼できるものとして、3点或いは4点検出法のウ
エハ偏心量演算を実行することができる。また、3点或
いは4点の各検出法の候補となるべき点に対応の直径r
iが前記条件を満たさない場合には、条件を満たすまで
前記θステージの回転角度を変えて別の外縁位置(候
補)の3点或いは4点について前記条件判定を行う。
Then, the noise component by using the determination diameter r, the process of each point as a three-point or four-point detection method candidate tentative diameter r i = ρ i + ρ i + 180 ° is determined for the diameter r It is possible to determine whether or not it falls within the allowable range, and if this condition is satisfied, the outer edge position data of the candidate point is regarded as reliable without a noise component and the wafer eccentricity amount calculation of the three-point or four-point detection method is performed. Can be executed. Further, the diameter r corresponding to three or four points that should be candidates for each detection method
If i does not satisfy the above condition, the rotation angle of the θ stage is changed until the condition is satisfied, and the condition determination is performed for another outer edge position (candidate) of 3 points or 4 points.

したがって、3点検出法或いは4点検出法によりθステ
ージに対するウエハの偏心量を演算する場合に、その演
算に用いるウエハ外縁の3点或いは4点のウエハ外縁位
置を、多数の等分点の中からノイズ成分がない点を選択
して、3点検出法或いは4点検出法を実行するので、常
に正確なウエハ偏心量のX軸成分,Y軸成分を演算する
ことができる。
Therefore, when the eccentricity amount of the wafer with respect to the θ stage is calculated by the three-point detection method or the four-point detection method, the three or four wafer outer edge positions of the wafer outer edge used for the operation are calculated among a large number of equally divided points. Since a point having no noise component is selected from the three points and the three-point detection method or the four-point detection method is executed, the X-axis component and the Y-axis component of the wafer eccentricity amount can always be calculated accurately.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図〜第6図を用いて詳細に
説明する。
An embodiment of the present invention will be described in detail below with reference to FIGS.

第1図は本発明の適用対象となるウエハ整合装置の一実
施例を示す全体構成図である。
FIG. 1 is an overall configuration diagram showing an embodiment of a wafer alignment apparatus to which the present invention is applied.

第1図において、1はX−Yステージ、2はウエハ3を
真空吸着して回転させるθステージで、X−Yステージ
1はX軸制御系4、Y軸制御系5によつて位置制御さ
れ、θステージ2は駆動モータ6とタイミングベルト7
によつて回転され、回転軸(換言すればθステージ2)
の回転角を検出する回転角検出器8を備えている。
In FIG. 1, 1 is an XY stage, 2 is a θ stage for vacuum-sucking and rotating a wafer 3, and the XY stage 1 is position-controlled by an X-axis control system 4 and a Y-axis control system 5. , Θ stage 2 includes drive motor 6 and timing belt 7
Is rotated by the rotation axis (in other words, the θ stage 2)
The rotation angle detector 8 for detecting the rotation angle of

光源11,集光レンズ12,結像レンズ13,一次元イ
メージセンサ(CCD)14は、θステージ2上のウエ
ハ3の外縁位置を検出するウエハ外縁位置検出器を構成
し、光源11からの光は集光レンズ12よつて集光さ
れ、ウエハ3の外縁を照射し、結像レンズ13を通して
CCD14上にウエハ3の外縁位置を結像させる。
The light source 11, the condenser lens 12, the imaging lens 13, and the one-dimensional image sensor (CCD) 14 constitute a wafer outer edge position detector that detects the outer edge position of the wafer 3 on the θ stage 2, and light from the light source 11 is detected. Is condensed by the condenser lens 12, illuminates the outer edge of the wafer 3, and forms an image of the outer edge position of the wafer 3 on the CCD 14 through the imaging lens 13.

本実施例では、ウエハ3をθステージ2により所定の回
転角度単位で順次回転させて最終的に一回転させ、ウエ
ハ全周の外縁位置を所定の回転角度ごとに多数等分化し
た各点(第3図の回転角度A0,A1,A2,A3……An
に対応する各点で、nは等分数を示す)でθステージ2
の回転角度と関係させて検出し、その一定角度毎の外縁
位置情報を電子計算機15内に取り込む。このA0〜A
nに相当の等分点は、3点検出法或いは4点検出法の3
ないし4点データの多数候補となり得るよう等分化され
ている。
In the present embodiment, the wafer 3 is sequentially rotated by a predetermined rotation angle unit by the θ stage 2 and finally rotated once, and the outer edge position of the entire circumference of the wafer is divided into a large number of points at predetermined rotation angles (first point). Rotation angles A 0 , A 1 , A 2 , A 3 ... An in FIG.
At each point corresponding to
Is detected in relation to the rotation angle of the, and the outer edge position information for each constant angle is taken into the electronic computer 15. This A 0 ~ A
The equidistant point corresponding to n is 3 of the 3 point detection method or the 4 point detection method.
Or, it is equally divided so that it can be a large number of candidates for four-point data.

計算機15ではウエハ1回転分のデータを取り終えた時
点でウエハ外縁位置情報よりウエハ整合動作に必要な補
正量を第2図に示したフローチヤートにしたがつて計算
し、その補正量をもとにX軸制御系4、Y軸制御系5、
θステージ2を用いてウエハ3のオリフラの方向及びウ
エハ中心を所定の方向、位置に整合させる。この位置整
合の詳細は後述してある。
At the time when the data for one rotation of the wafer has been acquired, the computer 15 calculates the correction amount necessary for the wafer alignment operation from the wafer outer edge position information according to the flow chart shown in FIG. X-axis control system 4, Y-axis control system 5,
The θ stage 2 is used to align the orientation flat direction of the wafer 3 and the wafer center with a predetermined direction and position. The details of this position alignment will be described later.

第3図はウエハ3とCCD14との関係を示した図で、
(a)は両者の関係を示し、(b)はウエハ3の1回転
分の外縁位置データの波形を示す。第3図(a)におい
て、Oはθステージ2の回転中心で、Wはウエハ3の中
心を示し、A0,A1,A2,A3,……Anはθステージ
2の所定回転角で、各回転角度Ai(AiはA0〜A
n)に対応するウエハ3の外縁位置とθステージ2の回
転中心Oとの距離がρがCCD14の外縁位置検出デー
タと回転中心Oの位置データを基に計算機15により算
出される。それらの回転角Aiと外縁位置データ(距離
ρ)の関係の一例を第3図(b)に示す。
FIG. 3 is a diagram showing the relationship between the wafer 3 and the CCD 14,
(A) shows the relationship between the two, and (b) shows the waveform of the outer edge position data for one rotation of the wafer 3. In FIG. 3 (a), O is the rotation center of the θ stage 2, W is the center of the wafer 3, and A 0 , A 1 , A 2 , A 3 , ... An are the predetermined rotation angles of the θ stage 2. Then, each rotation angle Ai (Ai is A 0 to A
The distance ρ between the outer edge position of the wafer 3 and the rotation center O of the θ stage 2 corresponding to n) is calculated by the computer 15 based on the outer edge position detection data of the CCD 14 and the position data of the rotation center O. An example of the relationship between the rotation angle Ai and the outer edge position data (distance ρ) is shown in FIG. 3 (b).

次に、ウエハ3の中心の整合に必要な偏心量(ウエハ中
心Wとθステージ回転中心Oとのずれ量)算出について
第2図に示したフローチヤート及び第4図〜第6図を用
いて詳細に説明する。偏心量は3点ないし4点の外縁位
置情報より求めることができる。この3点検出法、4点
検出法そのものは公知であるが、それに用いる3点,4
点の外縁位置データにノイズ成分が含まれているか否か
条件判定する点に新規な手法が採用されている。
Next, the calculation of the amount of eccentricity (the amount of deviation between the wafer center W and the θ stage rotation center O) necessary for aligning the centers of the wafers 3 is calculated using the flow chart shown in FIG. 2 and FIGS. The details will be described. The amount of eccentricity can be obtained from the outer edge position information of three or four points. The three-point detection method and the four-point detection method themselves are known,
A new method is adopted for the condition determination as to whether or not the outer edge position data of a point includes a noise component.

まず、4点の外縁位置情報より偏心量を求める方法(4
点検出法)について説明する。
First, a method of obtaining the amount of eccentricity from the outer edge position information of four points (4
The point detection method) will be described.

4点検出法は、第5図に示すように、オリフラ中心がウ
エハ外縁位置検出器に位置する角度よりθだけウエハを
回転させ、その時のウエハ外縁位置検出器の位置にきた
ウエハ外縁位置(回転角θの外縁位置)・θステージ回
転中心間の距離ρをaとして、以下、θ+π/2,,θ
+π,θ+3/2πの外縁位置に対応する距離ρをb,
c,dとし、この4点データa,b,c,dによってウ
エハ偏心量のX軸成分,Y軸成分を算出するものである
が〔この演算には、後述の(6),(7)式が用いられ
る〕、本実施例では、4点検出法を行うに際して、ノイ
ズ成分(ウエハの欠け、レジストはく離、サブオリフラ
など)などが4点のデータa,b,c,dに影響を与え
るのを避けるために、第4図を用いて説明するウエハの
直径を求める方法と、第5図を用いて説明するデータ圧
縮法を併用してノイズ成分のない4点を選択する。
In the four-point detection method, as shown in FIG. 5, the wafer is rotated by θ from the angle at which the center of the orientation flat is located at the wafer outer edge position detector, and the wafer outer edge position (rotation position) at the position of the wafer outer edge position detector at that time is rotated. The outer edge position of the angle θ) and the distance ρ between the θ stage rotation centers are set as a, and the following θ + π / 2, θ
The distance ρ corresponding to the outer edge position of + π, θ + 3 / 2π is b,
c and d, the X-axis component and the Y-axis component of the wafer eccentricity amount are calculated from the four-point data a, b, c, and d. [For this calculation, (6) and (7) will be described later. In this embodiment, noise components (wafer chipping, resist peeling, sub orientation flat, etc.) affect the data a, b, c, d at the four points in the four-point detection method. In order to avoid the above, the method for obtaining the diameter of the wafer described with reference to FIG. 4 and the data compression method described with reference to FIG. 5 are used together to select four points having no noise component.

まず、第4図を用いてウエハ3の直径を求める方法につ
いて説明する。
First, a method for obtaining the diameter of the wafer 3 will be described with reference to FIG.

第4図(a)に示すように、X−Yステージ2の回転角
Ai(i=0〜nであるが、第4図では、θステージの回
転半周角180゜以後のAiは、An/2,An/2+1,A
n/2+2,…で示してあり、このうちサフィックスn/2
は、回転角180゜を意味するものである)に対応する
ウエハ外縁位置・θステージ回転中心O間の距離データ
ρi(i=0〜nであるが、第4図では、回転角An/2以後
の距離ρiはρn/2,ρn/2+1,ρn/2+2,…で示してあ
る)とすると、回転角Aiのウエハ3の直径riは次式で
近似できる。
As shown in FIG. 4 (a), the rotation angle Ai of the XY stage 2 (i = 0 to n, but in FIG. 4, Ai after the rotation half-circle angle of 180 degrees of the θ stage is A n. / 2 , A n / 2 + 1 , A
n / 2 + 2 , ..., of which suffix n / 2
Is the rotation angle of 180 °), and the distance data ρ i (i = 0 to n ) between the wafer outer edge position and the θ stage rotation center O corresponding to the rotation angle A n. / 2 after the distance [rho i is ρ n / 2, ρ n / 2 + 1, ρ n / 2 + 2, ... are indicated by) and when the diameter r i of the wafer 3 in the rotation angle a i is the following equation Can be approximated by

i=ρi+ρi+180゜ …(1) 上記式のうちρi+180゜は、第4図のρn/2+iに相当する
ものである。riを仮りの直径とし、AiがA0〜An/2
(θ=0゜〜180゜)で求めた結果の一例を第4図
(b)に示す。この結果よりウエハ3の直径rを求める
ために、直径の度数分布より最頻値(データ度数の多い
値)を求めると、第4図(c)のようになる。最頻値よ
り有効範囲±α(αはウエハ直径の許容範囲を決定する
任意の定数)内に含まれているデータのみを取り出して
平均すると、ウエハ3の直径rは次式によつて近似でき
る。
r i = ρ i + ρ i + 180 ° ... (1) ρ i + 180 ° of the above formula is equivalent to the FIG. 4 ρ n / 2 + i. Let r i be a temporary diameter and A i be A 0 to A n / 2.
An example of the result obtained at (θ = 0 ° to 180 °) is shown in FIG. 4 (b). From this result, in order to obtain the diameter r of the wafer 3, the mode (value with a large number of data frequencies) is obtained from the frequency distribution of the diameters, as shown in FIG. 4 (c). By taking out only the data contained in the effective range ± α (α is an arbitrary constant that determines the allowable range of the wafer diameter) from the mode and averaging, the diameter r of the wafer 3 can be approximated by the following equation. .

ここに、r;最頻値より有効範囲内に含まれるデータ m;そのデータの数 この直径rは、本来のウエハ直径に最も近いもので、ノ
イズ成分が存在しないものとみなすことができるから、
これをノイズ成分判定用の直径とし、以下に示す圧縮デ
ータを併用してノイズ成分の含まれていない4点のデー
タを第5図(a)に示すように検出する。
Here, r j ; data included in the effective range from the mode m; number of the data Since the diameter r is the closest to the original wafer diameter, it can be considered that there is no noise component. ,
This is used as a diameter for noise component determination, and the compressed data shown below is also used to detect data at four points that do not include noise components, as shown in FIG. 5 (a).

第5図(b)は外縁位置データの圧縮データ値の波形を
示す。圧縮データは、ウエハ全周のA〜Anの各点に
おける距離ρの偏差がどのくらいあるか隣り合う外縁位
置を順次比較して求めたデータで、隣合う外縁位置(距
離ρ)データにそれぞれ−L1/N,L2/N(N,
1,L2はノイズ成分と外縁位置データを区別できる任
意の定数)の荷重関数を掛け、その結果を加えることに
よつて求める。演算結果は整数とし、小数点以下は切り
捨てる。
FIG. 5B shows the waveform of the compressed data value of the outer edge position data. The compressed data is data obtained by sequentially comparing adjacent outer edge positions with respect to the deviation of the distance ρ at each point of A 0 to An on the entire circumference of the wafer. Each of the adjacent outer edge position (distance ρ) data is − L 1 / N, L 2 / N (N,
L 1 and L 2 are obtained by multiplying a weight function of an arbitrary constant which can distinguish the noise component and the outer edge position data, and adding the result. The calculation result is an integer, and the part after the decimal point is truncated.

以下、求められた直径rと圧縮データとにより4点検出
法の4点を選択する方法について説明する。
Hereinafter, a method of selecting four points in the four-point detection method based on the obtained diameter r and compressed data will be described.

まず、回転角θに対応するθステージ2の回転中心Oと
ウエハ3の外縁位置間の距離をaとする。以下、θ+π
/2,θ+π,θ+3/2πに対応するデータをそれぞ
れb,c,dとする。a,b,c,dに対して以下の条
件判定を行う。
First, the distance between the rotation center O of the θ stage 2 and the outer edge position of the wafer 3 corresponding to the rotation angle θ is a. Below, θ + π
Data corresponding to / 2, θ + π, and θ + 3 / 2π are b, c, and d, respectively. The following condition judgments are made for a, b, c and d.

r−β≦a+c≦r+β …(3) r−β≦b+d≦r+β …(4) a(θ)=b(θ+π/2) =c(θ+π) =d(θ+3/2π)0 …(5) ここに、β;直径の許容範囲を決定する任意の定数 a(θ)〜d(θ+3/2π);回転角θ(回転角Ai)
に対応する圧縮データ値 以上の条件をすべて満足する回転角をθ=A0〜Anの範
囲より検出する。以上により検出された4点のデータ
a,b,c,dによつて偏心量のX軸成分e,Y軸成分
fは次式によつて決定される。
r−β ≦ a + c ≦ r + β (3) r-β ≦ b + d ≦ r + β (4) a (θ) = b (θ + π / 2) = c (θ + π) = d (θ + 3 / 2π) 0 (5) Where β is an arbitrary constant that determines the allowable range of the diameter a (θ) to d (θ + 3 / 2π); rotation angle θ (rotation angle Ai)
The rotation angle satisfying all the conditions above the compressed data value corresponding to is detected from the range of θ = A 0 to A n . The X-axis component e and the Y-axis component f of the eccentricity are determined by the following equations based on the four points of data a, b, c, d detected as described above.

ただし、u,vは次式で示される。 However, u and v are shown by the following equations.

u=(d−b)/2 v=(c−a)/2 …(7) 次に、(3),(4),(5) 式で示される判定条件を満たす回
転角θが存在しない場合の偏心量検出(3点のデータに
より偏心量を検出)について第6図により説明する。回
転角θ=Aに対応するデータをaとし、以下、θ+
π/2,θ+3/2πに対応するデータをそれぞれ
,dとする。この場合にも、上記(3),(4),(5)
式の条件判定が利用されるが、(3)式は、r−β≦2ai
≦r+β、(4)式は、r−β≦bi+di≦r+βとして
条件判定が行われる。
u = (d−b) / 2 v = (c−a) / 2 (7) Next, there is no rotation angle θ that satisfies the determination conditions represented by the equations (3), (4), and (5). The eccentricity amount detection (the eccentricity amount is detected by the data of three points) in this case will be described with reference to FIG. Data corresponding to the rotation angle θ = A i is defined as a i, and θ +
Data corresponding to π / 2 and θ + 3 / 2π are referred to as b i and d i , respectively. Also in this case, the above (3), (4), (5)
Although the conditional judgment of the expression is used, the expression (3) is expressed by r−β ≦ 2a i.
≦ r + β, Expression (4) is determined as r−β ≦ b i + d i ≦ r + β.

そして、上記条件を満たす場合には、(7) 式は次式のよ
うに変形される(第6図(a))。
When the above condition is satisfied, the equation (7) is transformed into the following equation (Fig. 6 (a)).

u=(di−bi)/2 v=(r−2ai)/2 …(8) ここに、r;前述の方法により検出したウエハ直径 (8)式を(6)式に適用することによつて3点のデータより
偏心量検出ができる。
u = (d i −b i ) / 2 v = (r−2 a i ) / 2 (8) where r: Wafer diameter detected by the above method (8) is applied to (6) Therefore, the amount of eccentricity can be detected from the data of three points.

なお、上記ri=ρi+ρi+180゜(4点検出法ではa+
c、b+d、3点検出法では2ai、bi+di)がノイ
ズ成分判定用の直径rの許容範囲に入るか否かを条件判
定する場合には、(3) (4)或いはこの変形式を用いるだ
けでも、充分であり、上記圧縮データ法を省略してもよ
い。上記実施例では、条件判定に念を入れて、上記圧縮
データ法を併用させたものである。
Note that r i = ρ i + ρ i + 180 ° (a + in the four-point detection method)
c, b + d, in the three-point detection method, 2a i , b i + d i ) is determined in the condition (3), (4) or this variation in the case of determining whether or not the condition 2a i , b i + d i ) falls within the allowable range of the diameter r for noise component determination Using the format is sufficient and the compressed data method may be omitted. In the above embodiment, the compressed data method is used in combination with the condition determination taken into consideration.

また、4点検出法或いは3点検出法を1回だけでなく、
これをθステージの回転角度を変えて、前記条件判定を
満たすθ=A0〜Anの範囲(ウエハ全周)の全ての4
点或いは3点で実行して、求めたウエハ偏心量の度数分
布よりX軸成分,Y軸成分の最頻度を検出し〔第5図
(b)〕、最頻度より有効範囲±γ1,γ2(γ1,γ2
それぞれX軸成分,Y軸成分の偏心量として許容できる
任意の定数)内に含まれているデータのみを取り出し、
その平均値から、偏心量を求めてもよい。この偏心量は
次式により決定できる。
Also, the 4-point detection method or the 3-point detection method is not limited to once,
By changing the rotation angle of the θ stage, all four values in the range of θ = A 0 to An (the entire circumference of the wafer) satisfying the above-mentioned condition determination are set.
The maximum frequency of the X-axis component and the Y-axis component is detected from the obtained frequency distribution of the wafer eccentricity [FIG. 5 (b)], and the effective range ± γ 1 , γ is calculated from the maximum frequency. 21 and γ 2 are arbitrary constants that can be allowed as the eccentricity of the X-axis component and the Y-axis component, respectively)
The eccentricity amount may be obtained from the average value. This amount of eccentricity can be determined by the following equation.

ここに、e;最頻値より有効範囲±γに含まれるデ
ータ K;そのデータの数 fj;最頻値より有効範囲±γに含まれるデータ l;そのデータ数 オリフラの方向検出は、前述した圧縮データ値の波形を
用いてオリフラ部の特徴(データ幅、極性の変化)によ
りオリフラ両端部を認識し、その中心をオリフラ中心と
することによつて行う。
Here, e j ; the data included in the effective range ± γ 1 from the mode K; the number of the data f j ; the data included in the effective range ± γ 2 from the mode 1; the number of the data Orientation detection of the orientation flat Is performed by recognizing the both ends of the orientation flat from the characteristics of the orientation flat portion (change in data width and polarity) using the waveform of the compressed data value described above, and setting the center as the orientation flat center.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、3点或いは4点検出法に
よりウエハ偏心量を算出する場合に、ウエハ外周に欠
け、レジストのはく離、サブオリフラ等のノイズ成分が
存在していても、そのノイズ成分のある3点データ,4
点データを回避して適正な3点データ或いは4点データ
を選択するので、正確なウエハ偏心量を求め、ウエハ中
心の位置を常に高精度に整合できるという効果がある。
As described above, according to the present invention, when the wafer eccentricity amount is calculated by the three-point or four-point detection method, even if a noise component such as a chip on the outer periphery of the wafer, resist peeling, or sub orientation flat exists, the noise 3 point data with components, 4
Since the appropriate 3 point data or 4 point data is selected while avoiding the point data, there is an effect that an accurate wafer eccentricity amount can be obtained and the position of the wafer center can always be aligned with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の適用対象となるウエハ整合装置の一実
施例を示す全体構成図、第2図は第1図の計算機におけ
るプログラムの一実施例を示すフローチヤート、第3図
はウエハと一次元イメージセンサの関係の説明図、第4
図はウエハの直径の検出方法の説明図、第5図は4点デ
ータによる偏心検出方法の説明図、第6図は3点データ
による偏心検出方法の説明図である。 1……X−Yステージ、2……θステージ、3……ウエ
ハ、4……X軸制御系、5……Y軸制御系、6……駆動
モータ、7……タイミングベルト、8……回転角検出
器、11,12,13,14……ウエハ外縁位置検出器
(光源,集光レンズ,結像レンズ,一次元イメージセン
サ)、15……電子計算機。
FIG. 1 is an overall configuration diagram showing an embodiment of a wafer alignment apparatus to which the present invention is applied, FIG. 2 is a flow chart showing an embodiment of a program in the computer of FIG. 1, and FIG. Explanatory drawing of relation of one-dimensional image sensor, 4th
FIG. 5 is an explanatory diagram of a wafer diameter detection method, FIG. 5 is an explanatory diagram of an eccentricity detection method based on 4-point data, and FIG. 6 is an explanatory diagram of an eccentricity detection method based on 3-point data. 1 ... XY stage, 2 ... θ stage, 3 ... Wafer, 4 ... X-axis control system, 5 ... Y-axis control system, 6 ... Drive motor, 7 ... Timing belt, 8 ... Rotation angle detector, 11, 12, 13, 14 ... Wafer outer edge position detector (light source, condenser lens, imaging lens, one-dimensional image sensor), 15 ... Electronic computer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤倉 洋一 茨城県勝田市市毛882番地 株式会社日立 製作所那珂工場内 (56)参考文献 特開 昭60−81613(JP,A) 特開 昭54−585(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Fujikura 882 Igemo, Katsuta-shi, Ibaraki Hitachi factory Ltd. Naka factory (56) References JP-A-60-81613 (JP, A) JP-A-54- 585 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】X,Y2軸方向に可動なX−Yステージ
と、ウエハを真空吸着して回転させるθステージと、該
θステージの回転角を検出する回転角検出器と、前記ウ
エハの外縁位置を検出するウエハ外縁位置検出器とを備
え、前記ウエハ外縁位置検出器を用いて検出した前記ウ
エハの3ないし4点でのウエハ外縁位置を検出した結果
から、3点検出法或いは4点検出法を用いて前記ウエハ
の前記θステージに対する偏心量のX軸成分,Y軸成分
を演算し、このX軸成分,Y軸成分相当の位置修正を前
記X−Yステージを用いて行うウエハ位置整合方法にお
いて、 前記ウエハ外縁位置検出器を用いてウエハ全周の外縁位
置を所定の回転角度単位に多数等分化した点(これらの
点を等分点と称し、等分点は前記3点検出法或いは4点
検出法の3ないし4点データの多数候補となり得るよう
等分化されている)で前記θステージの回転角度と関係
させて検出し、これらのウエハ外縁位置データより演算
手段を用いてウエハ全周の前記各等分点のウエハ外縁位
置・θステージの回転中心間の距離ρを算出し、この距
離算出データを用いて、前記θステージの回転角Ai
対応のウエハ外縁位置・θステージ回転中心間の距離ρ
と、前記回転角Aiから180゜離れた回転角A
i+180゜に対応のウエハ外縁位置・θステージの回転中
心間の距離ρi+180゜との和を求め、この和を仮のウエ
ハ直径riとし、この仮のウエハ直径riの算出をウエハ
半周すなわち前記回転角Aiが0゜〜180゜の範囲の
各等分点で行い、これらの直径riを算出した結果から
前記ウエハの直径riの度数分布を作成して最頻値を求
め、該最頻値の有効範囲内に含まれるデータの平均値を
算出して、該算出値をノイズ成分判定用のウエハ直径r
とし、 前記3点検出法或いは4点検出法を実行する場合には、
前記ウエハの3点或いは4点の外縁位置に対応の前記仮
の直径riが前記ノイズ成分判定用直径rの許容範囲に
入るか条件判定を行い、この条件を満たせば前記3点検
出法或いは4点検出法による偏心量演算を行い、前記条
件を満たさない場合には、条件を満たすまで前記θステ
ージの回転角度を変えて別の外縁位置の3点或いは4点
について前記条件判定を行うことを特徴とするウエハ位
置整合方法。
1. An XY stage movable in X and Y two-axis directions, a θ stage for vacuum-sucking and rotating a wafer, a rotation angle detector for detecting a rotation angle of the θ stage, and an outer edge of the wafer. A wafer outer edge position detector for detecting a position, and a three-point detection method or four-point detection based on the result of detecting the wafer outer edge position at three or four points of the wafer detected by the wafer outer edge position detector. Position adjustment for calculating the X-axis component and the Y-axis component of the eccentricity of the wafer with respect to the θ stage by using the method and correcting the position corresponding to the X-axis component and the Y-axis component using the XY stage. In the method, the wafer outer edge position detector is used to equally divide the outer edge position of the entire circumference of the wafer into predetermined rotation angle units (these points are called equal dividing points, and the equal dividing points are the three-point detection method). Or there is no 3-point detection method However, it is equally divided so that it can become a large number of candidates for four-point data) and is detected in relation to the rotation angle of the θ stage. The distance ρ between the wafer outer edge position and the θ stage rotation center at a point is calculated, and the distance ρ between the wafer outer edge position and the θ stage rotation center corresponding to the rotation angle A i of the θ stage is calculated using this distance calculation data.
i and a rotation angle A 180 degrees apart from the rotation angle A i
to i + 180 ° calculates the sum of the distances [rho i + 180 ° between the center of rotation of the corresponding wafer outer edge position · theta stage, the sum and the wafer diameter r i of the temporary calculation of wafer diameter r i of the temporary Is performed at each half point of the wafer, that is, at each equally divided point in which the rotation angle A i is in the range of 0 ° to 180 °, and the frequency distribution of the diameter r i of the wafer is created from the result of calculating these diameters r i. A value is calculated, an average value of data included in the effective range of the mode is calculated, and the calculated value is used as a wafer diameter r for noise component determination.
When performing the three-point detection method or the four-point detection method,
It is judged whether or not the temporary diameter r i corresponding to the outer edge positions of three or four points on the wafer falls within an allowable range of the noise component judging diameter r, and if the condition is satisfied, the three-point detecting method or When the eccentricity amount is calculated by the four-point detection method and the above condition is not satisfied, the rotation angle of the θ stage is changed until the condition is satisfied, and the condition determination is performed for three or four different outer edge positions. A wafer position matching method characterized by the above.
【請求項2】特許請求の範囲第1項において、前記θス
テージに対する前記ウエハの偏心量を演算する場合に
は、まず4点検出法に用いる前記ウエハの4点の外縁位
置に対応の仮の前記直径riが前記ノイズ成分判定用直
径rの許容範囲に入るか否かの条件判定を行い、この条
件判定をウエハ全周の全ての等分点で行っても条件を満
たさない場合には、前記4点検出法に代わって前記3点
検出法による偏心量演算を実行することを特徴とするウ
エハ位置整合方法。
2. When calculating the amount of eccentricity of the wafer with respect to the .theta. Stage in claim 1, first, temporary positions corresponding to the four outer edge positions of the wafer used in the four-point detection method are calculated. If a condition is determined whether the diameter r i falls within the allowable range of the noise component determination diameter r, and if this condition determination is made at all equal points on the entire circumference of the wafer, the condition is not satisfied. A wafer position matching method, wherein an eccentricity amount calculation is performed by the three-point detection method instead of the four-point detection method.
【請求項3】特許請求の範囲第1項又は第2項におい
て、前記3点検出法或いは前記4点検出法を、前記θス
テージの回転角度を変えて前記条件判定を満たす前記ウ
エハの全周の各等分点で実行して、前記ウエハの偏心量
のX軸成分,Y軸成分の度数分布を作成しこの度数分布
の中の最頻値の有効範囲内に含まれるデータの平均値か
ら前記X軸成分,Y軸成分を算出するウエハ位置整合方
法。
3. The method according to claim 1 or 2, wherein the three-point detection method or the four-point detection method is applied to the entire circumference of the wafer satisfying the condition determination by changing the rotation angle of the θ stage. Is executed at each of the equal points to create a frequency distribution of the X-axis component and the Y-axis component of the wafer eccentricity amount, and from the average value of the data included in the effective range of the mode in this frequency distribution, A wafer position matching method for calculating the X-axis component and the Y-axis component.
JP63180258A 1988-07-21 1988-07-21 Wafer position alignment method Expired - Fee Related JPH0626232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180258A JPH0626232B2 (en) 1988-07-21 1988-07-21 Wafer position alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180258A JPH0626232B2 (en) 1988-07-21 1988-07-21 Wafer position alignment method

Publications (2)

Publication Number Publication Date
JPH0231443A JPH0231443A (en) 1990-02-01
JPH0626232B2 true JPH0626232B2 (en) 1994-04-06

Family

ID=16080112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180258A Expired - Fee Related JPH0626232B2 (en) 1988-07-21 1988-07-21 Wafer position alignment method

Country Status (1)

Country Link
JP (1) JPH0626232B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198896A (en) * 1982-05-14 1983-11-18 松下電工株式会社 Illuminator
JP3074313B2 (en) * 1993-01-26 2000-08-07 株式会社メックス Wafer positioning device
JP4547524B2 (en) * 2000-12-05 2010-09-22 川崎重工業株式会社 Work processing method, work processing apparatus and robot
US7315373B2 (en) 2001-11-14 2008-01-01 Rorze Corporation Wafer positioning method and device, wafer process system, and wafer seat rotation axis positioning method for wafer positioning device
JP4063526B2 (en) * 2001-11-14 2008-03-19 ローツェ株式会社 Wafer seat rotation axis positioning method of wafer positioning device and wafer positioning device using the method
JP4961895B2 (en) * 2006-08-25 2012-06-27 東京エレクトロン株式会社 Wafer transfer device, wafer transfer method, and storage medium
US8267636B2 (en) 2007-05-08 2012-09-18 Brooks Automation, Inc. Substrate transport apparatus
JP6313030B2 (en) * 2013-12-02 2018-04-18 株式会社ダイヘン Wafer information processing equipment
US9886029B2 (en) 2013-12-02 2018-02-06 Daihen Corporation Workpiece processing apparatus and workpiece transfer system
JP2015222796A (en) * 2014-05-23 2015-12-10 東京エレクトロン株式会社 Wafer position detecting device, wafer position detecting method and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54585A (en) * 1977-06-02 1979-01-05 Terumetsuku Kk Automatic angle setting device
JPS6081613A (en) * 1983-10-11 1985-05-09 Hitachi Ltd Matching device of water

Also Published As

Publication number Publication date
JPH0231443A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
JPH0626232B2 (en) Wafer position alignment method
EP3264181B1 (en) Substrate pre-alignment method
JPH10274855A (en) Reticule, pattern transferred thereby and correction method
US20050082693A1 (en) Image processing alignment method and method of manufacturing semiconductor device
JP3732794B2 (en) Dimensional inspection method and apparatus, and mask manufacturing method
JP2000114347A (en) Method and device for detecting wafer position
JP3187107B2 (en) Pattern inspection equipment
JPH0541598A (en) Correcting method for component mounting position
EP0286086A2 (en) Electron beam drawing method
US20200331107A1 (en) Self-detecting apparatus for workpiece-origin, mobile machine tool having the same, and method for self-detecting workpiece-origin of mobile machine tool using the mobile machine
JPH03201454A (en) Aligning method for semiconductor device
JPH11132763A (en) Distance measuring method
JP2806242B2 (en) Alignment mark for electron beam exposure and method for detecting alignment mark for electron beam exposure
JP2000258121A (en) Master substrate for calibrating a plurality of cameras and calibration method for image recognition camera
JPH06310587A (en) Wafer aligner
KR0173250B1 (en) The weight center computation method of components using image process apparatus
JPH0612249B2 (en) Pattern inspection device
JP2605111B2 (en) Electron beam correction method for electron beam exposure apparatus
JP2943257B2 (en) High accuracy position recognition method
JP2637062B2 (en) Wafer orientation flat detector
JP2836185B2 (en) Component rotation deviation detection method
JPS62237743A (en) Wafer matching apparatus
JPH1030911A (en) Method for detecting position of minute work piece
JPH10290097A (en) Method for mounting component
JPH10208044A (en) Picture processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees