JPH06262100A - Speed control device of differential centrifugal dehydration machine - Google Patents

Speed control device of differential centrifugal dehydration machine

Info

Publication number
JPH06262100A
JPH06262100A JP5052763A JP5276393A JPH06262100A JP H06262100 A JPH06262100 A JP H06262100A JP 5052763 A JP5052763 A JP 5052763A JP 5276393 A JP5276393 A JP 5276393A JP H06262100 A JPH06262100 A JP H06262100A
Authority
JP
Japan
Prior art keywords
speed
differential
command value
motor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052763A
Other languages
Japanese (ja)
Inventor
Hiroaki Hamamoto
博章 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5052763A priority Critical patent/JPH06262100A/en
Publication of JPH06262100A publication Critical patent/JPH06262100A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid an unusual increase in the regenerative power of a motor on a regenerative operation side when a power supply for a differential centrifugal dehydra tion machine which is powered by motors, one of which is in a power running mode and the other of which is in a regenerative running mode and at the same time, dehy drating, has recovered from a short time power supply failure. CONSTITUTION:If the speed of a motor 22 for a differential governor is accelerated during a power supply failure, a signal switching device 33 activates an instantaneous power supply failure frequency setting device 32 in which a higher value is set during the recovery of power supply. Therefore, the deviation range between the speed of the motor for a differential governor and a command value of frequency for the differential governor is narrow, so that a regenerative power can be restricted. The command value of frequency for the differential governor at a further higher level is gradually restored to an original value by action of a means for calculating a reduced speed. Consequently, the speed of the motor for the differential governor is restored to an original speed in a maintained deviation range, in accordance with a change in the command value of frequency for the differential governor, and thus the regenerative power is well controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、2台の電動機を結合
して一方の電動機は力行運転し、他方の電動機は回生運
転しつつ脱水を行う差動式遠心脱水機の電源が短時間停
電した場合の速度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power source for a differential type centrifugal dehydrator, in which two electric motors are coupled to each other, one electric motor is in a power running operation, and the other electric motor is in a regenerative operation for dehydration. The present invention relates to a speed control device in the case of doing.

【0002】[0002]

【従来の技術】図3は差動式遠心脱水機の構成の従来例
を示した構成図である。上水道や下水道などの水処理施
設では、水処理作業に伴って発生する汚泥の重量・体積
を低減させるために脱水処理を行うが、この汚泥の脱水
には差動式遠心脱水機が多く使用されている。差動式遠
心脱水機は第1回転籠としての主機10の回転軸と、第
2回転籠としての差速機20の回転軸とが一致している
2重回転籠の構造であって、主機10と差速機20とは
別個の電動機で駆動する。即ち、第1電動機としての主
機用電動機12は主機駆動ベルト11を介して主機10
を駆動し、第2電動機としての差速機用電動機22は差
速機駆動ベルト21を介して差速機20を駆動する。と
ころでこの差動式遠心脱水機は、汚泥脱水時に主機用電
動機12で主機10を駆動中に差速機用電動機22をフ
リーの状態(即ち差速機用電動機22の電源をオフの状
態)にすると、差速機20は主機10の回転に連れて回
転する構造になっている。従って、主機用電動機12が
力行運転して主機10を所定の回転速度で駆動すると、
差速機20は主機10と同じ速度で回転しようとする。
そこで差速機用電動機22を回生運転させることによ
り、差速機20の回転速度を主機10よりも低くして脱
水運転を行わせる。
2. Description of the Related Art FIG. 3 is a block diagram showing a conventional example of the configuration of a differential centrifugal dehydrator. In water treatment facilities such as waterworks and sewers, dehydration treatment is performed to reduce the weight and volume of sludge generated during water treatment work, and a differential centrifugal dehydrator is often used to dehydrate this sludge. ing. The differential centrifugal dehydrator has a double-rotation cage structure in which the rotation axis of the main machine 10 as the first rotary cage and the rotation axis of the differential speed machine 20 as the second rotary cage coincide with each other. 10 and the differential gear 20 are driven by separate electric motors. That is, the main motor 12 as the first electric motor is connected to the main motor 10 via the main motor drive belt 11.
The differential speed electric motor 22 as the second electric motor drives the differential speed machine 20 through the differential speed drive belt 21. By the way, in this differential centrifugal dehydrator, the motor 22 for the differential speed machine is set to the free state (that is, the power source of the motor 22 for the differential speed machine is turned off) while the main motor 10 is being driven by the main machine motor 12 during sludge dewatering. Then, the differential gear 20 is structured to rotate with the rotation of the main engine 10. Therefore, when the electric motor 12 for the main engine is driven in the power mode to drive the main engine 10 at a predetermined rotation speed,
The differential gear 20 tries to rotate at the same speed as the main engine 10.
Therefore, the electric motor 22 for the differential speed machine is regeneratively operated to lower the rotation speed of the differential speed machine 20 lower than that of the main machine 10 to perform the dehydration operation.

【0003】遠心脱水機は一般に極めて大きなはずみ車
効果を保有しているので、遠心脱水機に結合している電
動機が特別に大容量のものでない限り、遠心脱水機を起
動する際は長い時間をかけて徐々に回転速度を上昇させ
なければならない。そこで、遠心脱水機駆動用電動機と
して誘導電動機を使用し、可変電圧・可変周波数の交流
電力を出力するインバータの出力周波数を徐々に増加さ
せて遠心脱水機を加速する方法が多用されている。図3
に図示の従来例も、主機用電動機12は主機用インバー
タ13が出力する可変電圧・可変周波数の交流電力で運
転するが、この主機用インバータ13の出力電圧と周波
数とは主機速度制御回路14で制御される。尚主機用周
波数設定器15は主機用電動機12が目標としている運
転周波数を設定する。同様に差速機用電動機22も差速
機用インバータ23が出力する可変電圧・可変周波数の
交流電力で運転し、この差速機用インバータ23は差速
機速度制御回路24で制御される。又差速機用周波数設
定器25は前述したように主機用電動機12よりも低い
値の周波数値を設定しているので、差速機用電動機22
はこの値で運転するべく回生運転となる。
Centrifugal dewatering machines generally possess a very large flywheel effect, so unless the electric motor associated with the centrifugal dewatering machine has a particularly large capacity, it takes a long time to start up the centrifugal dewatering machine. Therefore, the rotation speed must be gradually increased. Therefore, a method is widely used in which an induction motor is used as a motor for driving a centrifugal dehydrator and the output frequency of an inverter that outputs AC power of variable voltage and variable frequency is gradually increased to accelerate the centrifugal dehydrator. Figure 3
In the conventional example shown in FIG. 1 as well, the electric motor 12 for the main engine operates with the AC power of the variable voltage / variable frequency output by the inverter 13 for the main engine. Controlled. The main machine frequency setter 15 sets the target operating frequency of the main machine electric motor 12. Similarly, the differential speed motor 22 is also driven by the variable voltage / variable frequency AC power output from the differential speed inverter 23, and the differential speed inverter 23 is controlled by the differential speed control circuit 24. Further, since the differential speed machine frequency setting device 25 sets a frequency value lower than that of the main machine motor 12 as described above, the differential speed motor 22 is set.
Will be regeneratively driven to operate at this value.

【0004】[0004]

【発明が解決しようとする課題】図4は図3に図示の従
来例で電源が短時間停電した場合の各部の動作を示した
動作波形図であって、図4は電源電圧の有無、図4
は主機用電動機12の回転速度N1の変化と主機用インバ
ータ13が出力する主機用周波数指令値F1の変化、図4
は差速機用電動機22の回転速度N2の変化と差速機用
インバータ23が出力する差速機用周波数指令値F2の変
化をそれぞれが表している。
FIG. 4 is an operation waveform diagram showing the operation of each part when the power supply is interrupted for a short time in the conventional example shown in FIG. 3, and FIG. Four
Is the change in the rotation speed N1 of the main machine motor 12 and the change in the main machine frequency command value F1 output from the main machine inverter 13, FIG.
Represent changes in the rotation speed N2 of the differential speed motor 22 and changes in the differential speed frequency command value F2 output from the differential speed inverter 23, respectively.

【0005】この図4において、t1なる時点に停電が発
生しこの停電はt2時点で回復するものとし、この停電時
間はごく短いものとする。この短時間停電中に主機用電
動機12はフリーランになってその回転速度N1は徐々に
低下するが、電源が回復するとその回転速度N1は主機用
周波数指令値F1へ接近するべく上昇を開始し、時刻t3に
は元の回転速度へ復帰する(図4参照)。ところで電
源が回復するt2時点では、主機用電動機速度N1と主機用
周波数指令値F1との間には大きな差を生じている。この
差を縮小するべく(即ち主機用電動機速度N1を上昇させ
るべく)主機用電動機12へは大きな電流が流れるが、
前述した両者の差が大きくなるにつれて電流はますます
増加し、且つ主機用電動機速度N1が主機用周波数指令値
F1へ接近するのに長い時間がかかるので、この大電流が
通流している時間も長くなる。従って主機用インバータ
13が過電流でトリップする恐れがある。そこで短時間
停電が回復する時刻t2を起点にして主機用周波数指令値
F1を一時的に低下させた後に徐々に元の値へ戻す操作を
行う回路(所謂同期引込み回路)を主機速度制御回路1
4の内部に組み込んでおく。図4において、時刻t2と
時刻t3との間で、一点鎖線で図示している主機用周波数
指令値F1が一時的に垂下しているのは、前述した同期引
込み回路が作用しているためであり、これにより主機用
電動機速度N1と主機用周波数指令値F1との乖離が小さく
なり、過電流トリップの恐れを回避することができる。
In FIG. 4, it is assumed that a power failure occurs at time t1 and this power failure is recovered at time t2, and this power failure time is extremely short. During this short power failure, the motor 12 for the main engine becomes free-running and its rotation speed N1 gradually decreases, but when the power is restored, the rotation speed N1 starts increasing to approach the frequency command value F1 for the main engine. , At time t3, the original rotation speed is restored (see FIG. 4). By the way, at the time point t2 when the power is restored, a large difference is generated between the main engine motor speed N1 and the main engine frequency command value F1. In order to reduce this difference (that is, to increase the main motor speed N1), a large current flows to the main motor 12, but
The current increases more and more as the difference between the two increases, and the motor speed N1 for the main engine is the frequency command value for the main engine.
Since it takes a long time to approach F1, the time during which this large current is flowing also becomes long. Therefore, the main machine inverter 13 may trip due to overcurrent. Therefore, starting from time t2 when the short-time power failure is restored, the frequency command value for the main engine is set.
The main engine speed control circuit 1 is a circuit (so-called synchronous pull-in circuit) for performing an operation of gradually reducing F1 and then gradually returning it to the original value.
It is installed in the inside of 4. In FIG. 4, the frequency command value F1 for the main engine, which is shown by the alternate long and short dash line, temporarily hangs between time t2 and time t3, because the above-mentioned synchronous pull-in circuit operates. Therefore, the difference between the main engine motor speed N1 and the main engine frequency command value F1 becomes small, and the risk of overcurrent trip can be avoided.

【0006】一方、差速機20は前述したように主機1
0により回転させられていて、差速機用電動機22を介
して電源側へエネルギーを回生しながら運転している。
回生運転中であることは、差速機用電動機速度N2の方が
差速機用周波数指令値F2よりも大であることから分かる
(図4参照)。ここで時刻t1で停電が発生すると、差
速機用電動機22はフリーになるので、差速機20は主
機10に連れて回るためにその回転速度は主機10の回
転速度に一致するまで上昇する。それ故電源が回復する
時刻t2では、差速機用電動機速度N2と差速機用周波数指
令値F2との乖離値δ1 が大きな値になってしまっている
ので、電源回復と同時に電源側への大きな電力の回生が
長時間継続することになり、差速機用インバータ23を
過電圧や過負荷でトリップさせる恐れがある。
On the other hand, the differential gear 20 has the main engine 1 as described above.
It is rotated by 0, and is operating while regenerating energy to the power source side through the differential speed motor 22.
The fact that the regenerative operation is in progress can be seen from the fact that the differential speed motor speed N2 is larger than the differential speed frequency command value F2 (see FIG. 4). When a power failure occurs at time t1, the differential speed motor 22 becomes free, so that the differential speed 20 is rotated along with the main engine 10, so that its rotational speed increases until it matches the rotational speed of the main engine 10. . Therefore, at time t2 when the power is restored, the deviation value δ 1 between the differential speed motor speed N2 and the differential speed frequency command value F2 has become a large value. Of a large amount of electric power will continue for a long time, which may cause the differential speed inverter 23 to trip due to overvoltage or overload.

【0007】差速機用インバータ23に主機用インバー
タ13と同様の同期引込み回路を設けると、時刻t2と時
刻t3との間で、差速機用周波数指令値F2は破線で図示し
たように垂下して、差速機用電動機速度N2と差速機用周
波数指令値F2との乖離値δ2は更に大きくなってしま
う。それ故、回生運転をする際には差速機速度制御回路
24には同期引込み回路は設けないが、それでも前述し
た大きな乖離値δ1 による不都合を発生してしまう。
If a differential pull-in circuit similar to the main engine inverter 13 is provided in the differential speed inverter 23, the differential speed frequency command value F2 droops between time t2 and time t3 as shown by the broken line. Then, the deviation value Δ 2 between the differential speed motor speed N2 and the differential speed frequency command value F2 becomes even larger. Therefore, when the regenerative operation is performed, the differential speed control circuit 24 is not provided with the synchronous pull-in circuit, but still the disadvantage due to the large deviation value δ 1 described above occurs.

【0008】前述したように、遠心脱水機は大きなはず
み車効果を持っているので、起動には長い時間が必要で
ある。よって一旦トリップすると再始動に長時間がかか
り、装置の稼働率を低下させてしまう不具合を生じる。
そこでこの発明の目的は、2台の電動機を結合して一方
の電動機が力行運転、他方の電動機が回生運転しつつ脱
水を行う差動式遠心脱水機の電源が短時間停電から回復
したときに、回生運転側電動機の回生電力が過大になる
のを回避することにある。
As described above, since the centrifugal dehydrator has a great flywheel effect, it takes a long time to start. Therefore, once a trip occurs, it takes a long time to restart, which causes a problem that the operating rate of the device is reduced.
Therefore, an object of the present invention is to connect two electric motors, one electric motor being in a power running operation and the other electric motor being in a regenerative operation to perform dehydration while the power source of a differential centrifugal dehydrator recovers from a short power failure. , To prevent the regenerative electric power of the electric motor on the regenerative operation side from becoming excessive.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めにこの発明の差動式遠心脱水機の速度制御装置は、第
1電動機の回転速度を制御する第1速度制御装置と、こ
の第1電動機に結合して当該第1電動機が駆動する第1
の回転籠と、この第1回転籠と同軸で且つこの第1回転
籠により回転させられる第2の回転籠と、この第2回転
籠に結合して回生運転により当該第2回転籠の回転速度
を前記第1回転籠よりも低くしている第2電動機と、こ
の第2電動機の回転速度を制御する第2速度制御装置と
で構成している差動式遠心脱水機において、前記両電動
機の電源が短時間の停電から回復する際に、前記第2電
動機の回転速度指令値を上昇させる指令値変更手段を前
記第2速度制御装置に備えるものとするが、前記指令値
変更手段は、回生運転時の回転速度指令値を設定する第
1速度設定手段と、回生運転時よりも高い値の回転速度
指令値を設定する第2速度設定手段と、電源が短時間の
停電から回復したときは前記第2速度設定手段を選択
し、その後に前記第1速度設定手段へ切り換える信号切
替え手段と、高い回転速度指令値を所定の時間変化率で
低い回転速度指令値へ低下させる減速度演算手段とで構
成するものとする。
To achieve the above object, a speed control device for a differential centrifugal dehydrator according to the present invention comprises a first speed control device for controlling the rotation speed of a first electric motor, and A first electric motor driven by being coupled to the first electric motor
Rotation cage, a second rotation cage coaxial with the first rotation cage and rotated by the first rotation cage, and a rotation speed of the second rotation cage connected to the second rotation cage by regenerative operation. In a differential centrifugal dehydrator comprising a second electric motor having a speed lower than that of the first rotary cage and a second speed control device controlling the rotational speed of the second electric motor, The second speed control device is provided with command value changing means for increasing the rotation speed command value of the second electric motor when the power supply recovers from a short-term power failure. First speed setting means for setting a rotation speed command value during operation, second speed setting means for setting a rotation speed command value higher than that during regenerative operation, and when the power supply recovers from a short power failure Select the second speed setting means, and then select the second speed setting means. Shall be composed of a signal switching means switches to speed setting means, a high rotational speed deceleration calculating means for reducing the command value to a lower rotational speed command value at a predetermined time rate of change.

【0010】[0010]

【作用】差動式遠心脱水機の運転中は回生運転している
第2電動機は電源停電中はフリーになるため、第1回転
籠に駆動されてその回転速度が上昇してしまっているの
で、電源が回復した時点での第2電動機の回転速度とこ
の第2電動機の周波数指令値とが大幅に乖離してしま
う。この発明は、電源が回復した時点で第2電動機の周
波数指令値を上昇させることにより、当該第2電動機の
回転速度と周波数指令値との乖離幅を縮小し、もって回
生電力の増大を抑制するものである。ここで第2電動機
周波数指令値は、電源回復と同時に信号切替え手段で、
通常運転時の速度指令値を設定している第1速度設定手
段から、より高い速度指令値を設定している第2速度設
定手段への切替えにより上昇させ、その後に再び低い値
の第1速度設定手段へ切替えるが、減速度演算手段の作
用により回転速度指令値は所定の時間変化率に従って緩
やかに低下するので、大きな回生電力を発生すること無
く第2電動機を元の回転速度へ戻すものである。
[Function] Since the second electric motor, which is in regenerative operation while the differential centrifugal dehydrator is in operation, becomes free during a power outage, it is driven by the first rotary cage and its rotational speed increases. The rotation speed of the second electric motor at the time when the power is restored and the frequency command value of the second electric motor largely deviate from each other. According to the present invention, by increasing the frequency command value of the second electric motor when the power source is restored, the deviation width between the rotation speed of the second electric motor and the frequency command value is reduced, thereby suppressing an increase in regenerative power. It is a thing. Here, the second motor frequency command value is the signal switching means at the same time when the power is restored,
The first speed setting means that sets the speed command value during normal operation is switched to the second speed setting means that sets a higher speed command value to increase the speed, and then the first speed having a lower value again. Although the switching to the setting means, the rotation speed command value is gradually decreased by the operation of the deceleration calculation means in accordance with a predetermined time change rate, so that the second motor can be returned to the original rotation speed without generating a large regenerative electric power. is there.

【0011】[0011]

【実施例】図1は本発明の実施例を表した差動式遠心脱
水機の構成図であるが、この図1の実施例に図示してい
る第1回転籠としての主機10,主機駆動ベルト11,
第1電動機としての主機用電動機12,主機用インバー
タ13,主機速度制御回路14,主機用周波数設定器1
5,第2回転籠としての差速機20,差速機駆動ベルト
21,第2電動機としての差速機用電動機22,差速機
用インバータ23,及び差速機速度制御回路24の名称
・用途・機能は、図3で既述の従来例と同じであるか
ら、これらの説明は省略する。
FIG. 1 is a block diagram of a differential centrifugal dehydrator showing an embodiment of the present invention. A main machine 10 as a first rotating cage and a main machine drive shown in the embodiment of FIG. Belt 11,
A main motor 12 as a first motor, a main inverter 13, a main speed control circuit 14, a main frequency setter 1
5, the name of the differential speed machine 20, the differential speed machine drive belt 21, the differential speed machine electric motor 22, the differential speed machine inverter 23, and the differential speed machine speed control circuit 24 as the second electric motor. The purpose and function are the same as those of the conventional example described above with reference to FIG.

【0012】図1の実施例では、差速機用周波数設定器
31,瞬停時周波数設定器32,及び信号切替え器33
と、図示していない減速度演算手段とで指令値変更手段
を構成している。但し電動機を速度制御する場合は、急
激に変化する速度指令値を所定の時間変化率で緩やかに
変化する速度指令値へ変換する加減速度演算手段を通常
は装備しているので、この加減速度演算手段を前述の減
速度演算手段の代わりに使用すれば良い。
In the embodiment of FIG. 1, the differential speed machine frequency setting device 31, the instantaneous power failure frequency setting device 32, and the signal switching device 33.
And a deceleration calculating means (not shown) constitute a command value changing means. However, when controlling the speed of an electric motor, acceleration / deceleration calculation means for converting a rapidly changing speed command value into a slowly changing speed command value at a predetermined rate of change is usually equipped. Means may be used instead of the deceleration calculation means described above.

【0013】差動式遠心脱水機が運転しているときは、
信号切替え器33の接点は図示の状態になっているの
で、差速機用周波数設定器31が差速機速度制御回路2
4に接続されている。ここで電源が短時間停電した後に
回復したときに、信号切替え器33の接点は図示とは逆
の状態へ切り換わる。即ち瞬停時周波数設定器32が差
速機速度制御回路24へ接続となる。瞬停時周波数設定
器32が設定する周波数指令値は、それまで接続してい
た差速機用周波数設定器31が設定する周波数指令値よ
りも高い値であるから、停電期間中に差速機20の回転
速度が前述した理由で上昇し、この差速機20に結合し
ている差速機用電動機22もこれに対応してその回転速
度が上昇しても、周波数指令値との間に生じる乖離値は
僅かである。次いでこの周波数指令値は減速度演算手段
の作用で徐々に低下するので、差速機用電動機22の回
転速度もこれに対応して低下し、円滑に停電前の回転速
度へ復帰する。
When the differential centrifugal dehydrator is operating,
Since the contacts of the signal switching device 33 are in the state shown in the figure, the frequency setting device 31 for the differential speed device is operated by the differential speed control circuit 2 for the differential speed device.
4 is connected. Here, when the power supply recovers after a short power failure, the contact point of the signal switch 33 is switched to a state opposite to that shown in the drawing. That is, the instantaneous power failure frequency setting device 32 is connected to the differential speed machine speed control circuit 24. Since the frequency command value set by the frequency setter 32 during the instantaneous power failure is higher than the frequency command value set by the frequency setter 31 for the differential speed device that has been connected until then, the differential speed device during the power failure period The rotational speed of 20 increases due to the above-mentioned reason, and the differential speed electric motor 22 coupled to the differential speed 20 also has a corresponding increase in rotational speed even if the rotational speed increases correspondingly. The deviation value that occurs is slight. Next, this frequency command value is gradually reduced by the action of the deceleration calculation means, so that the rotation speed of the differential speed electric motor 22 also correspondingly decreases, and smoothly returns to the rotation speed before the power failure.

【0014】図2は図1に図示の実施例で電源が短時間
停電した場合の各部の動作を示した動作波形図であっ
て、図2は電源電圧の有無、図2は主機用電動機1
2の回転速度N1の変化と主機用インバータ13が出力す
る主機用周波数指令値F1の変化、図2は差速機用電動
機22の回転速度N2の変化と差速機用インバータ23が
出力する差速機用周波数指令値F2の変化をそれぞれが表
している。
FIG. 2 is an operation waveform diagram showing the operation of each part when the power supply is interrupted for a short time in the embodiment shown in FIG. 1. FIG. 2 shows the presence or absence of the power supply voltage, and FIG. 2 shows the main motor 1
2 changes of the rotation speed N1 and the change of the main machine frequency command value F1 output by the main machine inverter 13, FIG. 2 shows the change of the rotation speed N2 of the differential speed motor 22 and the difference output by the differential speed inverter 23. Each shows the change of the frequency command value F2 for speed machines.

【0015】この図2において、t1なる時点に停電が発
生しこの停電は時刻t2で回復するものとし、この停電時
間はごく短いものとする。又、時刻t3は主機用電動機1
2と差速機用電動機22の回転速度が元の値に復帰する
時点とする。ここで図2は前述した図4と同じであ
り、図2も前述した図4と同じであるから、これら
の説明は省略する。
In FIG. 2, it is assumed that a power failure occurs at time t1 and this power failure is recovered at time t2, and this power failure time is extremely short. Also, at time t3, the main motor 1
2 and the rotation speed of the differential motor 22 is returned to the original value. Here, FIG. 2 is the same as FIG. 4 described above, and FIG. 2 is also the same as FIG. 4 described above, so description thereof will be omitted.

【0016】本発明では図2に図示のように、停電が
回復する時点t2で差速機用周波数指令値F2を急激に増加
させているので、差速機用電動機速度N2との乖離値δ
は、図4に図示の場合の乖離値δ1 或いは乖離値δ2
比べて遙かに小さな値になっている。更にこの差速機用
周波数指令値F2は減速度演算手段の作用に従って緩やか
に元の値へ向かって減少しているので、差速機用電動機
速度N2もこの減少に対応して低下しているので、この場
合の両者の乖離値δは依然として小さな値を維持するこ
ととなる。
In the present invention, as shown in FIG. 2, the differential speed frequency command value F2 is sharply increased at the time point t2 when the power failure is recovered. Therefore, the deviation value δ from the differential speed motor speed N2 is δ.
Is much smaller than the deviation value δ 1 or the deviation value δ 2 shown in FIG. Further, the frequency command value F2 for the differential speed device gradually decreases toward the original value according to the action of the deceleration calculation means, so the motor speed N2 for the differential speed device also decreases corresponding to this decrease. Therefore, the difference value δ between the two in this case is still small.

【0017】[0017]

【発明の効果】2台の電動機を結合して一方の電動機は
力行運転し、他方の電動機は回生運転しつつ脱水を行う
差動式遠心脱水機の電源が短時間停電した場合に、回生
運転していた電動機はフリーになるので差動式遠心脱水
機に回されてその回転速度が上昇してしまうので、回生
側電動機の回転速度とその速度指令値との間には大きな
乖離を生じてしまう。電源が回復した瞬間に、この乖離
が原因で回生側電動機は極めて大きな電力を電源側へ回
生しようとして過電圧や過負荷を生じ、これが原因でト
リップする恐れがあるが、この発明によれば、電源が回
復する時点で回生側電動機の速度指令値を急激に増大さ
せて回生側電動機の回転速度との乖離幅を縮小させてい
る。更にその後は、上昇させた速度指令値を所定の減速
度で元の値まで低下させるので、回生側電動機の回転速
度もこれに対応して小さな乖離幅を保ったままで低下す
るので、回生側電動機が回生する電力が抑制される。従
って過電圧や過負荷による装置のトリップを回避できる
し、装置の稼働率が向上する効果も得られる。
EFFECTS OF THE INVENTION When two electric motors are coupled to each other, one electric motor performs a power running operation, and the other electric motor performs a regenerative operation while performing a regenerative operation. Since the electric motor that was being used becomes free, it will be rotated by the differential centrifugal dehydrator and its rotation speed will increase, so there will be a large gap between the rotation speed of the regeneration side motor and its speed command value. I will end up. At the moment when the power source is restored, the divergence causes the regenerative electric motor to regenerate an extremely large amount of power to the power source side, which may cause overvoltage or overload, which may cause tripping. The speed command value of the regeneration-side electric motor is rapidly increased at the time when is restored to reduce the deviation from the rotation speed of the regeneration-side electric motor. After that, since the increased speed command value is reduced to the original value with a predetermined deceleration, the rotation speed of the regeneration-side motor also correspondingly decreases with a small deviation width maintained. The power that is regenerated is suppressed. Therefore, the trip of the device due to overvoltage or overload can be avoided, and the operation rate of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表した差動式遠心脱水機の構
成図
FIG. 1 is a configuration diagram of a differential centrifugal dehydrator showing an embodiment of the present invention.

【図2】図1に図示の実施例で電源が短時間停電した場
合の各部の動作を示した動作波形図
FIG. 2 is an operation waveform diagram showing the operation of each part when the power supply is interrupted for a short time in the embodiment shown in FIG.

【図3】差動式遠心脱水機の構成の従来例を示した構成
FIG. 3 is a configuration diagram showing a conventional example of the configuration of a differential centrifugal dehydrator.

【図4】図3に図示の従来例で電源が短時間停電した場
合の各部の動作を示した動作波形図
FIG. 4 is an operation waveform diagram showing the operation of each part when the power supply is interrupted for a short time in the conventional example shown in FIG.

【符号の説明】[Explanation of symbols]

10 第1回転籠としての主機 11 主機駆動ベルト 12 第1電動機としての主機用電動機 13 主機用インバータ 14 主機速度制御回路 15 主機用周波数設定器 20 第2回転籠としての差速機 21 差速機駆動ベルト 22 第2電動機としての差速機用電動機 23 差速機用インバータ 24 差速機速度制御回路 25,31 差速機用周波数設定器 32 瞬停時周波数設定器 33 信号切替え器 DESCRIPTION OF SYMBOLS 10 Main machine as a 1st rotary cage 11 Main machine drive belt 12 Main machine electric motor as a 1st electric motor 13 Main machine inverter 14 Main machine speed control circuit 15 Main machine frequency setting device 20 Differential speed machine as a 2nd rotary cage 21 Differential speed machine Drive belt 22 Motor for differential speed machine as second electric motor 23 Inverter for differential speed machine 24 Differential speed machine speed control circuit 25, 31 Differential speed machine frequency setter 32 Instantaneous power failure frequency setter 33 Signal switcher

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1電動機の回転速度を制御する第1速度
制御装置と、この第1電動機に結合して当該第1電動機
で駆動する第1の回転籠と、この第1回転籠と同軸で且
つこの第1回転籠により回転させられる第2の回転籠
と、この第2回転籠に結合して回生運転により当該第2
回転籠の回転速度を前記第1回転籠よりも低くしている
第2電動機と、この第2電動機の回転速度を制御する第
2速度制御装置とで構成している差動式遠心脱水機にお
いて、 前記両電動機の電源が短時間の停電から回復する際に、
前記第2電動機の回転速度指令値を上昇させる指令値変
更手段を前記第2速度制御装置に備えていることを特徴
とする差動式遠心脱水機の速度制御装置。
1. A first speed control device for controlling a rotation speed of a first electric motor, a first rotary cage which is coupled to the first electric motor and driven by the first electric motor, and a coaxial with the first rotary cage. And the second rotary cage that is rotated by the first rotary cage and the second rotary cage that is connected to the second rotary cage by the regenerative operation.
A differential centrifugal dehydrator comprising a second electric motor having a rotation speed of a rotating cage lower than that of the first rotating cage and a second speed control device for controlling the rotation speed of the second electric motor. , When the power supplies of both electric motors recover from a short power failure,
The speed control device for a differential centrifugal dehydrator, wherein the second speed control device is provided with command value changing means for increasing a rotation speed command value of the second electric motor.
【請求項2】請求項2に記載の差動式遠心脱水機の速度
制御装置において、前記指令値変更手段は、回生運転時
の回転速度指令値を設定する第1速度設定手段と、回生
運転時よりも高い値の回転速度指令値を設定する第2速
度設定手段と、電源が短時間の停電から回復したときは
前記第2速度設定手段を選択し、その後に前記第1速度
設定手段へ切り換える信号切替え手段と、高い回転速度
指令値を所定の時間変化率で低い回転速度指令値へ低下
させる減速度演算手段とで構成していることを特徴とす
る差動式遠心脱水機の速度制御装置。
2. The speed control device for a differential centrifugal dehydrator according to claim 2, wherein the command value changing means includes a first speed setting means for setting a rotation speed command value during regenerative operation, and a regenerative operation. A second speed setting means for setting a rotation speed command value higher than the time, and a second speed setting means when the power source recovers from a short power failure, and then selects the first speed setting means. A speed control of a differential centrifugal dehydrator, which comprises signal switching means for switching and deceleration calculating means for reducing a high rotation speed command value to a low rotation speed command value at a predetermined time change rate. apparatus.
JP5052763A 1993-03-15 1993-03-15 Speed control device of differential centrifugal dehydration machine Pending JPH06262100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052763A JPH06262100A (en) 1993-03-15 1993-03-15 Speed control device of differential centrifugal dehydration machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052763A JPH06262100A (en) 1993-03-15 1993-03-15 Speed control device of differential centrifugal dehydration machine

Publications (1)

Publication Number Publication Date
JPH06262100A true JPH06262100A (en) 1994-09-20

Family

ID=12923920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052763A Pending JPH06262100A (en) 1993-03-15 1993-03-15 Speed control device of differential centrifugal dehydration machine

Country Status (1)

Country Link
JP (1) JPH06262100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230040A (en) * 2010-04-27 2011-11-17 Tomoe Engineering Co Ltd Centrifugal separator and operation method of the same
JP2012217916A (en) * 2011-04-07 2012-11-12 Hitachi Koki Co Ltd Centrifugal separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230040A (en) * 2010-04-27 2011-11-17 Tomoe Engineering Co Ltd Centrifugal separator and operation method of the same
JP2012217916A (en) * 2011-04-07 2012-11-12 Hitachi Koki Co Ltd Centrifugal separator

Similar Documents

Publication Publication Date Title
JP3037471B2 (en) Induction motor winding switching drive system
US4451775A (en) Motor/generator starting circuit
JPS63178800A (en) Variable-speed generator
JPH06262100A (en) Speed control device of differential centrifugal dehydration machine
JP4261843B2 (en) Electric motor control device
JP2001211682A (en) Controller for brushless motor
JP2019504597A (en) PM line start motor and switch-on method therefor
JP2002204594A (en) Motor control equipment
JPS5947556B2 (en) motor starting circuit
JPH07231697A (en) Inverter device with dual controllers
JPS6122794A (en) Restarting method of voltage type inverter
JPH01129786A (en) Method of controlling induction motor upon momentarily stopping and restarting
SU1758757A1 (en) Motor start-failure protective gear
US3223910A (en) Reversing systems for single phase motors
KR100371339B1 (en) Apparatus and the method for start-current controlling of compressor
JPS60121981A (en) Control circuit for vvvf inverter
JPH01278281A (en) Automatic controller for dust removing facility
JPS6336239B2 (en)
KR20120129321A (en) method of controlling inverter for restarting induction motor and inverter therefor
JPH06335295A (en) Method and apparatus for controlling variable-speed generator-motor
JP2761362B2 (en) Operation control method of induction motor
CN116633234A (en) Control method and control device for double-winding motor and motor device
EP0022774A1 (en) Control for direct-current motor with separately excited field
SU1647732A1 (en) Method for reclosure of backed-up synchronous motor drive
JPH1169894A (en) Starter for emergency gas turbine