JPH06261898A - Ultrasonic device - Google Patents

Ultrasonic device

Info

Publication number
JPH06261898A
JPH06261898A JP5051669A JP5166993A JPH06261898A JP H06261898 A JPH06261898 A JP H06261898A JP 5051669 A JP5051669 A JP 5051669A JP 5166993 A JP5166993 A JP 5166993A JP H06261898 A JPH06261898 A JP H06261898A
Authority
JP
Japan
Prior art keywords
signal
doppler
time
frequency
fourier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5051669A
Other languages
Japanese (ja)
Other versions
JP3418632B2 (en
Inventor
Kageyoshi Katakura
景義 片倉
Shoichi Senda
彰一 千田
Hirohide Matsuo
裕英 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05166993A priority Critical patent/JP3418632B2/en
Publication of JPH06261898A publication Critical patent/JPH06261898A/en
Application granted granted Critical
Publication of JP3418632B2 publication Critical patent/JP3418632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To improve the measurement accuracy of a propagation time of a pulse wave, and to execute the quantitative determination measurement of a degree of local artery hardening by using together a time measurement by a correlative processing with a measurement executed by a Doppler signal, based on the measurement executed by the Doppler signal. CONSTITUTION:Doppler signals 14, 15 are stored in waveform storage parts 16, 17, and each partial waveform 18 of a temporary storage signal 23 is subjected to Fourier transformation by a Fourier transform 19 and stored in a Fourier storage part 20 as a Doppler time series frequency spectrum. From a result of decision of a signal extracting part 21 for selecting a wide band signal part of a Fourier storage part 20, only a specific part of the temporary storage signal 23 is selected by a signal selecting part 22 and it becomes a reference signal 24. A correlation arithmetic part 26 calculates a mutual correlation coefficient 27 of a reference signal 24 and a temporary storage signal 25, and a moving time from an origin at the time when the maximum value in this waveform appears becomes a pulse wave propagation time between observation points 12 and 13. In this case, a signal converting part 50 corrects the variation direction or the variation width of a frequency of the Doppler signal of Doppler measuring parts 10, 11 and it is stored in waveform storage parts 16, 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】超音波により血管内を伝搬する脈
波の伝搬速度を計測し、動脈硬化の診断を行なう超音波
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic device for measuring arteriosclerosis by measuring the propagation velocity of a pulse wave propagating in a blood vessel by means of ultrasonic waves.

【0002】[0002]

【従来の技術】血管壁の変形状況、あるいは遠く離れた
二点間の血流ドプラ信号波形間の時間遅れより脈波伝搬
速度を計測する従来技術がある。例えば、特開昭62−
26050号公報に、超音波式脈波速度計が記載されて
おり、導管に沿った2点において超音波の反射を利用し
て管壁位置の時間変化を表す情報を発生し、この情報か
ら対応する変化がこの2点で現われる時間差を求め、こ
の時間差と2点間の距離とに基づいて脈波速度を算出す
る構成が示されている。また、電子通信学会技術研究会
報告、MBE84−17、9頁−16頁(1984)
に、Bモード連動型超音波微小変位計測装置が記載され
ており、超音波エコーの位相をゼロクロス追従機構を用
いて追従し、組織の微小変位を測定することにより形態
学的情報のみならず硬さ等の物性的情報を得ることを目
的とした装置が示され、この装置を用いた局所的な血管
弾性率すなわち血管弾性分布の無侵襲計測が示されてい
る。さらに、日本超音波医学会講演論文集、51−PB
−31、231頁−232頁(昭和62年11月)に、
超音波ドプラ血流波を使用した大動脈脈波速度の測定に
関する記載があり、総顎動脈および大腿動脈の圧脈波を
同時記録し、その時間的差異を利用して算出した脈波速
度と、同部位において記録した血流波による脈波速度を
比較し、次いで、総顎動脈と大腿動脈における血流波を
同時記録することにより、大動脈のより中枢部における
脈波速度の計測を行うことが示されている。通常の反射
信号を利用する超音波断層法では、使用する超音波装置
の空間分解能以下の細い血管は描出できない。しかし、
ドプラ法では血液の運動情報により周囲との弁別が可能
となり細い血管内の血流も検出可能となる。ドプラ効果
による血流状況の計測は、通常は、ドプラ効果による反
射信号周波数の変化状況をフーリエ解析して行なわれて
いる。この場合、フーリエ変換における時間と周波数の
分解能に関する不確定性原理から、時間に関する分解能
がフーリエ変換の積分時間により制限され、通常の構成
によると100msec程度の時間分解能以上は得られ
ない。
2. Description of the Related Art There is a conventional technique for measuring a pulse wave propagation velocity based on a deformation state of a blood vessel wall or a time delay between blood flow Doppler signal waveforms between two points that are distant from each other. For example, Japanese Patent Laid-Open No. 62-
An ultrasonic pulse wave velocimeter is described in Japanese Patent Publication No. 26050, and information representing a temporal change in a tube wall position is generated by utilizing reflection of ultrasonic waves at two points along a conduit, and this information is used to respond. A configuration is shown in which the time difference in which the change occurs at these two points is obtained, and the pulse wave velocity is calculated based on this time difference and the distance between the two points. Also, IEICE Technical Report, MBE 84-17, pp. 9-16 (1984).
Describes a B-mode interlocking type ultrasonic micro-displacement measuring device, which tracks the phase of an ultrasonic echo using a zero-cross tracking mechanism and measures micro-displacement of tissue to obtain not only morphological information but also hard A device aiming to obtain physical property information such as swelling is shown, and non-invasive measurement of local vascular elastic modulus, that is, vascular elasticity distribution, using this device is shown. Furthermore, Proceedings of the Japanese Society of Ultrasonics, 51-PB
-31, pp. 232-232 (November 1987),
There is a description about the measurement of the aortic pulse wave velocity using ultrasonic Doppler blood flow wave, the pulse wave velocity of the common jaw artery and the femoral artery were simultaneously recorded, and the pulse wave velocity calculated using the time difference, By comparing the pulse wave velocities due to the blood flow waves recorded at the same site and then simultaneously recording the blood flow waves in the common jaw artery and femoral artery, it is possible to measure the pulse wave velocity in the more central part of the aorta. It is shown. In the ultrasonic tomography method using a normal reflection signal, a thin blood vessel having a spatial resolution lower than that of the ultrasonic device used cannot be visualized. But,
With the Doppler method, it is possible to distinguish from the surroundings based on blood motion information, and it is possible to detect blood flow in a thin blood vessel. The measurement of the blood flow condition due to the Doppler effect is usually performed by Fourier analysis of the change condition of the reflected signal frequency due to the Doppler effect. In this case, due to the uncertainty principle regarding the resolution of time and frequency in the Fourier transform, the resolution regarding time is limited by the integration time of the Fourier transform, and according to the usual configuration, a time resolution of about 100 msec or more cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、従来
技術における脈波の伝搬時間の計測精度の限界に鑑み、
血管内を伝搬する脈波の伝搬時間の計測精度を飛躍的に
向上させ、近接する二点間の脈波の伝搬時間を計測可能
とすることにより、局所的な動脈硬化度を細い血管に対
しても計測可能とする超音波装置を提供することにあ
る。
DISCLOSURE OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in view of the limitations of the pulse wave propagation time measurement accuracy in the prior art.
The accuracy of measuring the propagation time of a pulse wave propagating in a blood vessel is dramatically improved, and by measuring the propagation time of a pulse wave between two adjacent points, local arteriosclerosis can be measured for thin blood vessels. It is to provide an ultrasonic device that enables measurement.

【0004】[0004]

【課題を解決するための手段】ドプラ法と相関法の結合
を基本的な構成とし、細い血管に対しても脈波の伝搬時
間を適用可能とするために、ドプラ信号による計測を基
本とし、血流ドプラ信号の広帯域性に着目して、ドプラ
信号による計測に相関処理による時間計測を併用するこ
とにより、脈波の伝搬時間の計測精度を飛躍的に向上さ
せる。すなわち、超音波を送信し、複数の観測位置から
反射信号を受信し、これら複数の観測位置における反射
信号のドプラ信号の時間的変化から、観測位置間におけ
る脈波の伝搬時間を計測し、この伝搬時間と観測位置間
の距離から脈派の伝搬速度を計測する超音波装置におい
て、ドプラ信号間の相互相関係数を計算する相関演算部
を有し、この相互相関係数を用いて脈波の伝搬時間計測
を行なう。相関演算部は複素信号どうしの相互相関演算
を行ない相互相関係数を計算し、相関演算部に印加され
る少なくとも一方の信号は大幅に周波数が変化する部分
を選択した信号であり、相関演算部に印加される少なく
とも一方の信号の周波数特性が補正できる。相関演算部
は印加される二つの信号を一旦フーリエ変換し、これら
のフーリエ変換結果の積をフーリエ逆変換して相関演算
を行ない相互相関係数を計算する。さらに本発明の装置
は、相関演算部の加え、ドプラ信号の周波数の変化方
向、或いは変化幅を修正する信号変換部を有している。
[Means for Solving the Problems] The basic configuration is a combination of the Doppler method and the correlation method, and in order to be able to apply the propagation time of the pulse wave to a thin blood vessel, the measurement based on the Doppler signal is basically used. Focusing on the wide band property of the blood flow Doppler signal, by using the time measurement by the correlation process together with the measurement by the Doppler signal, the measurement accuracy of the pulse wave propagation time is dramatically improved. That is, ultrasonic waves are transmitted, reflection signals are received from a plurality of observation positions, from the temporal change of the Doppler signal of the reflection signals at the plurality of observation positions, the propagation time of the pulse wave between the observation positions is measured, An ultrasonic device that measures the propagation velocity of a pulse group from the propagation time and the distance between observation positions has a correlation calculation unit that calculates the cross-correlation coefficient between Doppler signals, and the pulse wave is calculated using this cross-correlation coefficient. Propagation time is measured. The correlation calculation unit calculates the cross-correlation coefficient by performing the cross-correlation calculation between the complex signals, and at least one of the signals applied to the correlation calculation unit is a signal in which a portion whose frequency significantly changes is selected. The frequency characteristic of at least one signal applied to the can be corrected. The correlation calculation unit once Fourier-transforms the two applied signals, performs the inverse Fourier transform of the product of these Fourier transform results, and performs the correlation calculation to calculate the cross-correlation coefficient. Further, the device of the present invention has a signal conversion unit for correcting the changing direction or the changing width of the frequency of the Doppler signal, in addition to the correlation calculating unit.

【0005】[0005]

【作用】通常の反射信号を利用する超音波断層法による
と、空間分解能以下の細い血管は描出不可能である。し
かし、ドプラ法によると血液の運動情報による周囲との
弁別が可能となり細い血管内の血流も検出可能となる。
ドプラ効果による血流状況の計測は、通常は、ドプラ効
果による反射信号周波数の変化状況をフーリエ解析する
ことにより行なわれている。しかしこの場合には、フー
リエ変換における時間と周波数の分解能に関する不確定
性原理から、時間に関する分解能がフーリエ変換の積分
時間により制限され、通常の構成によると100mse
c程度の時間分解能以上は得られないことになる。とこ
ろで、相互相関係数の時間分解能は概略1/Bsec
(Bは信号の周波数帯域幅:Hz)となることが知られ
ている。また、通常の血管におけるドプラ信号の帯域は
1kHz以上である。そこで本発明においては、血流ド
プラ信号間の相互相関処理により時間差計測を行なうこ
とにより、この周波数帯域の逆数である、1/1000
秒(1msec)の時間分解能を実現する。一方、生体
中の脈波速度は、4m/secから10m/sec程度
まで変化することから、この脈波が10cmの距離を通
過するのに要する時間は25msecから10msec
である。このため、本発明の方式により時間分解能が1
msecとなることから、10cmの狭い間隔によって
も充分の精度で脈波伝搬時間が計測可能となり、従って
局所脈波速度の計測が可能となる。このように本発明の
作用原理は、広帯域血流ドプラ信号の相関処理によって
時間計測精度が向上できることにある。
[Function] According to the ultrasonic tomography method using a normal reflection signal, a thin blood vessel having a spatial resolution or less cannot be visualized. However, according to the Doppler method, it is possible to discriminate from the surroundings based on blood motion information, and blood flow in a thin blood vessel can also be detected.
The measurement of the blood flow condition due to the Doppler effect is usually performed by Fourier analysis of the change condition of the reflected signal frequency due to the Doppler effect. However, in this case, due to the uncertainty principle regarding the resolution of time and frequency in the Fourier transform, the resolution regarding time is limited by the integration time of the Fourier transform, and according to the normal configuration, 100 mse
This means that a time resolution of more than about c cannot be obtained. By the way, the time resolution of the cross-correlation coefficient is approximately 1 / Bsec.
It is known that (B is the frequency bandwidth of the signal: Hz). The band of the Doppler signal in a normal blood vessel is 1 kHz or more. Therefore, in the present invention, by measuring the time difference by the cross-correlation process between the blood flow Doppler signals, the reciprocal of this frequency band, 1/1000.
A time resolution of seconds (1 msec) is realized. On the other hand, since the pulse wave velocity in the living body changes from 4 m / sec to about 10 m / sec, the time required for this pulse wave to pass a distance of 10 cm is 25 msec to 10 msec.
Is. Therefore, the time resolution is 1 by the method of the present invention.
Since it is msec, the pulse wave propagation time can be measured with sufficient accuracy even with a narrow interval of 10 cm, and therefore the local pulse wave velocity can be measured. As described above, the principle of operation of the present invention is that the time measurement accuracy can be improved by the correlation processing of the broadband blood flow Doppler signal.

【0006】[0006]

【実施例】本発明の超音波装置の基本動作を図1に示す
実施例により詳細に説明する。図1に示すように、送信
部1からパルス状の電気信号が発生され、複数の振動子
素子が配列された配列形超音波送受波器2に印加され
る。この配列形超音波送受波器2内に配置された素子選
択スイッチ3により振動子素子群4あるいは5が交互に
選択され、超音波ビーム6あるいは7によりそれぞれ該
当する領域内の反射信号が交互に受信信号8として得ら
れる。この受信信号8は増幅器9により増幅され、ドプ
ラ信号を抽出するドプラ計測部10及び11に入力す
る。このドプラ計測部10及び11の構成は、超音波ビ
ーム6及び7上の観測点12及び13からの反射信号の
それぞれにつきドプラ信号抽出処理を行なう通常の所謂
パルスドプラ法による構成である。このようにして得ら
れた、2つの観測点に対応するドプラ信号14、15
は、波形記憶部16、17に一旦記憶される。波形記憶
部17に記憶された一時記憶信号23の各部分波形18
はフーリエ変換器19により順次フーリエ変換されドプ
ラ時系列周波数スペクトルとしてフーリエ記憶部20に
記憶される。このフーリエ記憶部20の記憶内容におけ
る広帯域信号部分を選択する構成が信号抽出部21であ
る。この判定結果を利用して波形記憶部17に記憶した
一時記憶信号23の特定部分のみを信号選択部22によ
り選択し、基準信号24とする。相関演算部26は、こ
の基準信号24と、他方の波形記憶部16の内容である
一時記憶信号25との相互相関係数27を計算する。
EXAMPLES The basic operation of the ultrasonic apparatus of the present invention will be described in detail with reference to the example shown in FIG. As shown in FIG. 1, a pulse-shaped electric signal is generated from the transmission unit 1 and applied to an array type ultrasonic transducer 2 in which a plurality of transducer elements are arranged. The transducer element groups 4 or 5 are alternately selected by the element selection switch 3 arranged in the array type ultrasonic transmitter / receiver 2, and the reflected signals in the corresponding regions are alternately selected by the ultrasonic beams 6 or 7. It is obtained as a reception signal 8. The received signal 8 is amplified by the amplifier 9 and input to the Doppler measuring units 10 and 11 that extract the Doppler signal. The configuration of the Doppler measurement units 10 and 11 is a configuration based on a normal so-called pulse Doppler method that performs a Doppler signal extraction process for each of the reflected signals from the observation points 12 and 13 on the ultrasonic beams 6 and 7. The Doppler signals 14 and 15 corresponding to the two observation points obtained in this way
Is temporarily stored in the waveform storage units 16 and 17. Each partial waveform 18 of the temporary storage signal 23 stored in the waveform storage unit 17
Is sequentially Fourier transformed by the Fourier transformer 19 and stored in the Fourier storage unit 20 as a Doppler time series frequency spectrum. The configuration for selecting the wideband signal portion in the stored contents of the Fourier storage unit 20 is the signal extraction unit 21. Using the determination result, only a specific portion of the temporary storage signal 23 stored in the waveform storage unit 17 is selected by the signal selection unit 22 and used as the reference signal 24. The correlation calculator 26 calculates a cross-correlation coefficient 27 between the reference signal 24 and the temporary storage signal 25 which is the content of the other waveform storage 16.

【0007】この相互相関係数27の波形における最大
値が出現する時刻の、原点からの移動時間τ(図2
(f))が観測点12と13の間の脈波伝搬時間とな
る。速度計算部28はこの伝搬時間を測定し、距離判定
部29により決定される観測点12と13の間の距離と
の割算を行ない速度を演算する部分である。制御部30
は超音波ビームの空間的位置及び観測点12と13まで
の送受波器からの距離を設定する部分であり、これらの
設定情報を距離判定部29に提供することにより距離判
定部29において観測点間の距離が計算可能となる。こ
のようにして決定された脈波速度を表示部31に表示す
る。この表示では対象とする血管等の流路32、流れの
方向33が表示されている。流れの方向が超音波ビーム
の方向となす角をθとする。このような構成による各部
の動作を、それぞれ各部における信号波形に基づき更に
詳細に説明する。ドプラ計測部10、11の出力信号
は、観測点12、13に対応してそれぞれドプラ信号1
4、15となるが、これらを図2(a)、(b)に示
す。この両者は流速の変化に対応して瞬時周波数が同様
の変化を示し、下流のドプラ信号15におけるこの周波
数変動は、上流のドプラ信号14に対して、観測点13
から12までの脈波伝搬時間τだけ遅れている。ここで
脈波伝搬時間τは、観測点間の距離をL、脈波伝搬速度
をCとするとτ=L/Cである。このようなドプラ信号
14、15を波形記憶部16、17にそれぞれ記憶す
る。これらの波形をそれぞれフーリエ変換すると、変換
結果は、図2(c)、(d)となる。ここでは、図2の
(a)、(b)に示すように、フーリエ変換の積分時間
をTとし、積分時間T内の波形を順次フーリエ変換して
いる。ドプラ信号の実際の周波数変化は、図2(a)、
(b)における実線の通りであるが、積分時間Tなる周
波数分析を行なうと一般的に周波数分解能は1/Tとな
り時間分解能はTとなるため、図2(c)、(d)にお
ける点線の範囲内に出力信号が分布する。このため、こ
れらフーリエ変換結果から相互の時間差τを高精度に決
定することは困難となる。そこで本発明においては、波
形記憶部17の内容である部分波形信号18をフーリエ
変換器19によりフーリエ変換し、図2(c)にすでに
示した周波数スペクトル情報34を得る。
The moving time τ from the origin at the time when the maximum value in the waveform of the cross-correlation coefficient 27 appears (see FIG. 2).
(F)) is the pulse wave propagation time between the observation points 12 and 13. The velocity calculation unit 28 is a unit that measures the propagation time and divides it by the distance between the observation points 12 and 13 determined by the distance determination unit 29 to calculate the velocity. Control unit 30
Is a part for setting the spatial position of the ultrasonic beam and the distance from the transceiver to the observation points 12 and 13, and by providing these setting information to the distance determination part 29, The distance between can be calculated. The pulse wave velocity thus determined is displayed on the display unit 31. In this display, the flow path 32 of the target blood vessel or the like and the flow direction 33 are displayed. The angle formed by the flow direction and the ultrasonic beam direction is θ. The operation of each unit having such a configuration will be described in more detail based on the signal waveforms in each unit. The output signals of the Doppler measurement units 10 and 11 correspond to the observation points 12 and 13, respectively.
4 and 15 are shown in FIGS. 2 (a) and 2 (b). Both of them show the same change in the instantaneous frequency corresponding to the change of the flow velocity, and this frequency fluctuation in the downstream Doppler signal 15 is different from that of the upstream Doppler signal 14 at the observation point 13.
1 to 12 are delayed by the pulse wave propagation time τ. Here, the pulse wave propagation time τ is τ = L / C, where L is the distance between the observation points and C is the pulse wave propagation velocity. Such Doppler signals 14 and 15 are stored in the waveform storage units 16 and 17, respectively. When these waveforms are respectively Fourier-transformed, the conversion results are shown in FIGS. 2 (c) and 2 (d). Here, as shown in FIGS. 2A and 2B, the integration time of the Fourier transform is T, and the waveform within the integration time T is sequentially Fourier-transformed. The actual frequency change of the Doppler signal is shown in FIG.
As shown by the solid line in (b), since frequency resolution is generally 1 / T and time resolution is T when a frequency analysis with an integration time T is performed, the dotted line in FIGS. The output signal is distributed within the range. Therefore, it is difficult to determine the mutual time difference τ with high accuracy from these Fourier transform results. Therefore, in the present invention, the partial waveform signal 18 which is the content of the waveform storage unit 17 is Fourier transformed by the Fourier transformer 19 to obtain the frequency spectrum information 34 already shown in FIG.

【0008】この周波数スペクトル情報34をフーリエ
記憶部20に記憶する。領域選択部21は、フーリエ記
憶部20にあるスペクトル情報において周波数変化の大
きい部分35を検出する。この検出手段は、自動化ある
いは視認による判定等種々の構成が可能である。ここに
おける周波数の変化幅は、流速の変化量をV(m/se
c)とし、使用する超音波周波数をf(Hz)とする
と、B=f×2cosθ×V/c(Hz)なる関係にて与
えられる。ここで、cは超音波の伝搬速度であり、水中
においては約1500m/secである。仮に、流速の
変化量を1.5m/secとし、使用する超音波周波数
を1MHzとし更にθを0度とすると周波数変化幅Bは
2000Hzとなる。このような周波数変化の大きい部
分35を選択する時間領域選択信号36を信号選択部2
2に印加する。信号選択部22はこの時間領域選択信号
36により一時記憶信号23における周波数変化の大き
い部分35に該当する時間成分のみを抽出し基準信号2
4として出力する。基準信号24を図2のe)に示す。
ここまでは簡単のために実信号として説明してきたが、
通常のドプラ計測は複素信号として行なわれることから
ドプラ信号14、15も実際は複素信号であり、従って
基準信号24も図2に点線にて併記した直交成分を保有
する複素信号である。このため、実際のドプラ計測以降
の処理は全て複素信号として実行される。このような複
素信号である基準信号24と、ドプラ信号14と同一形
状である一時記憶波形25との相互相関係数27を相関
演算部26により計算する。この相関演算部26の出力
は図2(f)に示す相互相関係数R(σ)27である。
相互相関係数R(σ)における極大位置からドプラ信号
14と15の時間ずれがτと求まる。ここで、極大の幅
は1/B(sec)となるが、ここでBは2000Hz
であることから、1/2000=0.5msecと高い
時間計測精度となる。速度計算部28によりこの時間τ
と観測点間距離Lとから脈波速度CをC=L/τとして
計算し、結果を表示部31に表示する。
The frequency spectrum information 34 is stored in the Fourier storage section 20. The area selection unit 21 detects a portion 35 having a large frequency change in the spectrum information stored in the Fourier storage unit 20. The detecting means can have various configurations such as automation or determination by visual recognition. The change width of the frequency here is V (m / se
c) and the ultrasonic frequency to be used is f (Hz), the relation is B = f × 2 cos θ × V / c (Hz). Here, c is the propagation velocity of ultrasonic waves, which is about 1500 m / sec in water. If the amount of change in flow velocity is 1.5 m / sec, the ultrasonic frequency used is 1 MHz, and θ is 0 degrees, the frequency change width B is 2000 Hz. The signal selecting unit 2 outputs the time domain selection signal 36 for selecting the portion 35 having such a large frequency change.
2 is applied. The signal selection unit 22 extracts only the time component corresponding to the portion 35 of the temporary storage signal 23 where the frequency change is large by the time domain selection signal 36, and the reference signal
Output as 4. The reference signal 24 is shown in FIG.
Up to this point, it was explained as a real signal for simplicity, but
Since the normal Doppler measurement is performed as a complex signal, the Doppler signals 14 and 15 are actually complex signals, and therefore the reference signal 24 is also a complex signal having the orthogonal component shown by the dotted line in FIG. Therefore, all the processes after the actual Doppler measurement are executed as a complex signal. The correlation calculation unit 26 calculates the cross-correlation coefficient 27 between the reference signal 24 that is such a complex signal and the temporary storage waveform 25 that has the same shape as the Doppler signal 14. The output of the correlation calculator 26 is the cross-correlation coefficient R (σ) 27 shown in FIG.
From the maximum position in the cross-correlation coefficient R (σ), the time difference between the Doppler signals 14 and 15 can be obtained as τ. Here, the maximum width is 1 / B (sec), where B is 2000 Hz.
Therefore, the time measurement accuracy is as high as 1/2000 = 0.5 msec. This time τ is calculated by the speed calculation unit 28.
Then, the pulse wave velocity C is calculated as C = L / τ from the distance L between the observation points, and the result is displayed on the display unit 31.

【0009】相関演算部26の動作を以下に説明する。
図2(e)に示す信号をa(t)とし、
The operation of the correlation calculator 26 will be described below.
Let the signal shown in FIG. 2 (e) be a (t),

【0010】[0010]

【数1】 a(t)=u(t)exp{jθa(t)} (数1) とする。また、一時記憶信号25をb(t)とし、## EQU00001 ## Let a (t) = u (t) exp {j.theta.a (t)} (Equation 1). Further, the temporary storage signal 25 is set to b (t),

【0011】[0011]

【数2】 b(t)=v(t)exp{jθb(t)} (数2) とする。このとき、相関演算部26の出力R(σ)は、## EQU00002 ## Let b (t) = v (t) exp {j.theta.b (t)} (Equation 2). At this time, the output R (σ) of the correlation calculation unit 26 is

【0012】[0012]

【数3】 R(σ)=|∫〈a(t)〉b(t+σ)dt| (数3) を計算する。ここで、〈a(t)〉はa(t)の共役関
係を示し、積分の下限、上限はそれぞれ、0、T0であ
る。また、よく知られたフーリエ変換の関係から、図3
に示すように、基準信号24と一時記憶信号25の両信
号をフーリエ変換器39、38によりフーリエ変換し、
片方を共役複素数変換器40により共役複素数に変換
し、複素乗算器41によりそれらの積を作り、これをフ
ーリエ逆変換器42によりフーリエ逆変換することによ
り複素相関係数が計算され、最後に複素絶対値計算部4
3により複素絶対値とすることにより出力R(σ)が求
まる。このように一旦フーリエ変換する構成において
は、フーリエ逆変換の前に、直流成分等の不要周波数成
分を選択的に抑圧する処理も可能となる。更に、相関演
算部の簡略構成として、入力信号の片方を実数とする構
成も場合により使用可能である。この場合に、たとえ
ば、(数1)のa(t)を用い、一時記憶信号25をb
(t)の実部のみとし、
## EQU3 ## R (σ) = | ∫ <a (t)> b (t + σ) dt | (Equation 3) is calculated. Here, <a (t)> represents the conjugate relation of a (t), and the lower and upper limits of integration are 0 and T 0 , respectively. Moreover, from the well-known relationship of Fourier transform, FIG.
As shown in, both signals of the reference signal 24 and the temporary storage signal 25 are Fourier transformed by the Fourier transformers 39 and 38,
One of them is converted into a conjugate complex number by a conjugate complex number converter 40, a product of them is made by a complex multiplier 41, and a Fourier inverse transform is performed by a Fourier inverse transformer 42 to calculate a complex correlation coefficient. Absolute value calculator 4
The output R (σ) is obtained by setting the complex absolute value by 3. In such a configuration in which the Fourier transform is once performed, it is possible to perform a process of selectively suppressing an unnecessary frequency component such as a DC component before the inverse Fourier transform. Furthermore, as a simplified configuration of the correlation calculation unit, a configuration in which one of the input signals is a real number can be used in some cases. In this case, for example, a (t) of (Equation 1) is used and the temporary storage signal 25 is set to b.
Only the real part of (t),

【0013】[0013]

【数4】 c(t)=Real{b(t)}=v(t)cos{θb(t)} (数4) とする。このとき、相関演算部26の出力R(σ)は、## EQU00004 ## Let c (t) = Real {b (t)} = v (t) cos {.theta.b (t)} (Equation 4). At this time, the output R (σ) of the correlation calculation unit 26 is

【0014】[0014]

【数5】 R(σ)=|∫〈a(t)〉c(t+σ)dt| (数5) を計算することにより求まり、計算過程が簡略化され
る。(数5)において〈a(t)〉はa(t)の共役関
係を示し、積分の下限、上限はそれぞれ、0、T0であ
る。相互相関における時間分解能は信号の周波数帯域幅
に比例して向上する。このため、信号の存在する周波数
帯域につき周波数特性の補正処理を行ない、例えば高域
と低域を強調することにより、更に分解能を向上可能で
ある。本実施例は、厳密な構成として複素信号構成を主
体に説明してあるが、これに限定されるものではなく、
任意に実部あるいは虚部のみの構成とすることも可能で
ある。また、観測点間距離の計測法としては、図4に示
す距離判定部29の画面のように、屈曲した経路につい
てもカーソル、マーカ、あるいはポインタ37の併用等
により正しく計測可能となる。ここで、図5のに示すよ
うな、ドプラ信号の周波数の変化方向が反転する場合に
は、観測点12においてはドプラ周波数が上昇するた
め、この点におけるドプラ信号a(t)のフーリエ変換
A(t)は図6に示す周波数上昇信号44となる。一
方、観測点13においてはドプラ周波数が下降するた
め、この点におけるドプラ信号b(t)のフーリエ変換
B(t)は図6に示す周波数下降信号45となる。この
両者は、波形が異なるため、このまま相関処理を行なっ
ても時間計測は困難である。そこで、一方の信号例え
ば、b(t)の共役複素数をとり〈b(t)〉をc
(t)とすることにより、
[Equation 5] R (σ) = | ∫ <a (t)> c (t + σ) dt | (Equation 5) This is obtained by calculating and the calculation process is simplified. In (Equation 5), <a (t)> represents the conjugate relation of a (t), and the lower and upper limits of integration are 0 and T 0 , respectively. The time resolution in cross-correlation improves in proportion to the frequency bandwidth of the signal. Therefore, the resolution can be further improved by performing the correction processing of the frequency characteristic for the frequency band in which the signal exists, for example, by emphasizing the high band and the low band. In the present embodiment, the complex signal configuration is mainly described as a strict configuration, but the configuration is not limited to this.
It is also possible to arbitrarily configure only the real part or the imaginary part. As a method of measuring the distance between observation points, a curved path can be correctly measured by using a cursor, a marker, a pointer 37, or the like as in the screen of the distance determination unit 29 shown in FIG. Here, when the changing direction of the frequency of the Doppler signal is inverted as shown in FIG. 5, the Doppler frequency increases at the observation point 12, and therefore the Fourier transform A of the Doppler signal a (t) at this point is obtained. (T) becomes the frequency rising signal 44 shown in FIG. On the other hand, since the Doppler frequency drops at the observation point 13, the Fourier transform B (t) of the Doppler signal b (t) at this point becomes the frequency drop signal 45 shown in FIG. Since the waveforms of the two are different, it is difficult to measure the time even if the correlation processing is performed as it is. Therefore, one signal, for example, the conjugate complex number of b (t) is taken and <b (t)> is c
By setting (t),

【0015】[0015]

【数6】 c(t)=〈b(t)〉=v(t)exp{−jθb(t)} (数6) となり、このフーリエ変換は修正信号46に示す形状と
なり、周波数上昇信号44と高い相関度を示すことにな
る。また、図7に示すようなドプラ信号の周波数の周波
数の変化幅も異なる状況においては、周波数上昇信号4
4、周波数下降信号45のそれぞれが、図8における大
変化幅信号47、小変化幅信号48となり、周波数の変
化幅が異なる為に相関度が低下する。この場合には、一
方の信号、例えば、b(t)は、
[Mathematical formula-see original document] c (t) = <b (t)> = v (t) exp {-j [theta] b (t)} (Equation 6), and this Fourier transform has the shape shown in the corrected signal 46, and the frequency rising signal 44 is obtained. And a high degree of correlation. Further, in a situation where the frequency change width of the frequency of the Doppler signal is different as shown in FIG.
4 and the frequency falling signal 45 respectively become the large change width signal 47 and the small change width signal 48 in FIG. 8, and the degree of correlation is lowered because the change width of the frequency is different. In this case, one of the signals, for example b (t),

【0016】[0016]

【数7】 b(t)=v(t)exp{jθb(t)} =v(t)exp{j∫Δθb(t)dt} (数7) であるが(積分の下限、上限はそれぞれ、0、tであ
る。)、ここにおける計測値である隣接時刻間の位相差
Δθb(t)を定数α倍することによりc(t)とす
る。ここで、
B (t) = v (t) exp {jθb (t)} = v (t) exp {j∫Δθb (t) dt} (Equation 7) (the lower and upper limits of integration are respectively , 0, t), and the phase difference Δθb (t) between adjacent times, which is the measured value here, is multiplied by a constant α to obtain c (t). here,

【0017】[0017]

【数8】 c(t)=v(t)exp{j∫αΔθb(t)dt} (数8) である(積分の下限、上限はそれぞれ、0、tであ
る。)。ここにおける積分は、通常は離散時刻における
計測値の累加により実行される。このように周波数を変
換(この場合には拡大)し、c(t)とすることにより
このフーリエ変換は修正信号49に示す形状となり、図
6に示す処理により更に周波数を反転することにより大
変化幅信号47と高い相関度を示すことになる。このよ
うな、波形変換処理を行なう場合の構成を図9に示す。
ここで信号変換部50が方向或いは周波数変化幅の変更
処理を行なう波形変換部である。この装置は当然超音波
の断層像あるいは立体像の表示装置と結合して構成され
るが、その構成は電子セクタ、電子リニア、コンベック
ス等公知の全ての構成が適用可能である。また、カラー
ドプラ装置との結合も微細血管の検出において非常に有
効である。
(8) c (t) = v (t) exp {j∫αΔθb (t) dt} (Equation 8) (the lower and upper limits of integration are 0 and t, respectively). The integration here is usually executed by cumulative addition of measured values at discrete times. By transforming (increasing in this case) the frequency and setting it as c (t), this Fourier transform becomes the shape shown in the correction signal 49, and by the process shown in FIG. It shows a high degree of correlation with the width signal 47. FIG. 9 shows a configuration for performing such a waveform conversion process.
Here, the signal conversion unit 50 is a waveform conversion unit that performs a process of changing the direction or the frequency change width. This device is naturally constructed by being combined with a display device for displaying a tomographic image of an ultrasonic wave or a stereoscopic image, but as the structure, all known structures such as an electronic sector, an electronic linear, and a convex can be applied. In addition, coupling with a color Doppler device is also very effective in detecting microvessels.

【0018】[0018]

【発明の効果】超音波により血管内を伝搬する脈波の伝
搬速度を計測し、動脈硬化の診断を行なう超音波装置に
おいて、脈波の伝搬時間の計測精度が飛躍的に向上し近
接する二点間の脈波の伝搬時間が計測可能となり、局所
的な動脈硬化度が微細血管においても計測可能となる。
このように本発明では、局所微細血管の脈波速度の計測
が可能であり、これにより局所動脈硬化度の定量計測が
可能となる。
EFFECT OF THE INVENTION In an ultrasonic device for measuring the propagation velocity of a pulse wave propagating in a blood vessel by ultrasonic waves and diagnosing arteriosclerosis, the accuracy of measuring the propagation time of the pulse wave is dramatically improved and the two are close to each other. The pulse wave propagation time between points can be measured, and the local arteriosclerosis degree can be measured even in microvessels.
As described above, according to the present invention, it is possible to measure the pulse wave velocity of the local microvessels, which enables the quantitative measurement of the local arteriosclerosis degree.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である超音波装置の基本構成を
示す図。
FIG. 1 is a diagram showing a basic configuration of an ultrasonic device which is an embodiment of the present invention.

【図2】本発明の超音波装置を構成する各部の信号波形
を説明する図。
FIG. 2 is a diagram for explaining signal waveforms of respective parts constituting the ultrasonic device of the present invention.

【図3】本発明の超音波装置の相関演算部の構成例を示
す図。
FIG. 3 is a diagram showing a configuration example of a correlation calculation unit of the ultrasonic apparatus of the present invention.

【図4】本発明の超音波装置の観測点間隔の計測法の一
例を説明する図。
FIG. 4 is a diagram for explaining an example of a method for measuring an observation point interval of the ultrasonic device of the present invention.

【図5】ドプラ信号の周波数の変化方向が反転する場合
のドプラ信号を示す図。
FIG. 5 is a diagram showing a Doppler signal when the changing direction of the frequency of the Doppler signal is inverted.

【図6】ドプラ信号の周波数の変化方向が反転する場合
の周波数変化を示す図。
FIG. 6 is a diagram showing a frequency change when the change direction of the frequency of the Doppler signal is reversed.

【図7】ドプラ信号の周波数の変化幅も異なる場合のド
プラ信号を示す図。
FIG. 7 is a diagram showing a Doppler signal when the variation width of the frequency of the Doppler signal is different.

【図8】ドプラ信号の周波数の変化幅も異なる場合の周
波数変化を示す図。
FIG. 8 is a diagram showing a frequency change when the frequency change width of the Doppler signal is also different.

【図9】本発明の超音波装置の波形変換部の構成例を示
す図。
FIG. 9 is a diagram showing a configuration example of a waveform conversion unit of the ultrasonic device of the present invention.

【符号の説明】[Explanation of symbols]

1…送信部、2…配列形超音波送受波器、3…素子選択
スイッチ、4、5…振動子素子群、6、7…超音波ビー
ム、8…受信信号、9…増幅器、10、11…ドプラ計
測部、12、13…観測点、14、15…ドプラ信号、
16、17…波形記憶部、18…部分波形、19…フー
リエ変換器、20…フーリエ記憶部、21…信号抽出
部、22…信号選択部、23、25…一時記憶信号、2
4…基準信号、26…相関演算部、27…相互相関係
数、28…速度計算部、29…距離判定部、30…制御
部、31…表示部、32…流路、33…流れの方向、3
4…周波数スペクトル情報、35…周波数変化の大きい
部分、36…時間領域選択信号、37…マーカ、38、
39…フーリエ変換器、40…共役複素数変換器、41
…複素乗算器、42…フーリエ逆変換器、43…複素絶
対値計算部、44…周波数上昇信号、45…周波数下降
信号、46、49…修正信号、47…大変化幅信号、4
8…小変化幅信号、50…信号変換部。
DESCRIPTION OF SYMBOLS 1 ... Transmission part, 2 ... Array type ultrasonic wave transmitter / receiver, 3 ... Element selection switch, 4, 5 ... Transducer element group, 6, 7 ... Ultrasonic beam, 8 ... Received signal, 9 ... Amplifier, 10, 11 ... Doppler measurement unit, 12, 13 ... Observation point, 14, 15 ... Doppler signal,
16, 17 ... Waveform storage section, 18 ... Partial waveform, 19 ... Fourier transformer, 20 ... Fourier storage section, 21 ... Signal extraction section, 22 ... Signal selection section, 23, 25 ... Temporary storage signal, 2
4 ... Reference signal, 26 ... Correlation calculation part, 27 ... Cross correlation coefficient, 28 ... Velocity calculation part, 29 ... Distance determination part, 30 ... Control part, 31 ... Display part, 32 ... Flow path, 33 ... Flow direction Three
4 ... Frequency spectrum information, 35 ... Large frequency change portion, 36 ... Time domain selection signal, 37 ... Marker, 38,
39 ... Fourier transformer, 40 ... Conjugate complex number converter, 41
... Complex multiplier, 42 ... Fourier inverse transformer, 43 ... Complex absolute value calculation unit, 44 ... Frequency rising signal, 45 ... Frequency falling signal, 46,49 ... Correction signal, 47 ... Large change width signal, 4
8 ... Small change width signal, 50 ... Signal conversion unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千田 彰一 香川県高松市木太町8区3738−36 (72)発明者 松尾 裕英 香川県木田郡庵治町5319−70 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shoichi Senda 3738-36 8 wards, Kita-cho, Takamatsu City, Kagawa Prefecture (72) Inventor Hirohide Matsuo 5319-70, Anji-cho, Kida District, Kagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超音波を送信し、複数の観測位置から反射
信号を受信し、複数の観測位置における反射信号のドプ
ラ信号の時間的変化から、前記観測位置間における脈波
の伝搬時間を計測し、この伝搬時間と前記観測位置間の
距離から脈派の伝搬速度を計測する超音波装置におい
て、前記ドプラ信号間の相互相関係数を計算する相関演
算部を有しこの相互相関係数を用いて脈波の伝搬時間計
測を行ない、前記ドプラ信号の周波数の変化方向、或い
は変化幅を修正する信号変換部を有することを特徴とす
る超音波装置。
1. An ultrasonic wave is transmitted, a reflection signal is received from a plurality of observation positions, and a propagation time of a pulse wave between the observation positions is measured from a temporal change of a Doppler signal of the reflection signal at the plurality of observation positions. However, in the ultrasonic device that measures the propagation velocity of the pulse group from the propagation time and the distance between the observation positions, the cross-correlation coefficient has a correlation calculation unit that calculates the cross-correlation coefficient between the Doppler signals. An ultrasonic device, comprising: a signal converter that measures the propagation time of a pulse wave using the signal wave and corrects the changing direction or the changing width of the frequency of the Doppler signal.
JP05166993A 1993-03-12 1993-03-12 Ultrasonic device Expired - Fee Related JP3418632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05166993A JP3418632B2 (en) 1993-03-12 1993-03-12 Ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05166993A JP3418632B2 (en) 1993-03-12 1993-03-12 Ultrasonic device

Publications (2)

Publication Number Publication Date
JPH06261898A true JPH06261898A (en) 1994-09-20
JP3418632B2 JP3418632B2 (en) 2003-06-23

Family

ID=12893293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05166993A Expired - Fee Related JP3418632B2 (en) 1993-03-12 1993-03-12 Ultrasonic device

Country Status (1)

Country Link
JP (1) JP3418632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021104859A1 (en) 2020-04-30 2021-11-04 Hitachi, Ltd. ULTRASONIC DIAGNOSTIC DEVICE AND METHOD FOR MEASURING THE AMBLE LENGTH

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021104859A1 (en) 2020-04-30 2021-11-04 Hitachi, Ltd. ULTRASONIC DIAGNOSTIC DEVICE AND METHOD FOR MEASURING THE AMBLE LENGTH
US11666303B2 (en) 2020-04-30 2023-06-06 Fujifilm Healthcare Corporation Ultrasound diagnostic apparatus, and umbilical cord length measurement method

Also Published As

Publication number Publication date
JP3418632B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
US5535747A (en) Ultrasonic equipment
US4217909A (en) Directional detection of blood velocities in an ultrasound system
US4257278A (en) Quantitative volume blood flow measurement by an ultrasound imaging system featuring a Doppler modality
JP3746115B2 (en) Ultrasonic diagnostic equipment
US9554770B2 (en) High pulse repetition frequency for detection of tissue mechanical property with ultrasound
US4182173A (en) Duplex ultrasonic imaging system with repetitive excitation of common transducer in doppler modality
US5429137A (en) Acoustic scan conversion method and apparatus for velocity flow
US6770034B2 (en) Ultrasonic diagnostic apparatus
US5097836A (en) Untrasound diagnostic equipment for calculating and displaying integrated backscatter or scattering coefficients by using scattering power or scattering power spectrum of blood
US8469887B2 (en) Method and apparatus for flow parameter imaging
US5606972A (en) Ultrasonic doppler measurement of blood flow velocities by array transducers
JPS6034434A (en) Vingmed as
US9307953B2 (en) Vector interpolation device and method for an ultrasonic wave image
JP2001061840A (en) Ultrasonograph
US7022078B2 (en) Method and apparatus for spectral strain rate visualization
CN110893103A (en) Angle for ultrasound-based shear wave imaging
JPH10165400A (en) Ultrasonic diagnostic device
WO2005051203A1 (en) Doppler velocity detection device and ultrasonographic device using the same
KR101390187B1 (en) Ultrasound system and method for providing particle flow image
JPH06261898A (en) Ultrasonic device
JPH06261899A (en) Ultrasonic device
JP3179586B2 (en) Ultrasonic device
EP1616201A1 (en) Heart wall strain imaging
JPS6129735B2 (en)
JPH08322836A (en) Ultrasonic diagnostic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees