JPH06261458A - Parallel operating method for transformer - Google Patents

Parallel operating method for transformer

Info

Publication number
JPH06261458A
JPH06261458A JP5045616A JP4561693A JPH06261458A JP H06261458 A JPH06261458 A JP H06261458A JP 5045616 A JP5045616 A JP 5045616A JP 4561693 A JP4561693 A JP 4561693A JP H06261458 A JPH06261458 A JP H06261458A
Authority
JP
Japan
Prior art keywords
transformers
phase
parallel
transformer
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5045616A
Other languages
Japanese (ja)
Inventor
Hideshi Kodaira
英志 小平
Meiji Iida
明治 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5045616A priority Critical patent/JPH06261458A/en
Publication of JPH06261458A publication Critical patent/JPH06261458A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to adequately distribute a load current in response to respective rated capacities when operating in parallel three or more transformers having different impedances. CONSTITUTION:N units (N>=3) to be operated in parallel, for example, (2N-3) units, that is, 3 units of single-phase autotransformers AT1, AT2 and AT3 are connected to the primary side or secondary side of 3 units of single-phase transformers T1, T2 and T3. And the distribution of load current of the single- phase transformers T1 to T3 is controlled to a proper value in response to the reciprocal ratio of the number of turns by adequately adjusting the voltage ratio, that is, the number of turns N1/N2 respectively of each single-phase autotransformers AT1 to AT3. By doing this, the load current can be properly distributed in response to the rated capacity of each transformer when operating three or more transformers in parallel having different impedances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、インピーダンスが異
なる3台以上の変圧器を並列運転する場合に、複数台の
単巻変圧器を用いて各々の変圧器の定格容量に対応して
負荷電流を適正に配分することができる変圧器の並列運
転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a plurality of autotransformer transformers in parallel when three or more transformers having different impedances are operated in parallel so as to correspond to the rated capacity of each transformer. The present invention relates to a parallel operation method of transformers capable of appropriately distributing the voltage.

【0002】[0002]

【従来の技術】インピーダンスが異なる2台の変圧器を
並列運転すると、負荷電流の配分は各々の定格容量の比
と異なってしまう。そこで、単巻変圧器を使用して負荷
電流の配分が定格容量比となるよう修正することが行わ
れている(「変圧器工学」L.F.ブルーメ他著、コロ
ナ社刊、169〜170頁)。
2. Description of the Related Art When two transformers having different impedances are operated in parallel, the distribution of load current differs from the ratio of their rated capacities. Therefore, an autotransformer is used to correct the distribution of the load current so that the rated capacity ratio is obtained ("Transformer Engineering" LF Blume et al., Corona Publishing, 169-170). page).

【0003】[0003]

【発明が解決しようとする課題】上記したように、従
来、インピーダンスが異なる2台の変圧器を並列運転す
る方法は示されている。しかし、インピーダンスが異な
る3台以上の変圧器を並列運転する場合もあり、このよ
うな場合に各々の定格容量に応じて負荷電流を適正に配
分する方法は示されていなかった。
As described above, a method of operating two transformers having different impedances in parallel has been disclosed. However, there are cases in which three or more transformers having different impedances are operated in parallel, and in such a case, a method for appropriately distributing the load current according to each rated capacity has not been shown.

【0004】この発明は上記のような課題を解決するた
めに成されたものであり、インピーダンスが異なる3台
以上の変圧器を並列運転する場合に各々の定格容量に応
じて負荷電流を適正に配分することができる変圧器の並
列運転方法を得ることを目的とする。
The present invention has been made to solve the above problems, and when three or more transformers having different impedances are operated in parallel, the load current is properly adjusted according to the rated capacity of each transformer. The purpose is to obtain a parallel operation method of transformers that can be distributed.

【0005】[0005]

【課題を解決するための手段】この発明に係る変圧器の
並列運転方法は、並列運転するN(N≧3)台の変圧器
の一次側又は二次側に(2N−3)台の単巻変圧器を接
続し、各単巻変圧器の電圧比を各変圧器の負荷分担比が
それぞれの定格容量に対応したものとなるよう調整する
ものである。
SUMMARY OF THE INVENTION A parallel operation method of transformers according to the present invention includes (2N-3) single transformers on the primary side or secondary side of N (N ≧ 3) transformers that are operated in parallel. The transformers are connected and the voltage ratio of each autotransformer is adjusted so that the load sharing ratio of each transformer corresponds to its rated capacity.

【0006】[0006]

【作用】この発明においては、並列運転するN(N≧
3)台の変圧器の一次側又は二次側に(2N−3)台の
単巻変圧器が接続され、各単巻変圧器の電圧比が調整さ
れることにより電流比が調整され、これにより各変圧器
の負荷分担比が定格容量比に対応するよう調整される。
In the present invention, N (N ≧ N
3) (2N-3) autotransformer transformers are connected to the primary side or secondary side of the transformers, and the current ratio is adjusted by adjusting the voltage ratio of each autotransformer. Thus, the load sharing ratio of each transformer is adjusted to correspond to the rated capacity ratio.

【0007】[0007]

【実施例】実施例1 以下、この発明の実施例を図面とともに説明する。図1
は実施例1による変圧器の並列運転方法を示す結線図で
あり、T1〜T3は並列運転される3台の単相変圧器であ
り、それぞれインピーダンスが異なる。その一次巻線は
並列に接続され、二次巻線は3台の単相単巻変圧器AT
1〜AT3を介して並列に接続されている。
Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings. Figure 1
FIG. 3 is a connection diagram showing a parallel operation method of transformers according to the first embodiment, and T 1 to T 3 are three single-phase transformers that are operated in parallel, each having different impedance. The primary winding is connected in parallel, and the secondary winding is three single-phase autotransformer ATs.
1 to AT 3 are connected in parallel.

【0008】ここで、単相単巻変圧器AT1〜AT3につ
いて図2により説明する。端子1,2からそれぞれ電流
1,I2が流れ込み、中間の端子3から電流I3が流れ
出るものとし、かつ端子1,3間の巻線Aの巻数を
1、端子2,3間の巻線Bの巻数をN2とすると、巻線
A,Bのアンペアターンが等しい即ちN11=N22
場合には、単相単巻変圧器AT1〜AT3のインピーダン
スは巻線A,B間の漏れインピーダンスとなり、最も小
さい値になる。
Now, the single-phase autotransformers AT 1 to AT 3 will be described with reference to FIG. The currents I 1 and I 2 flow into the terminals 1 and 2, respectively, and the current I 3 flows out from the intermediate terminal 3, and the number of turns of the winding A between the terminals 1 and 3 is N 1 and between the terminals 2 and 3. If the number of turns of the winding B is N 2, and the ampere-turns of the windings A and B are equal, that is, N 1 I 1 = N 2 I 2 , the impedances of the single-phase autotransformers AT 1 to AT 3 are: It is the leakage impedance between the windings A and B, which is the smallest value.

【0009】一方、巻線A,Bのアンペアターンが等し
くない即ちN11≠N22の場合や、端子1から端子2
(又はその逆)の方向へ電流が流れようとした場合に
は、単相単巻変圧器AT1〜AT3のインピーダンスは鉄
心の励磁インピーダンスとして作用し、その値は巻線
A,B間漏れインピーダンスに比べて桁違いに大きくな
る。従って、単相単巻変圧器AT1〜AT3は端子1,2
に流れ込む(又は流れ出す)電流I1,I2の比を巻線
A,Bの巻線N1,N2の逆比(I1/I2=N2/N1)に
制限する機能を有している。
On the other hand, when the ampere-turns of the windings A and B are not equal, that is, N 1 I 1 ≠ N 2 I 2 , or from terminal 1 to terminal 2.
When a current is going to flow in the (or vice versa) direction, the impedance of the single-phase autotransformers AT 1 to AT 3 acts as the excitation impedance of the iron core, and its value is the leakage between windings A and B. It is orders of magnitude larger than the impedance. Therefore, the single-phase autotransformers AT 1 to AT 3 have terminals 1, 2
Has a function of limiting the ratio of the currents I 1 and I 2 flowing into (or flowing out of) to the inverse ratio of the windings N 1 and N 2 of the windings A and B (I 1 / I 2 = N 2 / N 1 ). is doing.

【0010】そこで、各単相単巻変圧器AT1〜AT3
電圧比即ち巻数比N1/N2をそれぞれ適当に調整するこ
とにより、各単相変圧器T1〜T3のインピーダンスが異
なっていても、それぞれの負荷電流の配分を巻数の逆比
に対応して適当な値に制御することができる。図1の場
合、各単相単巻変圧器AT1〜AT3のそれぞれの電圧比
(巻数比)を1:1、1:1、3:1としており、二次
側のu端子から例えば「6」の電流が流入したとして、
AT1には「2」流入して「1」と「1」に分れ、AT3
には「4」流入して「1」と「3」に分れる。従って、
AT2には両端から「1」ずつ流入して「2」流出す
る。このため、各単相変圧器T1〜T3の負荷電流は
「1」、「2」、「3」となり、定格容量に対応したも
のにすることができる。なお、単相単巻変圧器AT1
AT3を単相変圧器T1〜T3の二次側に接続したが、一
次側に接続してもよい。
[0010] Therefore, by the single-phase autotransformer AT 1 to AT 3 voltage ratio or a turns ratio N 1 / N 2 is appropriately adjusted each impedance of each single-phase transformer T 1 through T 3 is Even if they are different, the distribution of each load current can be controlled to an appropriate value corresponding to the inverse ratio of the number of turns. In the case of FIG. 1, the voltage ratio (turn ratio) of each of the single-phase autotransformers AT 1 to AT 3 is set to 1: 1, 1: 1 and 3: 1. Assuming that the current of 6 ”flows in,
The AT 1 divided into "1" and "1" flows "2", AT 3
"4" flows in and split into "1" and "3". Therefore,
"1" flows into AT 2 from both ends, and "2" flows out. Therefore, the load current of the single-phase transformer T 1 through T 3 may be the one corresponding to "1", "2", "3", and the rated capacity. In addition, single-phase autotransformer AT 1 ~
Although AT 3 is connected to the secondary side of the single-phase transformers T 1 to T 3 , it may be connected to the primary side.

【0011】実施例2 実施例1では3台の単相変圧器T1〜T3に3台の単相単
巻変圧器AT1〜AT3を接続したが、NをN>3として
N台の単相変圧器に(2N−3)台の単相単巻変圧器を
接続しても同様の効果を得ることができる。
Second Embodiment In the first embodiment, three single-phase transformers AT 1 to AT 3 are connected to the three single-phase transformers T 1 to T 3 , but N is set to N> 3 and N units are set. The same effect can be obtained by connecting (2N-3) single-phase autotransformers to the single-phase transformer.

【0012】実施例3 図3は実施例3による変圧器の並列運転方法を示す結線
図であり、T4〜T6は並列運転される3台の三相変圧器
であり、それぞれインピーダンスが異なる。その一次巻
線は並列に接続され、二次巻線は3台の三相単巻変圧器
AT4〜AT6を介して並列に接続されている。ここで、
三相単巻変圧器AT4〜AT6の各相は単相単巻変圧器A
1〜AT3と同様の機能を有しており、巻数比の調整に
より負荷電流の配分を調整することができ、定格容量に
対応させることができる。実施例3でも三相単巻変圧器
AT4〜AT6を三相変圧器T4〜T6の一次側に接続して
もよい。
Embodiment 3 FIG. 3 is a connection diagram showing a parallel operation method of transformers according to Embodiment 3, where T 4 to T 6 are three three-phase transformers operated in parallel, each having different impedance. . The primary windings are connected in parallel, and the secondary windings are connected in parallel via three three-phase autotransformers AT 4 to AT 6 . here,
Each of the three-phase autotransformers AT 4 to AT 6 is a single-phase autotransformer A.
It has the same function as T 1 to AT 3, and the distribution of the load current can be adjusted by adjusting the turns ratio, and the rated capacity can be dealt with. Also in the third embodiment, the three-phase autotransformers AT 4 to AT 6 may be connected to the primary side of the three-phase transformers T 4 to T 6 .

【0013】実施例4 実施例3では3台の三相変圧器T4〜T6に3台の三相単
巻変圧器AT4〜AT6を接続したが、NをN>3として
N台の三相変圧器に(2N−3)台の三相単巻変圧器を
接続しても同様の効果を得ることができる。
[0013] I connected EXAMPLE 4 Three-phase autotransformer of three to three-phase transformer T 4 through T 6 of the three in the third embodiment device AT 4 to AT 6, N base N as N> 3 The same effect can be obtained by connecting (2N-3) three-phase autotransformers to the three-phase transformer.

【0014】[0014]

【発明の効果】以上のようにこの発明によれば、N(N
≧3)台の変圧器の一次側又は二次側に(2N−3)台
の単巻変圧器を接続し、単巻変圧器の電圧調整により各
変圧器の負荷分担比を調整しており、変圧器の負荷分担
比を定格容量比に対応させることができる。
As described above, according to the present invention, N (N
≥3) (2N-3) autotransformers are connected to the primary side or secondary side of the transformers, and the load sharing ratio of each transformer is adjusted by adjusting the voltage of the autotransformer. The load sharing ratio of the transformer can be made to correspond to the rated capacity ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1による変圧器の並列運転方法を示す結
線図である。
FIG. 1 is a connection diagram showing a parallel operation method of transformers according to a first embodiment.

【図2】実施例1による単相単巻変圧器の結線図であ
る。
FIG. 2 is a connection diagram of the single-phase autotransformer according to the first embodiment.

【図3】実施例3による変圧器の並列運転方法を示す結
線図である。
FIG. 3 is a connection diagram showing a parallel operation method of transformers according to a third embodiment.

【符号の説明】[Explanation of symbols]

1〜T3…単相変圧器 T4〜T6…三相変圧器 AT1〜AT3…単相単巻変圧器 AT4〜AT6…三相単巻変圧器T 1 ~T 3 ... single-phase transformer T 4 ~T 6 ... three-phase transformer AT 1 ~AT 3 ... single-phase autotransformer AT 4 ~AT 6 ... three-phase autotransformer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 並列運転するN(N≧3)台の変圧器の
一次側又は二次側に(2N−3)台の単巻変圧器を接続
し、各単巻変圧器の電圧比を各変圧器の負荷分担比がそ
れぞれの定格容量に対応したものとなるよう調整するこ
とを特徴とする変圧器の並列運転方法。
1. (2N-3) autotransformer transformers are connected to the primary side or secondary side of N (N ≧ 3) transformers operating in parallel, and the voltage ratio of each autotransformer is adjusted. A parallel operation method of transformers, characterized in that the load sharing ratio of each transformer is adjusted so as to correspond to each rated capacity.
JP5045616A 1993-03-08 1993-03-08 Parallel operating method for transformer Pending JPH06261458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5045616A JPH06261458A (en) 1993-03-08 1993-03-08 Parallel operating method for transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5045616A JPH06261458A (en) 1993-03-08 1993-03-08 Parallel operating method for transformer

Publications (1)

Publication Number Publication Date
JPH06261458A true JPH06261458A (en) 1994-09-16

Family

ID=12724317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5045616A Pending JPH06261458A (en) 1993-03-08 1993-03-08 Parallel operating method for transformer

Country Status (1)

Country Link
JP (1) JPH06261458A (en)

Similar Documents

Publication Publication Date Title
US3818402A (en) Tap-changing series-multiple transformer system
US4156174A (en) Phase-angle regulator
US5789907A (en) Variable impedence transformer
US2253053A (en) Conversion of single phase alternating electric currents to polyphase currents
JPH1132437A (en) Three-phase four-wire low voltage distribution system
JPH06261458A (en) Parallel operating method for transformer
WO2008026297A1 (en) Current balancer and low-voltage power distribution system
JP2794405B2 (en) Shunt type transformer unit and single-phase three-wire power supply system
JPH0462444B2 (en)
JPS6081811A (en) On-load tap changing autotransformer
US20230353059A1 (en) Phase shifting transformers comprising a single coil for two exciting windings for voltage regulation and for phase shift angle regulation
JP3047691U (en) Distribution transformer in three-phase four-wire low-voltage distribution circuit
US1979699A (en) Balance coil
JPH01222418A (en) Transformer equipped with voltage adjusting device
JP2002218652A (en) Automatic voltage regulator
JPH11186070A (en) Single-phase autotransformer
US2667617A (en) Polyphase transformer system with grounded neutral
US2989685A (en) Regulating transformer
JP2004187374A (en) Single phase three wire type voltage regulator
JPH0132347Y2 (en)
JPS60112121A (en) Phase adjusting device
JP4846149B2 (en) Double rated current transformer circuit
JPS6346713A (en) Transformer for two phase/three phase conversion
SU1046784A1 (en) Three-phase saturated-core reactor
JPH05205950A (en) On-load tap changing single-phase transformer