JPH06260675A - Photosensor and manufacture thereof - Google Patents

Photosensor and manufacture thereof

Info

Publication number
JPH06260675A
JPH06260675A JP5047045A JP4704593A JPH06260675A JP H06260675 A JPH06260675 A JP H06260675A JP 5047045 A JP5047045 A JP 5047045A JP 4704593 A JP4704593 A JP 4704593A JP H06260675 A JPH06260675 A JP H06260675A
Authority
JP
Japan
Prior art keywords
type
layer
substrate
semiconductor layer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5047045A
Other languages
Japanese (ja)
Inventor
Koji Ebe
広治 江部
Satoshi Murakami
聡 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5047045A priority Critical patent/JPH06260675A/en
Publication of JPH06260675A publication Critical patent/JPH06260675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide a photosensor in which a photoelectric current is not decreased and a dark current can be decreased and a method for manufacturing the same. CONSTITUTION:A photosensor of a heterostructure comprises two types of n-type Hg1-xCdxTe layer 2 and a Hg1-xCdxTe layer 3 containing different compositions and conductivity types and laminated on a Cd1-xZnxTe substrate 21, a composition variable part 11, and a p-n junction 12, wherein both layers 2 and 3 are laminated in a state that the position of the part 11 is deviated from that of the junction 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光検知素子に係り、特に
波長が10μm 帯の長波長帯域の赤外線を検知する光検知
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light detecting element, and more particularly to a light detecting element for detecting infrared rays in a long wavelength band of 10 μm band.

【0002】[0002]

【従来の技術】従来より光検知素子をMOCVD(Metal
Organic Chemical Vapor Deposition; 有機金属気相成
長方法) 法を用いて形成する場合、例えばCdTe基板上に
p型のHg1-x Cdx Te層(x=0.21) とn型のHg1-x Cdx Te
層(x=0.21) をMOCVD法で積層して形成し、該積層
したp型のHg1-x Cdx Te層(x=0.21) とn型のHg1-x Cd
x Te層(x=0.21) をメサエッチングし、pn接合を形成
する両者の半導体層の組成(x値)が互いに等しいホモ
接合型のカットオフ波長10μm帯の光検知素子を形成し
ている。
2. Description of the Related Art Conventionally, a photo-sensing device has been provided with a MOCVD (Metal
 Organic Chemical Vapor Deposition; Organic Metal Vapor Deposition
Long method), for example, on a CdTe substrate
p-type Hg1-xCdxTe layer (x = 0.21) and n-type Hg1-xCdxTe
Layers (x = 0.21) formed by MOCVD method
P-type Hg1-xCdxTe layer (x = 0.21) and n-type Hg1-xCd
xTe layer (x = 0.21) is mesa-etched to form a pn junction
Both semiconductor layers have the same composition (x value).
Formed a junction-type photodetector with a cutoff wavelength of 10 μm.
ing.

【0003】ところで上記したホモ接合型のカットオフ
波長10μm帯の光検知素子は、暗電流が大きいので該検
知素子を動作させるバイアス電圧を印加しない場合の抵
抗,即ちゼロバイアス抵抗R0 が低いといわれ、この欠
点を克復するためにヘテロ接合型光検知素子が提案され
ている。
By the way, the above-mentioned homojunction type photodetector with a cut-off wavelength of 10 μm has a large dark current, so that the resistance when a bias voltage for operating the detector is not applied, that is, the zero bias resistance R 0 is low. In other words, a heterojunction photodetector has been proposed to overcome this drawback.

【0004】その構造を図3(a)に示す。この作製方法
は、例えばCdTe基板1上にn型Hg1-xCdx Te層(x=0.21)
2と、p型Hg1-x Cdx Te層(x=0.24) 3とをMOCV
D法で積層して成長し、このn型Hg1-x Cdx Te層(x=0.
21) 2とp型Hg1-x Cdx Te層(x=0.24) 3とをメサ型に
エッチングする。
The structure is shown in FIG. This manufacturing method is, for example, an n-type Hg 1-x Cd x Te layer (x = 0.21) on a CdTe substrate 1.
2 and the p-type Hg 1-x Cd x Te layer (x = 0.24) 3 by MOCV
The n-type Hg 1-x Cd x Te layer (x = 0.
21) Etch 2 and p-type Hg 1-x Cd x Te layer (x = 0.24) 3 into a mesa.

【0005】次いでメサ状にエッチングされた箇所にZn
S より成る保護膜4を蒸着で形成して、該保護膜4の所
定位置を開口し、リフトオフ法を用いて金より成る電極
5を蒸着して光検知素子を形成している。この光検知素
子はHg1-x Cdx Te層2,3 の組成(x値) が異なっているの
で、ヘテロ接合型光検知素子と称している。
Next, Zn is formed on the portion etched in the mesa shape.
A protective film 4 made of S is formed by vapor deposition, a predetermined position of the protective film 4 is opened, and an electrode 5 made of gold is vapor deposited by the lift-off method to form a photodetecting element. This photodetector is referred to as a heterojunction photodetector because the Hg 1-x Cd x Te layers 2 and 3 have different compositions (x values).

【0006】このようなヘテロ接合型の光検知素子のエ
ネルギーバンド図を図3(b)に示す。図示するように、p
型Hg1-x Cdx Te層(x=0.24) 3はn型Hg1-x Cdx Te層(x
=0.21) 2よりx 値が大であるので、p型Hg1-x Cdx Te
層3のエネルギーギャップE gpは、n型Hg1-x Cdx Te層
2のエネルギーギャップEgnより大となる。暗電流は熱
励起によりn層で形成されたホール6と、熱励起により
p層で発生する電子7の両方のキャリアの移動により発
生する。
Such a heterojunction type photodetector element
The energy band diagram is shown in Fig. 3 (b). As shown, p
Type Hg1-xCdxTe layer (x = 0.24) 3 is n-type Hg1-xCdxTe layer (x
= 0.21) Since the x value is larger than 2, p-type Hg1-xCdxTe
Energy gap E of layer 3 gpIs n-type Hg1-xCdxTe layer
2 energy gap EgnWill be greater. Dark current is heat
Hole 6 formed in the n layer by excitation, and by thermal excitation
It is generated by the movement of both carriers of the electron 7 generated in the p layer.
To live.

【0007】暗電流Id は数式(1) で表示され、キャリ
アの移動度μが増加するに伴って大きくなる傾向にあ
る。
The dark current I d is expressed by equation (1) and tends to increase as the carrier mobility μ increases.

【0008】[0008]

【数1】 [Equation 1]

【0009】ところで、電子7の移動度はホール6の移
動度より2桁程度大であるので、このホール6より電子
7による暗電流が支配的になる。つまり、暗電流を抑え
るには電子7の熱励起を抑えれば良い。そのため、p 型
Hg1-x Cdx Te層(x=0.24) 3のエネルギーギャップEgp
を大にして、価電子帯8より伝導帯9に電子が励起され
難くする。このようにヘテロ構造としてp 型Hg1-x Cdx
Te層(x=0.24) 3のエネルギーギャップEgpを大にする
と暗電流の発生が抑制される。
By the way, since the mobility of the electron 7 is about two orders of magnitude higher than the mobility of the hole 6, the dark current due to the electron 7 is dominant from the hole 6. That is, the thermal excitation of the electrons 7 may be suppressed to suppress the dark current. Therefore, p-type
Energy gap E gp of Hg 1-x Cd x Te layer (x = 0.24) 3
To make the electrons more difficult to be excited in the conduction band 9 than in the valence band 8. Thus, as a heterostructure, p-type Hg 1-x Cd x
Increasing the energy gap E gp of the Te layer (x = 0.24) 3 suppresses the generation of dark current.

【0010】このようにn型Hg1-x Cdx Te層2とp型Hg
1-x Cdx Te層3とを、互いにx値を変化させることで、
Hg1-x Cdx Te結晶のエネルギーギャップが変化し、これ
を利用して暗電流の低下を図り、それによってゼロバイ
アス抵抗R0 を増加させた光検知素子が開発されてい
る。
Thus, the n-type Hg 1-x Cd x Te layer 2 and the p-type Hg
By changing the x value of 1-x Cd x Te layer 3 with each other,
An energy gap of the Hg 1-x Cd x Te crystal changes, and by utilizing this, a dark current is reduced, and a zero-bias resistance R 0 is thereby increased to develop a photo-sensing element.

【0011】[0011]

【発明が解決しようとする課題】ところで従来の光検知
素子は、図3(b)のエネルギーバンド図に示すように、x
値が変動する組成変動部11の中心位置と、伝導型が変化
するpn接合部12の中心位置とが同一の位置となるよう
に配設されているが、その位置づれの許容範囲は、組成
変動部11の中心位置がn層側には約1μm,p層側では
約0.2μm以下である。
By the way, as shown in the energy band diagram of FIG.
It is arranged so that the center position of the composition changing portion 11 where the value changes and the center position of the pn junction 12 where the conductivity type changes are the same position. The center position of the portion 11 is about 1 μm on the n-layer side and about 0.2 μm or less on the p-layer side.

【0012】特に、p層側への位置づれ許容範囲は、M
OCVD,MBE,LPE等による結晶成長法や、イオ
ン注入等によるP/N接合形成法にとっては、制御し難
い狭い範囲であるために歩留りが低下する。この組成変
動部11の中心位置が許容範囲を越えてp層側にづれた場
合には、図3(c)に示すように、n層の価電子帯8にスパ
イク13が形成され、その結果エネルギー障壁14が形成さ
れる。このエネルギー障壁14を光電変換されたホール6
が越えられなくなり、そのため光電流が減少して光信号
量が低下するという問題点がある。
Particularly, the allowable positional deviation toward the p-layer side is M
The yield is reduced because it is a narrow range that is difficult to control for a crystal growth method such as OCVD, MBE, or LPE or a P / N junction formation method such as ion implantation. When the center position of the composition variation portion 11 exceeds the allowable range and is deviated to the p-layer side, a spike 13 is formed in the valence band 8 of the n-layer as shown in FIG. An energy barrier 14 is formed. Hole 6 photoelectrically converted from this energy barrier 14
However, there is a problem in that the photocurrent is reduced and the optical signal amount is reduced.

【0013】また、従来の素子には、以下に示す問題点
もある。上記組成変動部11には、格子不整合によるミス
フィット転位が発生する。その位置にpn接合部が存在
すると、ミスフィット転位によるトラップ順位を介して
トンネル電流が発生し易くなり、素子特性が劣化する。
Further, the conventional device has the following problems. Misfit dislocations are generated in the composition variation portion 11 due to lattice mismatch. If there is a pn junction at that position, a tunnel current is likely to occur via the trap order due to misfit dislocations, and the device characteristics deteriorate.

【0014】本発明は上記した問題点を除去し、pn接
合部の位置と組成変動位置を互いに位置ずれさせること
で、p型領域とn型領域でエネルギーギャップを異なら
せたヘテロ構造の光検知素子に於いて、pn接合部でス
パイク現象(エネルギー障壁)が生じないようにして光
電流が低下しないようにし、光信号量の低下を防止した
光検知素子の提供を目的とする。
The present invention eliminates the above-mentioned problems and shifts the position of the pn junction and the position of compositional variation from each other, whereby photodetection of a hetero structure having different energy gaps in the p-type region and the n-type region is performed. It is an object of the present invention to provide a photo-detecting element in which a spike phenomenon (energy barrier) does not occur in a pn junction to prevent a decrease in photocurrent and a decrease in optical signal amount is prevented.

【0015】[0015]

【課題を解決するための手段】本発明の光検知素子は請
求項1に示すように、基板上に組成および伝導型が互い
に異なる2種類の半導体層を積層し、組成変動部とpn
接合部を設けて形成したヘテロ構造の光検知素子に於い
て、前記組成変動部の位置と、pn接合部の位置とを、
互いに位置ずれさせた状態で、両者の半導体層を積層し
て設けたことを特徴とする。
According to a first aspect of the present invention, there is provided a photo-sensing device in which two kinds of semiconductor layers having different compositions and conductivity types are laminated on a substrate to form a composition variation part and a pn.
In the hetero-structured photodetector formed by providing the junction, the compositional variation portion and the pn junction portion are
It is characterized in that the two semiconductor layers are laminated and provided in a state of being displaced from each other.

【0016】特に、請求項2に示すように、請求項1記
載の組成変動部の位置を、p型半導体層内に設けたこと
を特徴とする。また請求項3に示すように、反応容器内
に設置した基板に半導体層を構成し、該半導体層の組成
を制御する元素を含むガスと、p型、或いはn型の伝導
型を付与する不純物原子を含むガスとを供給すると共
に、基板を加熱し、該基板上に組成、および伝導型が互
いに異なる半導体層を気相成長させて光検知素子を製造
する方法に於いて、前記半導体層を構成し、該半導体層
の組成を制御するガスと、伝導型を付与するガスとを切
り換えて基板に供給する際に、両者のガスの切り換えタ
イミングを互いにずらした状態で切り換えて基板に供給
し、気相成長することを特徴とする。
In particular, as described in claim 2, the position of the composition variation portion according to claim 1 is provided in the p-type semiconductor layer. As described in claim 3, a semiconductor layer is formed on a substrate placed in a reaction vessel, a gas containing an element for controlling the composition of the semiconductor layer, and an impurity imparting p-type or n-type conductivity type. A method of manufacturing a photodetecting element by supplying a gas containing atoms, heating a substrate, and vapor-phase growing semiconductor layers having different compositions and conductivity types on the substrate, When the gas for controlling the composition of the semiconductor layer and the gas for imparting the conductivity type are supplied to the substrate by switching, the switching timings of the two gases are switched and supplied to the substrate, Characterized by vapor phase growth.

【0017】更に、伝導型を付与するガスを先に切り換
えて基板に供給することを特徴とする。
Further, it is characterized in that the gas for imparting the conductivity type is first switched and supplied to the substrate.

【0018】[0018]

【作用】本発明の光検知素子は、組成変動部の中心位置
をp層側に設けているから、pn接合部でスパイク現象
が無くなり、光電変換された少数キャリアのホールの移
動がスパイクのエネルギー障壁に邪魔されなくなって光
電流の低下が防止され、光信号量の低下が防止されたヘ
テロ構造の光検知素子が歩留りよく得られる。また、ミ
スフィット転位に起因するトンネル電流も低減する。
In the photo-detecting element of the present invention, since the center position of the composition variation portion is provided on the p-layer side, the spike phenomenon disappears at the pn junction portion, and the movement of holes of photoelectrically converted minority carriers causes the spike energy. A photodetector having a heterostructure in which the barrier is not obstructed to prevent a decrease in photocurrent and a decrease in optical signal amount can be obtained with a high yield. Also, the tunnel current due to the misfit dislocations is reduced.

【0019】[0019]

【実施例】図1(a)は本発明の光検知素子の断面図、図1
(b)は該光検知素子のエネルギーバンド図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (a) is a cross-sectional view of the photodetector of the present invention.
(b) is an energy band diagram of the photodetector.

【0020】図1(a)と図1(b)に示すように、カドミウム
・亜鉛・テルル(Cd1-xZnx Te、x =0.03)基板21上にM
OCVD法でn型Hg1-x Cdx Te層(x=0.21) 2を10〜20
μmの厚さに成膜し、次いでその上にp型Hg1-x Cdx Te
層(x=0.24) 3を2μm の厚さに成膜する。
As shown in FIGS. 1 (a) and 1 (b), M is deposited on a cadmium-zinc-tellurium (Cd 1-x Zn x Te, x = 0.03) substrate 21.
10 to 20 n-type Hg 1-x Cd x Te layer (x = 0.21) 2 by OCVD method
A film with a thickness of μm is formed, and then p-type Hg 1-x Cd x Te
Layer (x = 0.24) 3 is deposited to a thickness of 2 μm.

【0021】次いで上記n型Hg1-x Cdx Te層2とp型Hg
1-x Cdx Te層3とをメサ型に、ブロム(Br2 )とメタノー
ルの混合液のウェットエッチング液でメサ状にエッチン
グ形成した。
Next, the n-type Hg 1-x Cd x Te layer 2 and the p-type Hg are formed.
The 1-x Cd x Te layer 3 was formed into a mesa shape by using a wet etching solution of a mixed solution of bromine (Br 2 ) and methanol to form a mesa shape.

【0022】このn型Hg1-x Cdx Te層2とp型Hg1-x Cd
x Te層3とを積層して形成する場合に、pn接合部12
と、組成変動部11の間は0.2 〜0.4 μm となるように成
膜した。その後、n型Hg1-x Cdx Te層2とp型Hg1-x Cd
x Te層3とをメサエッチング後、ZnS の保護膜4を蒸着
で形成し、該保護膜4の所定位置を開口した後、金の電
極5を形成して光検知素子とした。
This n-type Hg 1-x Cd x Te layer 2 and p-type Hg 1-x Cd
x Te layer 3 is laminated to form a pn junction 12
Then, the film was formed so that the gap between the composition varying portions 11 was 0.2 to 0.4 μm. After that, n-type Hg 1-x Cd x Te layer 2 and p-type Hg 1-x Cd
After the mesa etching of the x Te layer 3 and the ZnS protective film 4, a protective film 4 of ZnS was formed by vapor deposition, and a predetermined position of the protective film 4 was opened.

【0023】このようにすると、ホールが従来のように
スパイクにより移動をさまたげられることが無くなるの
で、光電流の低下を見ない、光信号量が減少し難い光検
知素子が得られる。
In this way, the holes do not obstruct the movement of the holes due to spikes as in the conventional case, so that a photodetecting element in which the decrease in photocurrent is not observed and the amount of optical signals is difficult to decrease can be obtained.

【0024】この光検知素子を形成するには図2に示す
ように、基板設置台22に載置したカドミウム・亜鉛・テ
ルル(Cd1-xZnx Te) 基板21を収容する反応容器23内をキ
ャリアガスの水素ガスで置換する。
In order to form this photo-sensing element, as shown in FIG. 2, in a reaction vessel 23 containing a cadmium-zinc-tellurium (Cd 1-x Zn x Te) substrate 21 placed on a substrate setting table 22. Is replaced with hydrogen gas as a carrier gas.

【0025】次いで反応容器23内にバルブ29、31、32お
よび34を開放にし、蒸発器24内のHg、蒸発器25内のジメ
チルCd、蒸発器26内のジイソプロピルTe、蒸発器28内の
n型のドーパントのイソプロピル沃素に水素ガスのキャ
リアガスを導入し、これらのキャリアガスを反応容器23
内に導入する。 そして高周波誘導コイル36に通電して
基板21を450℃の温度に加熱する。
Next, the valves 29, 31, 32 and 34 are opened in the reaction vessel 23, and Hg in the evaporator 24, dimethyl Cd in the evaporator 25, diisopropyl Te in the evaporator 26, and n in the evaporator 28. A carrier gas of hydrogen gas is introduced into isopropyl iodine as a mold dopant, and the carrier gas is supplied to the reaction vessel 23.
Introduce inside. Then, the high frequency induction coil 36 is energized to heat the substrate 21 to a temperature of 450 ° C.

【0026】次に、キャリアガスの水素ガスの総流量を
6リットル/分とし、Hg、ジメチルCd、ジイソプロピル
Teおよびイソプロピル沃素のガス分圧を各々0.04,
5×10-5,1×10-4,3×10-6気圧として、4時
間反応容器23内に導入する。これにより10μmの厚さ
のn型Hg1-x Cdx Te(x=0.21) 層2が形成される。
Next, the total flow rate of hydrogen gas as a carrier gas was set to 6 l / min, and Hg, dimethyl Cd, diisopropyl
The gas partial pressures of Te and isopropyl iodine are 0.04 and 0.04, respectively.
The pressure is set to 5 × 10 −5 , 1 × 10 −4 , and 3 × 10 −6 atmosphere, and the mixture is introduced into the reaction vessel 23 for 4 hours. As a result, the n-type Hg 1-x Cd x Te (x = 0.21) layer 2 having a thickness of 10 μm is formed.

【0027】次いでバルブ34を閉じ、バルブ33を開放に
して蒸発器27内にキャリアガスを導入し、p 型のドーパ
ントのターシャルブチルアルシンの分圧を5×10-5
圧として、15分間反応容器23内に導入し、前記n型の
Hg1-x Cdx Te(x=0.21) 層2(上に)p型のHg1-x Cdx
Te(x=0.21) 層35を0.3μmの厚さに形成する。
Next, the valve 34 is closed and the valve 33 is opened to introduce a carrier gas into the evaporator 27, and the partial pressure of the p-type dopant tert-butylarsine is set to 5 × 10 −5 atm and the reaction is performed for 15 minutes. Introduced into the container 23, the n-type
Hg 1-x Cd x Te (x = 0.21) Layer 2 (above) p-type Hg 1-x Cd x
A Te (x = 0.21) layer 35 is formed to a thickness of 0.3 μm.

【0028】次いでジメチルCdを収容する蒸発器25内に
導入するキャリアガス量を増大してジメチルCdの分圧を
6×10-5気圧とし、1時間反応容器23内に流入して、
p 型Hg1-x Cdx Te(x=0.24) 層3を2μm の厚さに形成
する。
Next, the amount of carrier gas introduced into the evaporator 25 containing dimethyl Cd is increased to make the partial pressure of dimethyl Cd 6 × 10 −5 atm and flow into the reaction vessel 23 for 1 hour.
A p-type Hg 1-x Cd x Te (x = 0.24) layer 3 is formed to a thickness of 2 μm.

【0029】このようにすると、pn接合部と組成変動
部を互いに位置ずれさせたn型Hg1- x Cdx Te層2とp型
Hg1-x Cdx Te層3とが積層して形成できる。このように
して形成した光検知素子の特性を測定したところ、カッ
トオフ波長が12μm で量子効率が60%以上、ゼロバイア
ス抵抗値R0 =0.5MΩの良好な光検知素子が得られ
た。
By doing so, the n-type Hg 1- x Cd x Te layer 2 and the p-type in which the pn junction portion and the composition variation portion are displaced from each other are formed.
It can be formed by stacking the Hg 1-x Cd x Te layer 3. When the characteristics of the photodetector thus formed were measured, a good photodetector with a cutoff wavelength of 12 μm, a quantum efficiency of 60% or more, and a zero bias resistance value R 0 = 0.5 MΩ was obtained.

【0030】なお、本実施例ではMOCVD法を用いて
Hg1-x Cdx Te層を形成したが、MOCVD法のみなら
ず、分子線エピタキシャル成長方法、ホットウォールエ
ピタキシャル成長法,液相エキタキシャル法を用いても
本発明の構造の光検知素子が形成可能である。
In this embodiment, the MOCVD method is used.
Although the Hg 1-x Cd x Te layer was formed, the photodetector having the structure of the present invention can be formed by using not only the MOCVD method but also the molecular beam epitaxial growth method, the hot wall epitaxial growth method, and the liquid phase epitaxial method. is there.

【0031】[0031]

【発明の効果】以上述べたように本発明の光検知素子に
よると、価電子帯の上端部に発生し易いスパイク現象を
防止することができ、光電流の低下を見ず、かつ暗電流
の発生を抑制した光検知素子が得られ、またミスフィッ
ト転位に起因するトンネル電流も抑えられた。
As described above, according to the photodetector of the present invention, it is possible to prevent a spike phenomenon that tends to occur at the upper end of the valence band, to prevent a decrease in photocurrent, and to prevent dark current from occurring. A photodetector whose generation was suppressed was obtained, and the tunnel current due to misfit dislocations was also suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光検知素子とそのエネルギーバンド
図である。
FIG. 1 is a photodetector of the present invention and its energy band diagram.

【図2】 本発明の光検知素子を製造する装置の説明図
である。
FIG. 2 is an explanatory diagram of an apparatus for manufacturing the photodetector of the present invention.

【図3】 従来の光検知素子とそのエネルギーバンド図
と、従来の素子の不都合な状態を示すエネルギーバンド
図である。
FIG. 3 is a conventional photo-sensing element and its energy band diagram, and an energy band diagram showing an inconvenient state of the conventional element.

【符号の説明】[Explanation of symbols]

2 n型Hg1-x Cdx Te層(x=0.21) 3 p型Hg1-x Cdx Te層(x=0.24) 4 保護膜 5 電極 11 組成変動部 12 pn接合部 21 Cd1-x Znx Te基板 22 基板設置台 23 反応容器 24,25,26,27,28 蒸発器 29,31,32,33,34 バルブ 35 p型Hg1-x Cdx Te層(x=0.21) 36 高周波誘導コイル2 n-type Hg 1-x Cd x Te layer (x = 0.21) 3 p-type Hg 1-x Cd x Te layer (x = 0.24) 4 protective film 5 electrode 11 composition variation part 12 pn junction part 21 Cd 1-x Zn x Te substrate 22 Substrate table 23 Reaction vessel 24,25,26,27,28 Evaporator 29,31,32,33,34 Valve 35 p-type Hg 1-x Cd x Te layer (x = 0.21) 36 High frequency Induction coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板(21)上に組成および伝導型が互いに
異なる2種類の半導体層(2,3) を積層し、組成変動部(1
1)とpn接合部(12)を設けて形成したヘテロ構造の光検
知素子に於いて、 前記組成変動部(11)の位置と、pn接合部(12)の位置と
を互いに位置ずれさせた状態で、両者の半導体層(2,3)
を積層して設けたことを特徴とする光検知素子。
1. A composition variation part (1) is obtained by laminating two kinds of semiconductor layers (2, 3) having different compositions and conductivity types on a substrate (21).
1) and a pn junction (12) are provided in a hetero-structured photodetector, the position of the composition variation part (11) and the position of the pn junction (12) are displaced from each other. In the state, both semiconductor layers (2,3)
A photo-detecting element, which is characterized by being provided by stacking.
【請求項2】 請求項1記載の組成変動部(11)の中心位
置を、p型半導体層(3) 内に設けたことを特徴とする光
検知素子。
2. A photo-detecting element, characterized in that the center position of the composition variation part (11) according to claim 1 is provided in the p-type semiconductor layer (3).
【請求項3】 反応容器(23)内に設置した基板(21)に、
半導体層(2,3) を構成し、該半導体層(2,3) の組成を制
御する元素を含むガスと、p型、或いはn型の伝導型を
付与する不純物原子を含むガスとを供給すると共に、基
板(21)を加熱し、該基板(21)上に組成、および伝導型が
互いに異なる半導体層(2,3) を気相成長させて光検知素
子を製造する方法に於いて、 前記半導体層(2,3) を構成し、該半導体層(2,3) の組成
を制御するガスと、伝導型を付与するガスとを切り換え
て基板(21)に供給する際に、両者のガスの切り換えタイ
ミングを互いにずらした状態で切り換えて基板(21)に供
給し、気相成長することを特徴とする光検知素子の製造
方法。
3. The substrate (21) installed in the reaction vessel (23),
Supplying a gas containing an element that constitutes the semiconductor layer (2,3) and controls the composition of the semiconductor layer (2,3) and a gas containing an impurity atom that imparts p-type or n-type conductivity At the same time, the substrate (21) is heated, on the substrate (21), a composition, and a semiconductor layer (2, 3) different in conductivity type from each other is vapor-deposited, in the method of manufacturing a photo-sensing element, When the semiconductor layer (2, 3) is formed and the gas for controlling the composition of the semiconductor layer (2, 3) and the gas for imparting the conductivity type are switched and supplied to the substrate (21), A method for manufacturing a photo-detecting element, characterized in that gas is supplied to the substrate (21) while being switched with gas switching timings shifted from each other, and vapor growth is performed.
JP5047045A 1993-03-09 1993-03-09 Photosensor and manufacture thereof Pending JPH06260675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047045A JPH06260675A (en) 1993-03-09 1993-03-09 Photosensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047045A JPH06260675A (en) 1993-03-09 1993-03-09 Photosensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06260675A true JPH06260675A (en) 1994-09-16

Family

ID=12764207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047045A Pending JPH06260675A (en) 1993-03-09 1993-03-09 Photosensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06260675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504607A (en) * 2011-11-28 2015-02-12 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives PN diode for infrared imager with controlled heterostructure self-located on HGCDTE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504607A (en) * 2011-11-28 2015-02-12 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives PN diode for infrared imager with controlled heterostructure self-located on HGCDTE

Similar Documents

Publication Publication Date Title
JP3657143B2 (en) Solar cell and manufacturing method thereof
Biyikli et al. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity
US4119994A (en) Heterojunction and process for fabricating same
US9123843B2 (en) Semiconductor device
JP2010512664A (en) Zinc oxide multi-junction photovoltaic cell and optoelectronic device
WO2018103645A1 (en) Method of preparing npn/pnp photoelectric transistor having ga2o3/sic heterojunction
US4207586A (en) Semiconductor device having a passivating layer
KR20120088719A (en) Improved photocell
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
JP2008538164A (en) Metal oxide semiconductor film, structure and method
CN109285914B (en) AlGaN-based ultraviolet heterojunction phototransistor detector and preparation method thereof
JP4635187B2 (en) Semiconductor photodetector
CN114267747B (en) Ga with metal gate structure 2 O 3 AlGaN/GaN solar blind ultraviolet detector and preparation method thereof
JPH0964386A (en) Multijunction solar cell
JPH06260675A (en) Photosensor and manufacture thereof
CN113299788B (en) Photovoltaic tellurium-cadmium-mercury infrared detector and preparation method thereof
US6558973B2 (en) Metamorphic long wavelength high-speed photodiode
JPH08204215A (en) Series connected solar cell
JPH0955522A (en) Tunnel diode
Wu et al. An overview of HgCdTe MBE technology
KR102437878B1 (en) Semiconductor device using heterojunction and manufacturing method thereof
CN113113506B (en) III-nitride gain type photoelectric detector and preparation method thereof
Wu et al. A high optical-gain/spl beta/-SiC bulk-barrier phototransistor for high-temperature applications
Dvoretsky et al. HgCdTe Device Technology
KR100525169B1 (en) FABRICATION OF HgCdTe PHOTO DIODE

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020319