JPH06260631A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06260631A
JPH06260631A JP5042467A JP4246793A JPH06260631A JP H06260631 A JPH06260631 A JP H06260631A JP 5042467 A JP5042467 A JP 5042467A JP 4246793 A JP4246793 A JP 4246793A JP H06260631 A JPH06260631 A JP H06260631A
Authority
JP
Japan
Prior art keywords
region
area
type
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5042467A
Other languages
Japanese (ja)
Inventor
Mitsuhide Maeda
光英 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5042467A priority Critical patent/JPH06260631A/en
Publication of JPH06260631A publication Critical patent/JPH06260631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a high-speed device without marring the performance of on-voltage by constituting a high-resistivity area, which becomes the current path provided between a cathode area and an anode area, of a material high in maximum electric field power. CONSTITUTION:A surface gate type electrostatic thyristor is equipped, on one side of an n-type semiconductor substrate 11, with an n<+>-type cathode region 12, and, on the other side, with a p<+>-type anode area. Besides, this is equipped, between the cathode area 12 and the anode area 13, with an n<->-type high resistivity area 14 to become a current path, and the current flowing in this high resistivity area 14 is controlled with a p<+>-type gate area 15. Here, the high resistivity area 14 is constituted of SiC or diamond being the material high in maximum electric field power. Hereby, the thickness of the high resistivity area can be thinned, and the series resistance at conductivity can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば静電誘導サイリ
スタの如きバイポーラ系のパワー半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar power semiconductor device such as an electrostatic induction thyristor.

【0002】[0002]

【従来の技術】図2は、かかる従来の静電誘導サイリス
タを示すもので、N- 型半導体基板1の表面にN+ 型カ
ソード領域2を備えるとともに、裏面にP+ 型アノード
領域3を備え、これらアノード・カソード間に流れる電
流をゲートと呼ばれるP+ 型領域4で制御するものであ
る。また、静電誘導サイリスタは、ゲート領域に信号を
入れなくても電流の流れるノーマリ・オンタイプと、ゲ
ート領域に信号を入れないと電流の流れないノーマリ・
オフタイプのものがある。ここでは、ノーマリ・オフタ
イプの静電誘導サイリスタについてその動作を説明す
る。
2. Description of the Related Art FIG. 2 shows such a conventional electrostatic induction thyristor, in which an N + type cathode region 2 is provided on the front surface of an N type semiconductor substrate 1 and a P + type anode region 3 is provided on the back side thereof. The current flowing between the anode and the cathode is controlled by the P + type region 4 called a gate. In addition, the static induction thyristor is a normally-on type in which current flows even if no signal is input to the gate region, and a normally-on type in which no current flows unless a signal is input to the gate region.
There is an off type. Here, the operation of a normally-off type electrostatic induction thyristor will be described.

【0003】ノーマリ・オフタイプの静電誘導サイリス
タでは、電流通路であるチャネル前面に空乏層が拡がっ
ており、オンさせるにはこの空乏層を除去してやらねば
ならない。そのためゲート領域にプラスの電圧を印加
し、空乏層を除去してやると、アノード・カソード間は
PNダイオードとして動作する。反対にオフさせるには
ゲートの電圧をゼロにするか、ゲートにマイナスの電圧
を印加し、チャネル前面に空乏層を拡げてやればよい。
In a normally-off type electrostatic induction thyristor, a depletion layer spreads in front of the channel which is a current path, and this depletion layer must be removed to turn it on. Therefore, when a positive voltage is applied to the gate region to remove the depletion layer, the anode and cathode operate as a PN diode. On the contrary, in order to turn it off, the gate voltage may be set to zero or a negative voltage may be applied to the gate to expand the depletion layer in front of the channel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、静電誘
導サイリスタのようなバイポーラ系のデバイスでは、タ
ーンオフ時、少数キャリアの蓄積効果のために、テール
を引く電流波形を示し、スイッチングにおける損失が大
きくなるという問題がある。そこで、少数キャリアのラ
イフタイムを制御するために、重金属拡散とかイオン照
射といった手法で高速化を図る動きがある。しかし、従
来構造では、高耐圧化するために高比抵抗領域の厚みを
厚くしなければならず、結果としてオン電圧の増大を招
くといった問題がある。
However, in a bipolar device such as an electrostatic induction thyristor, at the time of turn-off, due to the effect of accumulating minority carriers, a current waveform with a tail is drawn, and a loss in switching becomes large. There is a problem. Therefore, in order to control the lifetime of minority carriers, there is a movement to increase the speed by methods such as heavy metal diffusion and ion irradiation. However, in the conventional structure, the thickness of the high specific resistance region must be increased in order to increase the breakdown voltage, resulting in an increase in the on-voltage.

【0005】本発明は上記問題点に鑑みなされたもの
で、その目的とするところは、オン電圧の性能を損なう
ことなく高速化が図れる半導体装置を提供することにあ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device capable of speeding up without impairing the performance of the on-voltage.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
本発明は、半導体基板の一側にカソード領域を備えると
ともに、他側にアノード領域を備え、かつ、これらのカ
ソード領域とアノード領域の間に電流通路となる高比抵
抗領域を備え、前記高比抵抗領域を流れる電流を制御す
るゲート領域を備えた半導体装置において、前記高比抵
抗領域を最大電界強度の高い材料(例えば、SiC、ダ
イヤモンド等)で構成したことを特徴とするものであ
り、さらに、重イオン照射によるライフタイム制御を前
記アノード領域の前面に施したことを特徴とするもので
ある。
In order to solve the above-mentioned problems, the present invention provides a cathode region on one side of a semiconductor substrate and an anode region on the other side, and between the cathode region and the anode region. In a semiconductor device having a high resistivity region serving as a current path, and a gate region controlling a current flowing through the high resistivity region, the high resistivity region is made of a material having a high maximum electric field strength (for example, SiC or diamond). Etc.), and is characterized in that lifetime control by heavy ion irradiation is applied to the front surface of the anode region.

【0007】[0007]

【作用】上記のように、従来、耐圧を持たせていた高比
抵抗領域を最大電界強度の高いSiC、ダイヤモンド等
で構成することにより、高比抵抗領域の厚みを薄くで
き、その結果、バイポーラ系の半導体装置において高速
化に有効なアノード接合前面への重イオン照射を施すこ
とができる。
As described above, by forming the high specific resistance region, which has been conventionally provided with the withstand voltage, with SiC, diamond or the like having a high maximum electric field strength, the thickness of the high specific resistance region can be reduced, and as a result, the bipolar region can be thinned. It is possible to perform heavy ion irradiation on the front surface of the anode junction, which is effective for increasing the speed in a semiconductor device of the system.

【0008】従来例では、高比抵抗領域の厚みが厚いた
めに、重イオンではアノード接合前面には届き難く、届
かせるためにはイオンの加速エネルギ−を莫大な値(1
0MeV〜20MeV)に設定しなければならず、装
置、また照射物の結晶性等を考慮すると現実的ではな
い。
In the conventional example, since the high specific resistance region is thick, it is difficult for heavy ions to reach the front surface of the anode junction.
It has to be set to 0 MeV to 20 MeV), which is not realistic in view of the device, the crystallinity of the irradiation object, and the like.

【0009】これに対して本発明によれば、比較的低加
速エネルギ−(数MeV)で重イオン照射を施すことが
できるとともに、高比抵抗領域に用いるSiCあるいは
ダイヤモンドの物性である飽和速度が大きいことを利用
して、半導体装置のスイッチング速度、特にターンオフ
の時間を大幅に短縮できる。その結果、損失の低減が図
れ、機器の小型化が可能になるものである。
On the other hand, according to the present invention, heavy ion irradiation can be performed with a relatively low acceleration energy (several MeV), and the saturation speed, which is a physical property of SiC or diamond used in the high resistivity region, can be increased. By utilizing the largeness, the switching speed of the semiconductor device, especially the turn-off time can be greatly reduced. As a result, the loss can be reduced and the device can be downsized.

【0010】[0010]

【実施例】図1は本発明の一実施例を示すもので、半導
体装置の単位セルの断面図を示すものである。本実施例
に係る半導体装置は、表面ゲート型の静電誘導サイリス
タであり、N- 型半導体基板11の一側にN+ 型カソー
ド領域12を備えるとともに、他側にP+ 型アノード領
域13を備え、かつ、これらのカソード領域12とアノ
ード領域13の間に電流通路となるN- 型高比抵抗領域
14を備え、この高比抵抗領域14を流れる電流を制御
するP+ 型ゲート領域15を備えている。なお、図1に
おいて、16はカソード電極、17はゲート電極、18
は酸化膜である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention and is a sectional view of a unit cell of a semiconductor device. The semiconductor device according to the present embodiment is a surface gate type electrostatic induction thyristor, which includes an N + type cathode region 12 on one side of an N type semiconductor substrate 11 and a P + type anode region 13 on the other side. An N -type high resistivity region 14 is provided between the cathode region 12 and the anode region 13 and serves as a current path, and a P + -type gate region 15 for controlling the current flowing through the high resistivity region 14 is provided. I have it. In FIG. 1, 16 is a cathode electrode, 17 is a gate electrode, and 18
Is an oxide film.

【0011】ここで、前記高比抵抗領域14は最大電界
強度の高い材料であるSiCあるいはダイヤモンドで構
成されている。その結果、従来例においてはSi材料を
用いて、例えば1000V耐圧品では厚みとして100
μm以上必要であったのが、最大電界強度で約10倍の
強度を持った材料を用いることにより、高比抵抗領域1
4の厚みを約1/10にすることが可能になる。
The high resistivity region 14 is made of SiC or diamond which is a material having a high maximum electric field strength. As a result, the Si material is used in the conventional example, and the thickness is 100 in the case of a product having a withstand voltage of 1000 V, for example.
It is necessary to have a size of at least μm, but by using a material having a maximum electric field strength of about 10 times,
The thickness of 4 can be reduced to about 1/10.

【0012】従来構造では半導体装置の高速化を行うの
に、イオン照射を行ってきており、照射の飛程位置をア
ノード領域3の前面に設定するようにしてきた。これに
はプロトンという軽イオンを用いて100μm程度の飛
程を得てきたものである。しかしながら、高速化には軽
イオンであるプロトンよりも、より質量の重いイオンを
用いる方が、高速化に有効な再結合中心を形成するよう
な深い準位ができるため重要である。
In the conventional structure, ion irradiation has been performed in order to speed up the semiconductor device, and the range of irradiation has been set to the front surface of the anode region 3. For this, a range of about 100 μm has been obtained by using light ions called protons. However, for speeding up, it is important to use ions having a larger mass than protons, which are light ions, because deep levels that form recombination centers effective for speeding up can be formed.

【0013】軽イオンであるプロトンの飛程100μm
を得るには、イオン照射の加速エネルギ−が約4MeV
で実施できるが、重イオンとなると100μm程度の飛
程を得ようとすると莫大な加速エネルギ−が必要であ
り、加速装置を考えると現実的ではない。また、100
μmの厚みに対して重イオンを照射することは、半導体
の結晶性を考えても良くない。
Range of protons, which are light ions, 100 μm
In order to obtain, the acceleration energy of ion irradiation is about 4 MeV
However, when it comes to heavy ions, enormous acceleration energy is required to obtain a range of about 100 μm, which is not realistic considering an accelerator. Also, 100
Irradiating heavy ions with a thickness of μm is not good considering the crystallinity of the semiconductor.

【0014】そこで、1000V程度の耐圧を得るのに
高比抵抗領域14の厚みを10μm程度にできる材料を
用いることにより、高速化に必要な重イオン照射を可能
にすることができるのである。ここで、重イオンとは、
N(窒素)、O(酸素)等である。なお、図1において
19が重イオン照射領域である。
Therefore, by using a material that can make the thickness of the high resistivity region 14 about 10 μm in order to obtain a withstand voltage of about 1000 V, it is possible to enable heavy ion irradiation required for high speed. Here, heavy ions are
N (nitrogen), O (oxygen) and the like. In FIG. 1, 19 is a heavy ion irradiation region.

【0015】次に、本実施例に係る半導体装置の製造工
程を簡単に説明する。まず、P+ 型シリコンウエハ上に
異種の半導体材料(最大電界強度の高い材料であるSi
C、ダイヤモンド等)を成長させる。例えば、SiCの
場合、昇華法とかCVD(化学気相成長)法により耐圧
に応じた必要な膜厚を形成する。その後、酸化膜を形成
した後、ゲート領域、カソード領域を順次形成して行
く。そして、電極を形成し、表面側から重イオンをアノ
ード接合面に届くように照射する。
Next, the manufacturing process of the semiconductor device according to this embodiment will be briefly described. First, a different type of semiconductor material (Si, which has a high maximum electric field strength, is formed on a P + -type silicon wafer.
C, diamond, etc.) is grown. For example, in the case of SiC, a required film thickness corresponding to the breakdown voltage is formed by a sublimation method or a CVD (chemical vapor deposition) method. Then, after forming an oxide film, a gate region and a cathode region are sequentially formed. Then, an electrode is formed, and heavy ions are irradiated from the surface side so as to reach the anode junction surface.

【0016】このように、例えば高比抵抗領域14にS
iCを用いることにより、キャリア高速化の重要なパラ
メータである再結合寿命τは、 τ=1/(N・S・VTH) (N:密度、S:捕獲断面積、VTH:熱速度)におい
て、重イオンを照射することにより、密度Nを2倍程
度、SiCを用いることにより、熱速度VTHを2.7 倍に
することが可能である。即ち、キャリアの再結合寿命を
1/5.4 倍にできる。このことは、ターンオフ過程にお
ける下降時間が1/5.4 倍になることを意味している。
このようにして半導体装置の高速動作を実現することが
可能になるのである。
In this way, for example, S is added to the high resistivity region 14.
By using iC, the recombination lifetime τ, which is an important parameter for increasing the carrier speed, is τ = 1 / ( NSV TH ) (N: density, S: capture cross section, V TH : thermal velocity) In, the density N can be doubled by irradiating heavy ions, and the thermal speed V TH can be doubled by using SiC. That is, the recombination life of carriers can be increased to 1 / 5.4 times. This means that the fall time in the turn-off process becomes 1 / 5.4 times.
In this way, high-speed operation of the semiconductor device can be realized.

【0017】なお、本発明は上記実施例に限定されるも
のではない。上記実施例では表面ゲート型静電誘導サイ
リスタを示したが、埋め込みゲート型の静電誘導サイリ
スタであってもよい。また、半導体装置は静電誘導サイ
リスタ以外であってもよく、例えばIGBT(絶縁ゲー
ト型バイポーラトランジスタ)、ゲートターンオフサイ
リスタであってもよい。さらに、拡散領域の各伝導型の
N,Pが逆転していてもよい。
The present invention is not limited to the above embodiment. Although the surface gate type static induction thyristor is shown in the above embodiment, a buried gate type static induction thyristor may be used. The semiconductor device may be other than the static induction thyristor, and may be, for example, an IGBT (insulated gate bipolar transistor) or a gate turn-off thyristor. Furthermore, N and P of each conductivity type in the diffusion region may be reversed.

【0018】[0018]

【発明の効果】上述のように、本発明に係る半導体装置
では、従来、Si(シリコン)で構成されていた高比抵
抗領域を最大電界強度の高い材料(例えば、SiC、ダ
イヤモンド等)で構成したことにより、高比抵抗領域の
厚みを薄くでき、導通時の直列抵抗を低減できる。
As described above, in the semiconductor device according to the present invention, the high specific resistance region, which was conventionally made of Si (silicon), is made of a material having a high maximum electric field strength (for example, SiC, diamond, etc.). As a result, the thickness of the high specific resistance region can be reduced, and the series resistance during conduction can be reduced.

【0019】また、高比抵抗領域の厚みを薄くできるの
で、バイポーラ系の半導体装置において高速化に有効な
アノード接合前面への重イオン照射が可能となる。従っ
て、請求項2記載の発明によれば、高速スイッチングが
可能になり、特にターンオフ時の下降時間の短縮が図
れ、スイッチング損失を低減できる効果がある。その結
果、半導体装置の発熱を抑え、組み込む機器の小型化が
可能になる。
Further, since the thickness of the high-resistivity region can be made thin, heavy ion irradiation to the front surface of the anode junction, which is effective for speeding up in a bipolar semiconductor device, becomes possible. Therefore, according to the second aspect of the present invention, high-speed switching is possible, and in particular, the fall time at turn-off can be shortened and the switching loss can be reduced. As a result, the heat generation of the semiconductor device can be suppressed, and the equipment to be incorporated can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】従来例を示す断面図である。FIG. 2 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

11 半導体基板 12 カソード領域 13 アノード領域 14 高比抵抗領域 15 ゲート領域 16 カソード電極 17 ゲート電極 18 酸化膜 19 重イオン照射領域 11 semiconductor substrate 12 cathode region 13 anode region 14 high resistivity region 15 gate region 16 cathode electrode 17 gate electrode 18 oxide film 19 heavy ion irradiation region

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/804 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/804

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一側にカソード領域を備え
るとともに、他側にアノード領域を備え、かつ、これら
のカソード領域とアノード領域の間に電流通路となる高
比抵抗領域を備え、前記高比抵抗領域を流れる電流を制
御するゲート領域を備えた半導体装置において、前記高
比抵抗領域を最大電界強度の高い材料で構成したことを
特徴とする半導体装置。
1. A semiconductor substrate having a cathode region on one side, an anode region on the other side, and a high resistivity region serving as a current path between the cathode region and the anode region. A semiconductor device having a gate region for controlling a current flowing through a specific resistance region, wherein the high specific resistance region is made of a material having a high maximum electric field strength.
【請求項2】 半導体基板の一側にカソード領域を備え
るとともに、他側にアノード領域を備え、かつ、これら
のカソード領域とアノード領域の間に電流通路となる高
比抵抗領域を備え、前記高比抵抗領域を流れる電流を制
御するゲート領域を備えた半導体装置において、前記高
比抵抗領域を最大電界強度の高い材料で構成するととも
に、重イオン照射によるライフタイム制御を前記アノー
ド領域の前面に施したことを特徴とする半導体装置。
2. A semiconductor substrate having a cathode region on one side, an anode region on the other side, and a high specific resistance region serving as a current path between the cathode region and the anode region. In a semiconductor device having a gate region for controlling a current flowing through a specific resistance region, the high specific resistance region is made of a material having a high maximum electric field strength, and lifetime control by heavy ion irradiation is performed on the front surface of the anode region. A semiconductor device characterized by the above.
JP5042467A 1993-03-03 1993-03-03 Semiconductor device Pending JPH06260631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5042467A JPH06260631A (en) 1993-03-03 1993-03-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5042467A JPH06260631A (en) 1993-03-03 1993-03-03 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH06260631A true JPH06260631A (en) 1994-09-16

Family

ID=12636882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5042467A Pending JPH06260631A (en) 1993-03-03 1993-03-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH06260631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276953A (en) * 2004-03-23 2005-10-06 National Institute Of Advanced Industrial & Technology BIPOLAR SiC SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276953A (en) * 2004-03-23 2005-10-06 National Institute Of Advanced Industrial & Technology BIPOLAR SiC SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD

Similar Documents

Publication Publication Date Title
KR100284750B1 (en) Silicon carbide thyristor
Baliga Fundamentals of power semiconductor devices
US7851274B1 (en) Processing technique to improve the turn-off gain of a silicon carbide gate turn-off thyristor
JP4967200B2 (en) Bidirectional IGBT with reverse blocking IGBTs connected in antiparallel
US8829533B2 (en) Silicon carbide semiconductor device
US7534666B2 (en) High voltage non punch through IGBT for switch mode power supplies
JP2002305304A (en) Power semiconductor device
JPH01199469A (en) Semiconductor device
Shekar et al. Characteristics of the emitter-switched thyristor
US6011279A (en) Silicon carbide field controlled bipolar switch
JPH01258476A (en) High breakdown voltage semiconductor device and manufacture thereof
Zhang et al. Design and characterization of high-voltage 4H-SiC p-IGBTs
JPH02110975A (en) Manufacture of semiconductor device
JP2851026B2 (en) High speed diode
US20020134992A1 (en) Modified-anode gate turn-off thyristor
JP4364945B2 (en) Bipolar semiconductor device manufacturing method
Nakamura et al. Very high speed static induction thyristor
JPH06260631A (en) Semiconductor device
JP3885616B2 (en) Semiconductor device
Iwamuro et al. Forward biased safe operating area of emitter switched thyristors
JP2003218354A (en) Semiconductor device and its manufacturing method
JPH04252078A (en) Manufacture of switching semiconductor device
Ramungul Design and characterization of 6H-SiC devices for high-power and high-temperature applications
JPH08241993A (en) Power switching device
Iwamuro et al. Comparison of RBSOA of ESTs with IGBTs and MCTs