JPH06258624A - Reflection type display element - Google Patents

Reflection type display element

Info

Publication number
JPH06258624A
JPH06258624A JP4410493A JP4410493A JPH06258624A JP H06258624 A JPH06258624 A JP H06258624A JP 4410493 A JP4410493 A JP 4410493A JP 4410493 A JP4410493 A JP 4410493A JP H06258624 A JPH06258624 A JP H06258624A
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
display element
refractive index
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4410493A
Other languages
Japanese (ja)
Inventor
Hidekazu Kobayashi
英和 小林
Eiji Chino
英治 千野
Masayuki Yazaki
正幸 矢崎
Hideto Iizaka
英仁 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4410493A priority Critical patent/JPH06258624A/en
Publication of JPH06258624A publication Critical patent/JPH06258624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide the bright reflection type display element having a wide visual angle and to realize the bright reflection type display having a large capacity and wide visual angle by using substrates having a high refractive index as substrates for holding a liquid crystal/high-polymer layer. CONSTITUTION:This display element is so formed that the refractive index near the surface of the front side substrate 1 in contact with the liquid crystal 3/high-polymer 4 layer is >=1, more preferably >=1.5. Since the refractive index of the substrate 1 is much higher than the refractive index of air and, if the light is made incident in a diagonal direction, the light is made incident at a nearly perpendicular angle on the liquid crystal 3/high-polymer 4 layer. The light exclusive of the light penetrating from the front surface, is consequently made incident eventually at the nearly perpendicular angle on the surface of the display element and, therefore, the scattering efficiency is improved. The light emitted to be scattered in the direction to the front surface is emitted in a diagonal direction at the boundary between the substrate 1 and the air and, therefore, the visual angle is eventually widened. The effect is higher if the display element is applied particularly to a display element having scattering with large dependency on the visual angles, among the display elements of the light scattering type.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、OA機器あるいは小型
情報機器のディスプレイ、あるいは野外表示装置などに
用いる反射型表示素子の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a reflection type display element used for a display of an office automation equipment or a small information equipment, or an outdoor display device.

【0002】[0002]

【従来の技術】近年OA機器のダウンサイジングに伴
い、コンピュータディスプレイの薄型軽量化の為の開発
が進行している。なかでもバックライト無しでも明るく
みられるペーパーホワイト表示が実現できる可能性のあ
る高分子分散型液晶表示素子の開発が盛んである。たと
えば特公平3−52843で示されているような液晶を
高分子のカプセルに閉じこめてバインダーで固定化した
マイクロカプセル型のものや、特表昭61−50212
8で示されているような高分子の中に液晶の液滴が分散
しているスイスチーズ構造のもの、あるいは特公平3−
126915で示しているようなスポンジ状のネットワ
ーク中に液晶を分散した物、あるいはヨーロッパ公開特
許EP0488116A2に示されている液晶中に高分
子粒子が配向した状態で分散されている物など、数多く
の表示素子が開発されている。
2. Description of the Related Art In recent years, with downsizing of office automation equipment, development for thinning and lightweighting computer displays has been in progress. In particular, development of polymer dispersed liquid crystal display devices that have the possibility of realizing bright paper white display without a backlight is active. For example, as shown in JP-B-3-52843, a microcapsule type in which a liquid crystal is enclosed in a polymer capsule and fixed with a binder, or JP-B-61-50212.
Of the Swiss cheese structure in which liquid crystal droplets are dispersed in a polymer as shown in 8 or Japanese Patent Publication No.
There are many displays such as those in which liquid crystals are dispersed in a sponge-like network as shown in 126915, or those in which polymer particles are dispersed in an aligned state in the liquid crystals shown in European Patent Publication EP0488116A2. The device is being developed.

【0003】[0003]

【発明が解決しようとする課題】しかし従来の高分子分
散型液晶表示素子では、反射型とした場合明るさとコン
トラストの視角依存性が大きく、正面で見る場合には明
るいが正面からはずれると暗くなって表示が見にくくな
るという課題を有していた。
However, in the conventional polymer-dispersed liquid crystal display element, the brightness and contrast greatly depend on the viewing angle when the reflection type is used, and it is bright when viewed from the front but becomes dark when deviated from the front. Therefore, there is a problem that the display becomes difficult to see.

【0004】そこで本発明はこのような課題を解決する
物であり、その目的とするところは視角の広い明るい反
射型表示素子を提供するところにある。
Therefore, the present invention is to solve such a problem, and an object thereof is to provide a bright reflective display element having a wide viewing angle.

【0005】[0005]

【課題を解決するための手段】液晶と高分子を互いに分
散した反射型表示素子において、表側の基板での少なく
とも液晶/高分子層に接する面近傍の屈折率が1以上、
さらに望ましくは1.5以上であることを特徴とする。
さらに前記基板が1種類の材料からなることを特徴とす
るか、あるいは前記基板が基板の厚さ方向で屈折率分布
を持つことを特徴とする。以下に本発明の詳細を実施例
で示す。
In a reflective display device in which a liquid crystal and a polymer are dispersed in each other, the refractive index of at least the surface of the front substrate near the surface in contact with the liquid crystal / polymer layer is 1 or more,
More preferably, it is 1.5 or more.
Further, the substrate is made of one kind of material, or the substrate has a refractive index distribution in the thickness direction of the substrate. Hereinafter, details of the present invention will be shown by examples.

【0006】[0006]

【実施例】【Example】

(実施例1)本実施例では液晶と高分子を互いに配向分
散させた表示素子に本発明を応用した例を示す。図1に
本実施例の表示素子の簡単な断面図を示す。図1に沿っ
て簡単な原理説明を行う。表示素子に外部から光が入射
すると図1に示したように空気と基板1の界面で光の屈
折が生じ、斜め方向から光が入射した場合には基板1の
屈折率が空気に比べて十分大きい(1以上、望ましくは
1.5以上)ために液晶3/高分子4の層に対して垂直
に近い角度で光が入射する。このため正面から差し込む
光以外の光も表示素子表面に垂直に近い角度で入射する
ことになるので散乱効率が向上するのである。また正面
方向に散乱しようとして出射してきた光は基板1と空気
の界面で斜め方向に出射させられるので視角が広がるこ
とになる。本発明は光散乱型の表示素子の中でも特に散
乱の視角依存性の大きい表示素子に応用すると効果が大
きい。
(Embodiment 1) This embodiment shows an example in which the present invention is applied to a display device in which a liquid crystal and a polymer are oriented and dispersed. FIG. 1 shows a simple cross-sectional view of the display device of this example. A simple principle will be described with reference to FIG. When light is incident on the display element from the outside, the light is refracted at the interface between the air and the substrate 1 as shown in FIG. 1, and when the light is incident from an oblique direction, the refractive index of the substrate 1 is sufficiently higher than that of air. Since it is large (1 or more, preferably 1.5 or more), light is incident on the liquid crystal 3 / polymer 4 layer at an angle close to vertical. Therefore, light other than light incident from the front also enters the surface of the display element at an angle close to vertical, so that the scattering efficiency is improved. Further, since the light that is going to be scattered in the front direction is emitted obliquely at the interface between the substrate 1 and the air, the viewing angle is widened. The present invention is particularly effective when applied to a display element having a large viewing angle dependency of scattering among the light scattering type display elements.

【0007】次に表示素子の製造方法を示す。まず基板
であるが、表側の基板1としてHOYA社製TaF3
(屈折率1.8)を用い、これに透明電極2を形成した
後に電極表面に配向処理を施した。対向基板7としては
通常のほう珪酸ガラスを用い、反射電極6としてアルミ
ニウムを蒸着した。この電極表面に配向処理を施した。
その後この2枚の基板を間隙5μm(5μmでなくても
良く、用途に応じ最適化する)を保って固定した。この
間隙に封入する組成物について説明する。液晶3(メル
ク社製液晶TL202とメルク社製カイラル成分CB1
5および図1中に5として示した三井東圧染料社製2色
性色素S−344をそれぞれ95:2.5:2.5で混
合した物)と高分子前駆体としてビフェニルメタクリレ
ートを90:10で混合して先の示した空パネルに封入
し、液晶相にて紫外線を照射して高分子前駆体を重合し
て高分子粒子4を液晶3中から析出させた。
Next, a method of manufacturing the display element will be described. First, for the substrate, TaF3 manufactured by HOYA is used as the front substrate 1.
(Refractive index 1.8) was used, and after the transparent electrode 2 was formed thereon, the electrode surface was subjected to orientation treatment. Ordinary borosilicate glass was used as the counter substrate 7, and aluminum was deposited as the reflective electrode 6. The surface of this electrode was subjected to orientation treatment.
After that, the two substrates were fixed with a gap of 5 μm (not necessarily 5 μm, optimized depending on the application). The composition sealed in this gap will be described. Liquid crystal 3 (liquid crystal TL202 manufactured by Merck and chiral component CB1 manufactured by Merck)
5 and a mixture of dichroic dye S-344 manufactured by Mitsui Toatsu Dyes Co., Ltd. shown as 5 in FIG. 1 at 95: 2.5: 2.5) and biphenyl methacrylate as a polymer precursor 90: The mixture was mixed in No. 10 and sealed in the above-mentioned empty panel, and ultraviolet rays were irradiated in the liquid crystal phase to polymerize the polymer precursor to precipitate polymer particles 4 from the liquid crystal 3.

【0008】次にこうして作製した表示素子の電気光学
特性を測定した。従来の通常の屈折率(1.5程度)の
ガラス基板を用いた場合の電気光学特性との差を調べる
ため、表示素子表面の法線から45度傾いた方向から光
を投射して、表示素子の法線方向に反射する光の強度を
測定した。これによれば、白い紙を配置した場合の反射
率を100%とすると、本発明の表示素子の反射率は電
界印加時で80%程度であり、従来例(反射率50%)
に比べるとかなり改善されていることが分かる。
Next, the electro-optical characteristics of the display device thus manufactured were measured. In order to investigate the difference from the electro-optical characteristics when a conventional glass substrate having a normal refractive index (about 1.5) is used, light is projected from a direction inclined by 45 degrees from the normal line of the display element surface to display. The intensity of light reflected in the normal direction of the device was measured. According to this, assuming that the reflectance when white paper is arranged is 100%, the reflectance of the display element of the present invention is about 80% when an electric field is applied, which is a conventional example (reflectance of 50%).
You can see that it is considerably improved compared to.

【0009】ここで用いる液晶、高分子、カイラル成
分、2色性色素についてはここに示した物に限らず、表
示素子として機能する材料を用いれば良い。またこれら
の配合比率もここに示した比率に限らない。カイラル成
分、2色性色素は配合しなくても良い。高分子について
は分子の長さが短めのアクリル樹脂前駆体、メタクリル
樹脂前駆体、クロトネート、シンナメート、エポキシ樹
脂前駆体のような紫外線硬化型あるいは電子線硬化型樹
脂前駆体も同様に用いることができる。またエポキシ樹
脂のような熱硬化型樹脂も用いることができる。さらに
エチルセルロースなどの熱可塑性樹脂を用いて、加熱し
て液晶と相溶させて、基板間隙に封入してゆっくりと徐
冷して相分離させても良い。
The liquid crystal, polymer, chiral component and dichroic dye used here are not limited to those shown here, and any material that functions as a display element may be used. Further, the mixing ratio of these is not limited to the ratio shown here. The chiral component and the dichroic dye may not be blended. For polymers, UV curable or electron beam curable resin precursors such as acrylic resin precursors, methacrylic resin precursors, crotonates, cinnamates, and epoxy resin precursors having shorter molecular lengths can also be used in the same manner. . A thermosetting resin such as an epoxy resin can also be used. Further, a thermoplastic resin such as ethyl cellulose may be used to be heated to make it compatible with the liquid crystal, to be enclosed in the gap between the substrates and to be slowly cooled slowly for phase separation.

【0010】ここで用いる表側の基板1については屈折
率が1.6以上の物であれば用いることができる。
The front substrate 1 used here may be any one having a refractive index of 1.6 or more.

【0011】裏側に用いる基板7についてはどのような
材質の材料でも構わない(樹脂などでも良い)。
The substrate 7 used for the back side may be made of any material (resin or the like).

【0012】基板に形成する電極については、電極2は
透明である必要があるが電極7は透明性、反射性、ある
いは光吸収性の電極であれば良いが、望ましくは反射性
の電極がよい。反射性電極を用いず反射モードとするに
は、基板7の裏側に反射層を配置すれば良い。
Regarding the electrode formed on the substrate, the electrode 2 needs to be transparent, but the electrode 7 may be a transparent, reflective or light absorbing electrode, but a reflective electrode is preferable. . In order to use the reflective mode without using the reflective electrode, a reflective layer may be arranged on the back side of the substrate 7.

【0013】電極上に施す配向処理についてはラビング
処理を行ったが、これに限らず垂直配向処理を施しても
良い。この場合用いる液晶の誘電異方性は負の物を用い
る必要がある。配向処理する際、配向膜を形成しても良
い。また配向処理を施さずとも機能する。
The rubbing treatment was performed as the orientation treatment applied to the electrodes, but the present invention is not limited to this, and vertical orientation treatment may be performed. In this case, it is necessary to use a liquid crystal having a negative dielectric anisotropy. An alignment film may be formed during the alignment treatment. It also functions without the alignment treatment.

【0014】(実施例2)本実施例では液晶/高分子材
料として液晶を含んだマイクロカプセルが高分子バイン
ダー中に分散された構造の表示素子について本発明を適
用した例を示す。素子の製造方法を示す。反射性電極6
を形成したほう珪酸ガラス基板7上に、液晶とPVAと
水の懸濁液を展開して水を蒸発させて電極2を形成した
高屈折率ガラス1を張り合わせた。このとき液晶中に2
色性色素を入れなければ電界無印加で乳白色、電界印加
で鏡となる。また液晶中に2色性色素を混合して反射性
電極として無指向性の反射電極を用いた場合、電界無印
加時には色素色の表示、電界印加で無指向性反射板の色
が表示される。いずれの場合も従来に比べて明るさが
1.3倍程度向上した。
(Embodiment 2) This embodiment shows an example in which the present invention is applied to a display device having a structure in which microcapsules containing liquid crystal as a liquid crystal / polymer material are dispersed in a polymer binder. A method of manufacturing the device will be described. Reflective electrode 6
On the borosilicate glass substrate 7 on which was formed the high refractive index glass 1 on which the electrode 2 was formed by spreading a suspension of liquid crystal, PVA and water and evaporating the water, was laminated. At this time, 2 in the liquid crystal
If no chromatic dye is added, it becomes milky white when no electric field is applied, and it becomes a mirror when an electric field is applied. When a dichroic dye is mixed in the liquid crystal and an omnidirectional reflective electrode is used as the reflective electrode, the dye color is displayed when no electric field is applied, and the color of the omnidirectional reflector is displayed when an electric field is applied. . In any case, the brightness was improved by 1.3 times as compared with the conventional one.

【0015】用いる液晶はロディック社製PN001、
高分子としてはPVAを用いたがこれらに限らない。液
晶は、2色性色素を用いない場合には複屈折性の大きい
物が好ましい。2色性色素を用いる場合には用途に応じ
複屈折性を制御すれば良い。2色性色素は用いずともよ
いが、用いる場合には2色比の大きい物が好ましい。高
分子は液晶をマイクロカプセルとして固定化できる材料
であれば良い。
The liquid crystal used is PN001 manufactured by Rodick,
Although PVA was used as the polymer, it is not limited to these. The liquid crystal preferably has a large birefringence when a dichroic dye is not used. When a dichroic dye is used, the birefringence may be controlled according to the application. The dichroic dye may not be used, but when it is used, a compound having a large dichroic ratio is preferable. The polymer may be any material that can immobilize liquid crystals as microcapsules.

【0016】基板1、基板7、そのほかの条件について
は実施例1に示した材料、条件を用いることができるが
基板に配向処理を施す必要はない。
The materials and conditions shown in the first embodiment can be used for the substrate 1, the substrate 7, and other conditions, but it is not necessary to subject the substrates to the alignment treatment.

【0017】(実施例3)本実施例ではスイスチーズ構
造を持つ表示素子について本発明を応用した例を示す。
用いた基板、電極などの条件については実施例1と同じ
である。ただし基板電極上の配向処理を行う必要はな
い。基板1と基板7を間隙10μm(10μmでなくと
も良く、用途に応じ最適化する)を保って固定して、こ
の間隙に液晶と高分子前駆体の混合物を封入した。これ
を82℃にて10分間硬化させて液晶と高分子を相分離
させた。このとき液晶中に2色性色素を入れなければ電
界無印加で乳白色、電界印加で鏡となる。また液晶中に
2色性色素を混合して反射性電極として無指向性の反射
電極を用いた場合、電界無印加時には色素色の表示、電
界印加で無指向性反射板の色が表示される。いずれの場
合も従来に比べて明るさが1.5倍程度向上した。
(Embodiment 3) This embodiment shows an example in which the present invention is applied to a display device having a Swiss cheese structure.
The conditions of the substrate and electrodes used are the same as in Example 1. However, it is not necessary to perform the alignment treatment on the substrate electrode. The substrate 1 and the substrate 7 were fixed with a gap of 10 μm (not necessarily 10 μm, optimized depending on the application), and a mixture of liquid crystal and polymer precursor was enclosed in this gap. This was cured at 82 ° C. for 10 minutes to phase-separate the liquid crystal and the polymer. At this time, if no dichroic dye is added to the liquid crystal, it becomes a milky white when no electric field is applied, and a mirror when an electric field is applied. When a dichroic dye is mixed in the liquid crystal and an omnidirectional reflective electrode is used as the reflective electrode, the dye color is displayed when no electric field is applied, and the color of the omnidirectional reflector is displayed when an electric field is applied. . In each case, the brightness is improved by about 1.5 times as compared with the conventional one.

【0018】液晶としてE7(メルク社製)、高分子前
駆体としてエポキシ樹脂前駆体(EPON828、Mi
ller Stephenson社製)と硬化剤として
ヘキシルアミンを用いたが、高分子前駆体としてはこの
ような熱硬化型樹脂の他、ビスフェノールアクリレート
などのアクリル樹脂前駆体、メタクリル樹脂前駆体、ク
ロトネート、シンナメート、エポキシ樹脂前駆体のよう
な紫外線硬化型あるいは電子線硬化型樹脂前駆体も同様
に用いることができる。さらにエチルセルロースなどの
熱可塑性樹脂を用いて、加熱して液晶と相溶させて、基
板間隙に封入して徐冷して相分離させても良い。
E7 (manufactured by Merck) as a liquid crystal and an epoxy resin precursor (EPON828, Mi as a polymer precursor)
ller Stephenson) and hexylamine as a curing agent, but as the polymer precursor, in addition to such a thermosetting resin, an acrylic resin precursor such as bisphenol acrylate, a methacrylic resin precursor, crotonate, cinnamate, An ultraviolet curable or electron beam curable resin precursor such as an epoxy resin precursor can be similarly used. Further, a thermoplastic resin such as ethyl cellulose may be used to be heated to be compatible with the liquid crystal, sealed in the gap between the substrates, and gradually cooled to be phase-separated.

【0019】(実施例4)本実施例では配向したゲルネ
ットワーク中に液晶が配向分散している表示素子につい
て本実施例を応用した例を示す。用いた基板、電極など
の条件については実施例1と同じである。基板電極上の
配向処理も同様に行うと良い。基板1と基板7を間隙5
μm(5μmでなくても良く、用途に応じ最適化する)
を保って固定して、この間隙に液晶と高分子前駆体の混
合物を封入した。これに液晶相にて紫外線(強度3mW
/cm2、波長300nm〜400nm)を10分間照
射して液晶と高分子を相分離した。このとき紫外線の強
度はこれより強くても弱くても良く、波長はこれより短
波長でも硬化する。また電子線を照射しても良い。この
とき液晶中に2色性色素を入れなければ電界無印加で
鏡、電界印加で乳白色となる。また液晶中に2色性色素
を混合すると、実施例1と同様に電界無印加時には色素
色の表示、電界印加で乳白色となる。いずれの場合も従
来に比べて明るさが1.5倍程度向上した。
(Embodiment 4) In this embodiment, an example in which this embodiment is applied to a display element in which liquid crystals are oriented and dispersed in an oriented gel network is shown. The conditions of the substrate and electrodes used are the same as in Example 1. The alignment treatment on the substrate electrode may be similarly performed. Board 1 and board 7 are separated by a gap 5
μm (not necessarily 5 μm, optimized depending on the application)
The liquid crystal and the polymer precursor were sealed in this gap. In addition, ultraviolet rays (intensity 3mW) in the liquid crystal phase
/ Cm2, wavelength 300 nm-400 nm) was irradiated for 10 minutes, and the liquid crystal and the polymer were phase-separated. At this time, the intensity of ultraviolet rays may be stronger or weaker than this, and even if the wavelength is shorter than this, it is cured. Moreover, you may irradiate an electron beam. At this time, if no dichroic dye is added to the liquid crystal, a mirror is formed without applying an electric field, and a milky white is formed by applying an electric field. When a dichroic dye is mixed in the liquid crystal, the dye color is displayed when no electric field is applied, and a milky white color appears when an electric field is applied, as in Example 1. In each case, the brightness is improved by about 1.5 times as compared with the conventional one.

【0020】液晶としてE7(メルク社製)、高分子前
駆体としてビスフェノールとアクリレートの間にアルキ
ル鎖のような長鎖のスペーサーを挿入したアクリル樹脂
前駆体を用いたが、そのほかの分子長の長めのアクリル
樹脂前駆体、メタクリル樹脂前駆体、クロトネート、シ
ンナメート、エポキシ樹脂前駆体のような紫外線硬化型
あるいは電子線硬化型樹脂前駆体も同様に用いることが
できる。またエポキシ樹脂のような熱硬化型樹脂も用い
ることができる。さらにエチルセルロースなどの熱可塑
性樹脂を用いて、加熱して液晶と相溶させて、基板間隙
に封入して徐冷して相分離させても良い。
E7 (manufactured by Merck & Co., Inc.) was used as the liquid crystal, and an acrylic resin precursor in which a long chain spacer such as an alkyl chain was inserted between bisphenol and acrylate was used as the polymer precursor. An ultraviolet curable or electron beam curable resin precursor such as an acrylic resin precursor, a methacrylic resin precursor, a crotonate, a cinnamate, or an epoxy resin precursor can be similarly used. A thermosetting resin such as an epoxy resin can also be used. Further, a thermoplastic resin such as ethyl cellulose may be used to be heated to be compatible with the liquid crystal, sealed in the gap between the substrates, and gradually cooled to be phase-separated.

【0021】(実施例5)本実施例では、高屈折率基板
として異なる屈折率の基板を複数張り合わせた物を用い
る場合について示す。先の実施例で用いた基板1とし
て、ほう珪酸ガラスとTaF3(屈折率1.8程度)さ
らにFDS1(HOYA社製、屈折率2程度)をこの順
に張り合わせた。こうした基板を実施例1から4までの
基板1と差し替えて用いたところ、さらに明るさを1.
2倍程度向上させることができた。
(Embodiment 5) In this embodiment, a case in which a plurality of substrates having different refractive indexes are laminated together is used as the high refractive index substrate. As the substrate 1 used in the previous example, borosilicate glass, TaF3 (refractive index of about 1.8) and FDS1 (manufactured by HOYA, refractive index of about 2) were laminated in this order. When such a substrate was used in place of the substrate 1 of Examples 1 to 4, the brightness was 1.
I was able to improve it about twice.

【0022】用いるガラスについては、液晶層に近い面
での屈折率が高くなるようにガラスを組み合わせると効
果が大きい。張り合わせるガラスの枚数は何枚でも良
い。
As for the glass used, it is very effective to combine the glass so that the refractive index at the surface close to the liquid crystal layer becomes high. Any number of laminated glass may be used.

【0023】本実施例では、屈折率が基板の厚さ方向で
ステップ状に変化する例を挙げたが、高屈折率基板とし
て基板の厚さ方向に連続した屈折率分布がある基板も同
様に用いることができる。たとえばゾルゲル法によりガ
ラス基板を形成すれば、高屈折素材を基板の片面から含
浸して焼成することにより容易に屈折率分布をもつ基板
を製造できる。また樹脂を用いる場合も同様に樹脂前駆
体をゲル化して、そこに屈折率の異なる樹脂前駆体を含
浸させて重合を完結させれば良い。
In this embodiment, an example in which the refractive index changes stepwise in the thickness direction of the substrate has been described, but a substrate having a continuous refractive index distribution in the thickness direction of the substrate as a high refractive index substrate is also the same. Can be used. For example, if a glass substrate is formed by a sol-gel method, a substrate having a refractive index distribution can be easily manufactured by impregnating a high-refractive material from one surface of the substrate and baking it. When a resin is used, the resin precursor may be gelated in the same manner, and the resin precursor having a different refractive index may be impregnated therein to complete the polymerization.

【0024】(実施例6)本実施例では液晶/高分子層
を挟持する基板の一方に2端子素子あるいは3端子素子
を形成した例を示した。図2に本実施例の表示素子の簡
単な断面図を示した。基板7上に2端子素子を形成した
以外は実施例1と同様である。図3には3端子素子を形
成した例を示した。2端子素子も3端子素子も図に示し
た構成でなくても、液晶を駆動できる素子であれば同様
に用いることができる。いずれの場合も表側の基板1に
高屈折率基板(TaF3、HOYA社製)を用いてい
る。もちろん実施例5に示したような基板も同様に用い
ることができる。これらの基板間に封入する液晶/高分
子としては実施例1から実施例4までの材料を用いるこ
とができる。以上の構成のどれもが従来の2端子素子あ
るいは3端子素子を用いた液晶/高分子分散型の大容量
反射型表示素子よりも1.2〜1.4倍明るい大容量表
示を行うことが可能となった。本実施例では2端子素子
あるいは3端子素子を裏基板に形成した例を示したが、
もちろん表基板にこれらを形成することもできる。ただ
しこの際耐熱性の良好な基板を用いる必要がある。
(Embodiment 6) In this embodiment, an example in which a two-terminal element or a three-terminal element is formed on one of the substrates sandwiching the liquid crystal / polymer layer is shown. FIG. 2 shows a simple cross-sectional view of the display device of this example. The same as Example 1 except that the two-terminal element was formed on the substrate 7. FIG. 3 shows an example in which a three-terminal element is formed. Even if the two-terminal element and the three-terminal element do not have the configurations shown in the drawings, they can be similarly used as long as they can drive the liquid crystal. In either case, a high refractive index substrate (TaF3, manufactured by HOYA) is used as the front substrate 1. Of course, the substrate as shown in Example 5 can be used as well. As the liquid crystal / polymer filled between these substrates, the materials of Examples 1 to 4 can be used. Any of the above-mentioned configurations is capable of performing large-capacity display which is 1.2 to 1.4 times brighter than a conventional liquid crystal / polymer dispersed large-capacity reflective display element using a two-terminal element or a three-terminal element. It has become possible. In this embodiment, the example in which the two-terminal element or the three-terminal element is formed on the back substrate is shown.
Of course, these can be formed on the front substrate. However, at this time, it is necessary to use a substrate having good heat resistance.

【0025】本実施例でカラーフィルターを設けると、
大容量反射型カラーディスプレイを実現できる。
If a color filter is provided in this embodiment,
A large-capacity reflective color display can be realized.

【0026】以上実施例を述べたが、全ての実施例にお
いて表示素子の表面にノングレア処理または無反射処
理、あるいはこれら両方の処理を施すことによりコント
ラストを格段に向上することができる。
Although the embodiments have been described above, the contrast can be remarkably improved by applying non-glare treatment, anti-reflection treatment, or both treatments to the surface of the display element in all the embodiments.

【0027】[0027]

【発明の効果】以上本発明によれば、液晶/高分子層を
挟持する基板に高屈折率の基板を用いることにより、視
角の広い明るい反射型表示素子を提供できるようになっ
た。また2端子素子あるいは3端子素子基板と組み合わ
せることにより大容量の視角の広い明るい反射型表示素
子を実現できるようになった。
As described above, according to the present invention, it is possible to provide a bright reflective display device having a wide viewing angle by using a substrate having a high refractive index as a substrate sandwiching a liquid crystal / polymer layer. Further, by combining with a two-terminal element or a three-terminal element substrate, a large-capacity bright reflective display element having a wide viewing angle can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の表示素子の簡単な断面図である。FIG. 1 is a simple cross-sectional view of a display element of Example 1.

【図2】 実施例6の2端子素子を用いた場合の表示素
子の断面図である。
FIG. 2 is a sectional view of a display element when a two-terminal element of Example 6 is used.

【図3】 実施例6の3端子素子を用いた場合の表示素
子の断面図である。
FIG. 3 is a sectional view of a display element when a three-terminal element of Example 6 is used.

【符号の説明】[Explanation of symbols]

1 高屈折率基板 2 透明電極 3 液晶 4 高分子 5 2色性色素 6 電極 7 基板 8 保護層 9 絶縁層 10 走査電極 14 ソース電極 15 ゲート電極 16 半導体層 17 ドレイン電極 18 ゲート絶縁層 1 high refractive index substrate 2 transparent electrode 3 liquid crystal 4 polymer 5 dichroic dye 6 electrode 7 substrate 8 protective layer 9 insulating layer 10 scan electrode 14 source electrode 15 gate electrode 16 semiconductor layer 17 drain electrode 18 gate insulating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯坂 英仁 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hidehito Iizaka 3-3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液晶と高分子を互いに分散した反射型表
示素子において、表側の基板での少なくとも液晶/高分
子層に接する面近傍の屈折率が1以上であることを特徴
とする反射型表示素子。
1. A reflective display device in which a liquid crystal and a polymer are dispersed in each other, wherein the refractive index of at least the surface of the front substrate near the surface in contact with the liquid crystal / polymer layer is 1 or more. element.
【請求項2】 前記屈折率が1.5以上であることを特
徴とする請求項1記載の反射型表示素子。
2. The reflective display element according to claim 1, wherein the refractive index is 1.5 or more.
【請求項3】 前記基板が1種類の材料からなることを
特徴とする請求項1記載の反射型表示素子。
3. The reflective display element according to claim 1, wherein the substrate is made of one kind of material.
【請求項4】 前記基板が基板の厚さ方向で屈折率分布
を持つことを特徴とする請求項1記載の反射型表示素
子。
4. The reflective display element according to claim 1, wherein the substrate has a refractive index distribution in the thickness direction of the substrate.
【請求項5】 液晶/高分子を挟持する基板の少なくと
もどちらか一方に2端子素子あるいは3端子素子が形成
されていることを特徴とする請求項1記載の反射型表示
素子。
5. The reflective display element according to claim 1, wherein a two-terminal element or a three-terminal element is formed on at least one of the substrates sandwiching the liquid crystal / polymer.
JP4410493A 1993-03-04 1993-03-04 Reflection type display element Pending JPH06258624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4410493A JPH06258624A (en) 1993-03-04 1993-03-04 Reflection type display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4410493A JPH06258624A (en) 1993-03-04 1993-03-04 Reflection type display element

Publications (1)

Publication Number Publication Date
JPH06258624A true JPH06258624A (en) 1994-09-16

Family

ID=12682313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4410493A Pending JPH06258624A (en) 1993-03-04 1993-03-04 Reflection type display element

Country Status (1)

Country Link
JP (1) JPH06258624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723392B1 (en) 1999-03-31 2004-04-20 Daicel Chemical Industries, Ltd. Light scattering sheet, light scattering composite sheet, and liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723392B1 (en) 1999-03-31 2004-04-20 Daicel Chemical Industries, Ltd. Light scattering sheet, light scattering composite sheet, and liquid crystal display

Similar Documents

Publication Publication Date Title
JP3060656B2 (en) Liquid crystal display device
US7589809B2 (en) Reflective plate, production method therefor, liquid crystal device, and electronic device
US6333770B1 (en) Liquid crystal panel with reducing means, manufacturing method therefore and projection display apparatus using the same
EP0563403B1 (en) Display element and its manufacturing method
KR19980063717A (en) Reflective liquid crystal display device
JP2002107519A (en) Reflection type display unit, retroreflector
JPH05249443A (en) Polymer dispersion type liquid crystal display element and reflection type liquid crystal display device
US5867237A (en) Polymer dispersed liquid crystal display device and method of producing a display device
US6025895A (en) Liquid crystal display with mutually oriented and dispersed birefringent polymer and liquid crystal and random oriented twist alignment
JPH06294954A (en) Reflection type display device
JP3416947B2 (en) Liquid crystal display device and method of manufacturing the same
JPH1195246A (en) Liquid crystal device and its production
JP3137435B2 (en) Liquid crystal panel and liquid crystal projection television using the same
WO2000039632A1 (en) Reflection liquid crystal display
JP3077356B2 (en) Liquid crystal panel and liquid crystal projection television using the same
JPH06258624A (en) Reflection type display element
JP3225932B2 (en) Manufacturing method of liquid crystal display element
JP2778297B2 (en) Reflective liquid crystal display device and driving method thereof
JP3231396B2 (en) Liquid crystal panel and liquid crystal projection television using the same
JP2792984B2 (en) Projection type liquid crystal display
JP3219733B2 (en) Reflective liquid crystal display
JPH08220533A (en) Reflection type liquid crystal display device and manufacture of its reflection layer
JPH05273576A (en) Light scattering type liquid crystal two-layered panel
JPH0675241A (en) Display element
JP3569296B2 (en) Liquid crystal electro-optical element