JPH06258443A - Radiation measuring equipment - Google Patents

Radiation measuring equipment

Info

Publication number
JPH06258443A
JPH06258443A JP5049299A JP4929993A JPH06258443A JP H06258443 A JPH06258443 A JP H06258443A JP 5049299 A JP5049299 A JP 5049299A JP 4929993 A JP4929993 A JP 4929993A JP H06258443 A JPH06258443 A JP H06258443A
Authority
JP
Japan
Prior art keywords
ionization chamber
radon
electrode
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5049299A
Other languages
Japanese (ja)
Inventor
Takeshi Ono
剛 小野
Masayasu Mito
正康 三戸
Hiroo Sato
博夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP5049299A priority Critical patent/JPH06258443A/en
Publication of JPH06258443A publication Critical patent/JPH06258443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To measure radioactive elements in a gas efficiently by providing an adsorptive substance in an ionization chamber. CONSTITUTION:Air is sucked into a dust filter 10 where relatively large dusts are removed. An ionization chamber 30 comprises an adsorptive substance 32 arranged on the inner surface thereat, a meshed electrode 33 arranged farther inside, and a current collecting electrode 34, wherein a high voltage is applied between the electrodes from a DC power supply 22. A pump 16 produces a negative pressure in the ionization chamber 30 and the air passed through the ionization chamber 30 is discharged to the outside by means of the pump 16. When atoms of the gas are ionized by alpha-rays emitted from radon, electrons are captured by the current collecting electrode 34 which feeds a current to a vibrating capacitor electrometer head 24 where the signal is amplified and further amplified by a charged current amplifier 36 before it is recorded in a recorder 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放射線測定装置、特にガ
スフロー式の電離箱に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation measuring device, and more particularly to a gas flow type ionization chamber.

【0002】[0002]

【従来の技術】ラドン及びトロンは、ウラン及びラジウ
ムの娘核であり、気体として存在でき、地球大地から大
気中へ放出される他、建造物から室内空気へ放出され
る。
2. Description of the Related Art Radon and thoron are daughter nuclei of uranium and radium, which can exist as gases and are released from the earth to the atmosphere, and also from structures to indoor air.

【0003】気体として存在するラドン及びトロン(以
下、ラドンと称する)は、5MeV程度のα線を放出す
る。
Radon and thoron existing as gases (hereinafter referred to as radon) emit α rays of about 5 MeV.

【0004】通常、ラドンの空気中濃度は、1Bq/m
3 程度である。しかし、ラドンの濃度は、気象や場所に
よって大きく変わり、場合によっては、限度濃度を越え
てしまうこともある。例えば、密閉状態に近い部屋にお
いては、壁から放出されるラドンが室内空間に蓄積して
しまう。なお、ラドン(トロンも)は半減期が比較的短
く、一定期間(例えば3日)経過した時に、室内空間で
飽和状態が形成される。
Radon concentration in the air is usually 1 Bq / m.
It is about 3 . However, the concentration of radon varies greatly depending on the weather and location, and in some cases, it may exceed the limit concentration. For example, in a room close to a closed state, radon released from the wall accumulates in the indoor space. Radon (also thoron) has a relatively short half-life, and after a certain period of time (for example, 3 days), a saturated state is formed in the indoor space.

【0005】以上のように、ラドンは我々の吸う空気中
に存在し、体内被曝を引き起こすものであるため、その
濃度を連続的にモニタすることは有意義である。α線の
飛程は他のβ線などより小さいが、電離密度は大きいた
めラドンの過大な呼気からの摂取には注意が必要であ
る。
As described above, radon is present in the air we breathe and causes internal exposure to the body. Therefore, continuous monitoring of its concentration is significant. Although the range of α-rays is smaller than that of other β-rays, the ionization density is high, so it is necessary to be careful when ingesting radon from excessive breath.

【0006】図3には、従来のラドン測定装置の構成が
示されている。ラドンを含有する気体(空気)は、ダス
トフィルタ10で粉塵などが除去された後、イオンプリ
シピテータ12で電離物質(イオン)が除去され、電離
箱14に導入される。ポンプ16は、気体の吸引を行っ
ており、電離箱14を通過した空気は大気中に排出され
る。
FIG. 3 shows the configuration of a conventional radon measuring device. The gas (air) containing radon is dusted by the dust filter 10 and then ionized by the ion precipitator 12 to be introduced into the ionization chamber 14. The pump 16 is sucking gas, and the air passing through the ionization chamber 14 is discharged into the atmosphere.

【0007】ここで、電離箱14は、一方の電極をなす
金属の電極容器18と、その電極容器の中心に配置され
た集電極20と、で構成される。電極容器18と集電極
20との間には直流電源22によって高電圧が印加さ
れ、放射性元素が放射線を放射することにより気体の一
部が電離し、イオンと電子が電界によってそれぞれ電極
に運ばれ、信号となって取り出される。具体的には、振
動容量電位計ヘッド24で増幅された後、例えば振動容
量電位計26で信号が測定され、ラドン濃度などが記録
計28に記録される。
Here, the ionization chamber 14 is composed of a metal electrode container 18 forming one electrode and a collector electrode 20 arranged at the center of the electrode container. A high voltage is applied between the electrode container 18 and the collecting electrode 20 by a DC power source 22, and the radioactive element emits radiation to ionize part of the gas, and ions and electrons are carried to the electrodes by the electric field. , Is taken out as a signal. Specifically, after being amplified by the vibration capacitance electrometer head 24, a signal is measured by, for example, the vibration capacitance electrometer 26, and the radon concentration and the like are recorded in the recorder 28.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の放射線検出装置では精度良くラドンなどの測定を行
うことができなかった。従来においては、単に、放射性
元素を含有する気体を電離箱内に流通させただけなの
で、効率の良い放射線検出が行えなかった。
However, the above-mentioned conventional radiation detecting apparatus cannot accurately measure radon and the like. In the prior art, since a gas containing a radioactive element was simply passed through the ionization chamber, efficient radiation detection could not be performed.

【0009】本発明は上記従来の課題に鑑みなされたも
のであり、その目的は、気体中に存在する放射性元素
(特に、ラドン)を効率良く測定できる改良された放射
線測定装置を提供することにある。
The present invention has been made in view of the above conventional problems, and an object thereof is to provide an improved radiation measuring apparatus capable of efficiently measuring radioactive elements (particularly, radon) existing in a gas. is there.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、放射性物質を含有する気体が流通する電
離箱に、前記放射性物質と接触して吸着する吸着物質を
設けたことを特徴とする。
In order to achieve the above object, the present invention provides an ionization chamber in which a gas containing a radioactive substance flows, which is provided with an adsorbent substance which comes into contact with and adsorbs the radioactive substance. Characterize.

【0011】[0011]

【作用】上記構成によれば、放射性物質を含有する気体
を電離箱内に流通させると、電離箱内に配置された又は
電離箱容器自体を構成する吸着物質に放射性物質が取り
込まれる。これによって、電離箱内の放射性物質濃度が
上昇し、感度の良い放射線の測定が可能となる。
According to the above construction, when a gas containing a radioactive substance is circulated in the ionization chamber, the radioactive substance is incorporated into the adsorbent which is arranged in the ionization chamber or constitutes the ionization chamber container itself. As a result, the radioactive substance concentration in the ionization chamber is increased, and it becomes possible to measure radiation with high sensitivity.

【0012】特に、ラドン(トロンを含む)を測定する
場合には、ラドンが電離箱容器内に蓄積してα線がより
多く放射されるので、電離箱から出力される信号を大き
くすることができる。上述したように、ラドンの半減期
は比較的短いので、気体の流量を一定とすれば、一定時
間経過後に電離箱内のラドン濃度が飽和するので、実際
の測定はその飽和を待って行うのが望ましく、その飽和
以後は連続測定を行い得る。
In particular, when radon (including thoron) is measured, since the radon accumulates in the ionization chamber container and more α rays are emitted, it is possible to increase the signal output from the ionization chamber. it can. As described above, the half-life of radon is relatively short, so if the gas flow rate is constant, the radon concentration in the ionization chamber will saturate after a certain period of time. Is desirable, and continuous measurement can be performed after the saturation.

【0013】[0013]

【実施例】以下、本発明の好適な実施例を図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0014】図1には、本発明に係る放射線測定装置の
好適な実施例が示されている。図1に示す装置は、空気
中に含有されるラドン(及びトロン)の濃度を測定する
ものである。
FIG. 1 shows a preferred embodiment of the radiation measuring apparatus according to the present invention. The device shown in FIG. 1 measures the concentration of radon (and thoron) contained in air.

【0015】図1において、吸引される空気は、ダスト
フィルタ10に導入され、比較的大きな粉塵などが除去
される。なお、この後段に図3に示したイオンプリシイ
ピテータなどを設けることもできる。
In FIG. 1, the sucked air is introduced into a dust filter 10 to remove relatively large dust or the like. The ion precipitator shown in FIG. 3 and the like may be provided in the subsequent stage.

【0016】電離箱30は、容器40と、その内面に配
置された吸着物質32と、その更に内側に配置された網
状の電極33と、集電極34と、で構成され、電極間に
直流電源によって高電圧が印加される。
The ionization chamber 30 is composed of a container 40, an adsorbing substance 32 disposed on the inner surface thereof, a mesh electrode 33 disposed further inside thereof, and a collecting electrode 34, and a DC power source is provided between the electrodes. Applies a high voltage.

【0017】ポンプ16は、電離箱内を負圧にするため
のものであり、電離箱30を通過した空気は、ポンプ1
6から外界に排出されている。
The pump 16 is for making the inside of the ionization chamber a negative pressure, and the air which has passed through the ionization chamber 30 is pump 1
It is discharged from 6 to the outside world.

【0018】電離箱30内で、ラドンから放出されたα
線により気体原子が電離すると、電子が集電極34で捕
獲され、電流となって振動容量電位計ヘッド24へ送ら
れる。そして、その信号は、振動容量電位計ヘッド24
で増幅された後、さらに荷電型アンプである電流増幅器
36で電流増幅され、その結果が記録計28に記録され
る。なお、信号の処理は、他の手法を適用されることも
できる。
In the ionization chamber 30, α emitted from the radon
When the gas atom is ionized by the line, the electron is captured by the collecting electrode 34 and becomes an electric current, which is sent to the oscillating capacitance electrometer head 24. Then, the signal is the vibration capacitance electrometer head 24.
After being amplified by, the current is further amplified by a current amplifier 36 which is a charge type amplifier, and the result is recorded in a recorder 28. Note that other methods can be applied to the signal processing.

【0019】図2には、電離箱30の具体的な構成が示
されている。この実施例では、接地された金属の容器4
0の内面側全面に、例えば1mmの厚さで吸着物質32
が配置されている。吸着物質としては、例えば活性炭が
用いられる。吸着物質32の内側には、本実施例におい
て金属からなる籠状の電極33が配置されている。吸着
物質32が導電性の場合には、吸着物質32に電極とし
ての機能を持たせることもできる。
FIG. 2 shows a specific structure of the ionization chamber 30. In this embodiment, a grounded metal container 4
The entire surface of the inner surface of the adsorbent 32 with the thickness of 1 mm
Are arranged. As the adsorbent, for example, activated carbon is used. Inside the adsorbing substance 32, a cage-shaped electrode 33 made of metal in this embodiment is arranged. When the adsorbing substance 32 is electrically conductive, the adsorbing substance 32 can also have a function as an electrode.

【0020】なお、容器40が接地されているのは、外
部ノイズを吸収するためであり、また、電極33を網状
として吸着物質32の内側に設けたのは、容器40を電
極として用いるとその内側にある吸着物質によってイオ
ンの捕獲が防げられるからであり、本実施例によれば、
吸着物質32内からのα線を網状の電極33にあまり防
げられずに電離箱内部へ放出させることができる。
The reason why the container 40 is grounded is to absorb external noise, and the reason why the electrode 33 is provided inside the adsorbing substance 32 in the form of a mesh is that the container 40 is used as an electrode. This is because the trapping of ions can be prevented by the adsorbing substance inside, and according to the present embodiment,
The α-rays from inside the adsorbing substance 32 can be emitted into the ionization chamber without being largely prevented by the mesh electrode 33.

【0021】図2において、50は、直流電圧を印加す
るためのリードであり、52及び54は絶縁体である。
In FIG. 2, 50 is a lead for applying a DC voltage, and 52 and 54 are insulators.

【0022】図4には、変型例が示されている。この変
型例では、集電極34の支持部にガードリング70が配
設されている。具体的には、リング状の絶縁部材72,
74を間において容器と集電極34との間に配設されて
いる。そして、ガードリング70は接地される。
FIG. 4 shows a modified example. In this modified example, a guard ring 70 is provided on the support portion of the collector electrode 34. Specifically, the ring-shaped insulating member 72,
74 is disposed between the container and the collecting electrode 34. Then, the guard ring 70 is grounded.

【0023】これによって集電極34とガードリング7
0とが等電位となるので、ガードリング70と容器との
間では電位勾配が生じるが、一方、ガードリング70と
集電極34との間においては電位勾配が皆無となり、そ
の結果、その間の漏洩電流等を防止して測定精度の向上
を図ることが可能となる。従って、パルス式測定以外に
も電流式測定が可能となる。
As a result, the collector electrode 34 and the guard ring 7 are
Since 0 has the same potential, a potential gradient is generated between the guard ring 70 and the container, while there is no potential gradient between the guard ring 70 and the collecting electrode 34, and as a result, leakage between them occurs. It is possible to prevent current and the like and improve the measurement accuracy. Therefore, the current type measurement can be performed in addition to the pulse type measurement.

【0024】また、電離箱30には、気体流入口42と
気体流出口44とが設けられ、室内空気に含有されるラ
ドンを連続測定するためのガスフロー型の電離箱が構成
されている。
Further, the ionization chamber 30 is provided with a gas inflow port 42 and a gas outflow port 44 to constitute a gas flow type ionization chamber for continuously measuring the radon contained in the room air.

【0025】したがって、電離箱30内に空気を流通さ
せると、空気に含有されているラドンの一部は、吸着物
質32に取り込まれる。このため、電離箱30内にラド
ンが蓄積し、積算効果によって検出感度が高まることに
なる。
Therefore, when air is circulated in the ionization chamber 30, a part of the radon contained in the air is taken into the adsorbent 32. For this reason, radon accumulates in the ionization chamber 30, and the detection sensitivity is increased by the integration effect.

【0026】吸着物質32に取り込まれたラドンは、
3.8日程度で半減期を迎え、時間当たり一定量の空気
を流通させてから、一定期間(例えば3日)経過後に
は、娘核種も含め崩壊率がほぼ飽和する。このため、一
定濃度のラドンを吸着物質に連続的に取り込ませても、
放射線の量が上昇し続けるわけではなく、一定となる。
この状態で濃度変化を生じれば一定値を示す飽和状態に
変化を生じる。この変化よりラドン濃度を検知するもの
である。
The radon taken in by the adsorbent 32 is
After reaching a half-life in about 3.8 days and passing a certain amount of air per hour, and after a certain period (for example, 3 days), the decay rate including the daughter nuclide is almost saturated. Therefore, even if a constant concentration of radon is continuously incorporated into the adsorbent,
The amount of radiation does not continue to rise, but remains constant.
If the concentration changes in this state, the saturated state showing a constant value changes. Radon concentration is detected from this change.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
放射性物質を吸着物質内に蓄積させて感度の良い放射線
の測定を行なうことが出来るという効果がある。
As described above, according to the present invention,
There is an effect that radioactive substances can be accumulated in the adsorbed substance to measure radiation with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る放射線測定装置の全体構成を示す
説明図である。
FIG. 1 is an explanatory diagram showing an overall configuration of a radiation measuring apparatus according to the present invention.

【図2】電離箱の具体的な構成を示す断面図である。FIG. 2 is a cross-sectional view showing a specific configuration of an ionization chamber.

【図3】従来の放射線測定装置の構成を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a configuration of a conventional radiation measuring apparatus.

【図4】ガードリング70を示す説明図である。FIG. 4 is an explanatory diagram showing a guard ring 70.

【符号の説明】[Explanation of symbols]

30 電離箱 32 吸着物質 33 電極 34 集電極 30 Ionization chamber 32 Adsorbed substance 33 Electrode 34 Collection electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射性物質を含有する気体が流通する電
離箱であって、前記気体と接触して前記放射性物質を吸
着する吸着物質を含むことを特徴とする放射線測定装
置。
1. A radiation measuring apparatus, which is an ionization chamber in which a gas containing a radioactive substance flows, and which includes an adsorbent that adsorbs the radioactive substance in contact with the gas.
JP5049299A 1993-03-10 1993-03-10 Radiation measuring equipment Pending JPH06258443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5049299A JPH06258443A (en) 1993-03-10 1993-03-10 Radiation measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5049299A JPH06258443A (en) 1993-03-10 1993-03-10 Radiation measuring equipment

Publications (1)

Publication Number Publication Date
JPH06258443A true JPH06258443A (en) 1994-09-16

Family

ID=12827055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5049299A Pending JPH06258443A (en) 1993-03-10 1993-03-10 Radiation measuring equipment

Country Status (1)

Country Link
JP (1) JPH06258443A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156463A (en) * 2003-11-27 2005-06-16 Mitsubishi Heavy Ind Ltd Alpha-radioactivity measuring apparatus and ionization chamber for apparatus
WO2007141895A1 (en) 2006-06-06 2007-12-13 Niigata University Method for measuring radon and thoron in air
CN102249200A (en) * 2011-04-18 2011-11-23 第二炮兵装备研究院第六研究所 Method for absorbing and storing radon
CN105738937A (en) * 2016-04-29 2016-07-06 成都理工大学 Static alpha-cup multifunctional emanometer
CN107678054A (en) * 2017-11-08 2018-02-09 南华大学 A kind of Radon eduction analogue means and radon release rate method based on low-frequency vibration
CN109901211A (en) * 2017-12-07 2019-06-18 核工业北京地质研究院 A kind of fine gamma based on lanthanum bromide crystal is composed entirely surveys radon method
EP3747848A1 (en) * 2019-06-07 2020-12-09 Marius Bierig Thoron-reducing and room air improving activated carbon admixture for loam plaster systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156463A (en) * 2003-11-27 2005-06-16 Mitsubishi Heavy Ind Ltd Alpha-radioactivity measuring apparatus and ionization chamber for apparatus
WO2007141895A1 (en) 2006-06-06 2007-12-13 Niigata University Method for measuring radon and thoron in air
US7642520B2 (en) 2006-06-06 2010-01-05 Niigata University Method for measuring randon and thoron in air
CN102249200A (en) * 2011-04-18 2011-11-23 第二炮兵装备研究院第六研究所 Method for absorbing and storing radon
CN105738937A (en) * 2016-04-29 2016-07-06 成都理工大学 Static alpha-cup multifunctional emanometer
CN107678054A (en) * 2017-11-08 2018-02-09 南华大学 A kind of Radon eduction analogue means and radon release rate method based on low-frequency vibration
CN107678054B (en) * 2017-11-08 2024-04-19 南华大学 Radon exhalation simulation device based on low-frequency vibration and radon exhalation rate measurement method
CN109901211A (en) * 2017-12-07 2019-06-18 核工业北京地质研究院 A kind of fine gamma based on lanthanum bromide crystal is composed entirely surveys radon method
EP3747848A1 (en) * 2019-06-07 2020-12-09 Marius Bierig Thoron-reducing and room air improving activated carbon admixture for loam plaster systems

Similar Documents

Publication Publication Date Title
US5489780A (en) Radon gas measurement apparatus having alpha particle-detecting photovoltaic photodiode surrounded by porous pressed metal daughter filter electrically charged as PO-218 ion accelerator
JP2010133879A (en) Radiation measuring apparatus
US5008540A (en) Electret gamma/X-ray low level dosimeter
CA1307860C (en) Ionization chamber for monitoring radioactive gas
US5550381A (en) Event counting alpha detector
US5059803A (en) Rugged alpha particle counter
US5281824A (en) Radon detection
JPH06258443A (en) Radiation measuring equipment
US5053624A (en) Radon control system
US4445037A (en) Apparatus for monitoring tritium in tritium contaminating environments using a modified Kanne chamber
KR20190125152A (en) Radiation monitoring apparatus using ination chamber
JPH08136660A (en) Radioactive ray measuring instrument
Fan et al. Analysis of the electrostatic field distribution in the hemispherical internal cell of radon monitors to estimate the collection efficiency of Po-218
JPH06258450A (en) Radiation measuring equipment
CN113539532B (en) Spent fuel assembly damage detection system and method
JPH06258444A (en) Radiation measuring equipment
Charpak et al. Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification
JP3542936B2 (en) Radiation measurement device
JP4136301B2 (en) Radioactive ion detector
JPWO2007141895A1 (en) Method for measuring radon and thoron in air
CN112051603B (en) Device and method for detecting radon content
US7105831B1 (en) Ambient air alpha particles ionization detector
Aoyama et al. A new type of 3H surface-contamination monitor
JPH08136663A (en) Radon/thoron measuring instrument
RU2113718C1 (en) Method measuring radioactivity of gases by alpha radiation, specifically, radioactivity of air carrying radon and thoron

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080123

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080602

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110620

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130620