JPH06258424A - Radar device mounted on aircraft - Google Patents
Radar device mounted on aircraftInfo
- Publication number
- JPH06258424A JPH06258424A JP5041038A JP4103893A JPH06258424A JP H06258424 A JPH06258424 A JP H06258424A JP 5041038 A JP5041038 A JP 5041038A JP 4103893 A JP4103893 A JP 4103893A JP H06258424 A JPH06258424 A JP H06258424A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- signal
- output signal
- pulse
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、海面からのクラッタ
を抑圧し、小RCS(Radar Cross Sec
tion)の船舶目標を検出する航空機搭載用レーダ装
置に関するものである。BACKGROUND OF THE INVENTION The present invention suppresses clutter from the surface of the sea and enables a small RCS (Radar Cross Sec).
The present invention relates to a radar device mounted on an aircraft that detects a ship target of a vehicle.
【0002】[0002]
【従来の技術】図8は従来のレーダ装置の構成を示す図
であり、図中1は電圧制御発振器、2はパルス変調器、
3は高出力増幅器、4はアンテナ、5は送受切換器、6
は受信機、7は検波器、8はパルス積分回路、9はCF
AR(Constant False Alarm R
ate)回路である。2. Description of the Related Art FIG. 8 is a diagram showing a configuration of a conventional radar device, in which 1 is a voltage controlled oscillator, 2 is a pulse modulator,
3 is a high output amplifier, 4 is an antenna, 5 is a duplexer, and 6
Is a receiver, 7 is a detector, 8 is a pulse integration circuit, 9 is CF
AR (Constant False Alarm R)
ate) circuit.
【0003】次に動作について説明する。電圧制御発振
器1で一定のパルス繰返し周期毎に発振周波数の異なる
信号を発生し、これをパルス変調器2で上記パルス繰返
し周期に同期してパルス変調を行ない、高出力増幅器3
でこのパルス変調器2からの出力信号を増幅して送信パ
ルス毎に周波数の異なる送信パルス信号を生成し、送受
切換器5を介して、アンテナ4から目標に向けて放射さ
れる。目標からの反射信号はアンテナ4で受信され、受
信機6で増幅され、検波器7で検波される。この検波器
7の出力信号はパルス積分回路8で加算され、CFAR
回路9で一定の誤警報確率で目標を検出し、そのレンジ
遅延時間より目標距離を算出する。Next, the operation will be described. The voltage controlled oscillator 1 generates a signal having a different oscillation frequency at every constant pulse repetition period, and the pulse modulator 2 performs pulse modulation in synchronization with the pulse repetition period.
Then, the output signal from the pulse modulator 2 is amplified to generate a transmission pulse signal having a different frequency for each transmission pulse, and the transmission pulse signal is radiated from the antenna 4 toward the target through the duplexer 5. The reflected signal from the target is received by the antenna 4, amplified by the receiver 6, and detected by the detector 7. The output signal of the detector 7 is added by the pulse integration circuit 8 to obtain CFAR.
The circuit 9 detects the target with a constant false alarm probability, and calculates the target distance from the range delay time.
【0004】[0004]
【発明が解決しようとする課題】従来の航空機搭載用レ
ーダ装置はこのように構成されていたため、図9に示す
ように実開口アンテナ・ビーム20で海面を照射した場
合のクラッタ照射面積AC1は、図9よりSince the conventional airborne radar device is configured in this manner, the clutter irradiation area A C1 when the sea surface is irradiated by the real aperture antenna beam 20 as shown in FIG. , From Figure 9
【0005】[0005]
【数1】 [Equation 1]
【0006】クラッタ電力Cは、The clutter power C is
【0007】[0007]
【数2】 [Equation 2]
【0008】となる。ここで、R=50(Km)、θB
=2°、τ=0.5(μs)、ψ=3°、σO =−30
(dBm2 /m2 )とし、また、小目標TGT1のRC
S(Radar Cross Section)σT を
σT =2(m2 )とすると、信号電力SはσT に比例す
るため、信号対クラッタ電力比(以下「S/C比」と呼
ぶ)は−18.2(dB)となる。すなわち、従来の航
空機搭載用レーダ装置はクラッタ照射面積が極めて広い
ため、S/C比が劣化して小RCSの目標の検出が困難
であるという課題があった。[0008] Here, R = 50 (Km), θ B
= 2 °, τ = 0.5 (μs), ψ = 3 °, σ O = −30
(DBm 2 / m 2 ) and the RC of the small target TGT1
When S (Radar Cross Section) σ T is σ T = 2 (m 2 ), the signal power S is proportional to σ T , so the signal-to-clutter power ratio (hereinafter referred to as “S / C ratio”) is −18. .2 (dB). That is, since the conventional aircraft-mounted radar device has an extremely large clutter irradiation area, there is a problem in that the S / C ratio deteriorates and it is difficult to detect a target with a small RCS.
【0009】この発明は上記のような課題を解消するた
めになされたもので、距離分解能と角度分解能を向上さ
せ、目標と競合するクラッタの照射面積を減少させるこ
とによりクラッタを抑圧して、小RCSの目標を検出で
きる航空機搭載用レーダ装置を得ることを目的とする。The present invention has been made to solve the above problems, and suppresses the clutter by improving the distance resolution and the angular resolution and reducing the irradiation area of the clutter that competes with the target. An object of the present invention is to obtain an airborne radar device capable of detecting a target of RCS.
【0010】またこの発明は、航空機の移動により生じ
る目標距離の変化が、上記距離分解能と同等以上の場合
においても、目標と競合するクラッタの照射面積を減少
させることによりクラッタを抑圧して、小RCSの目標
を検出できる航空機搭載用レーダ装置を得ることを目的
とする。Further, according to the present invention, even when the change in the target distance caused by the movement of the aircraft is equal to or more than the above-mentioned range resolution, the irradiation area of the clutter that competes with the target is reduced to suppress the clutter, and the An object of the present invention is to obtain an airborne radar device capable of detecting a target of RCS.
【0011】さらにこの発明は、上記目的に加えて、目
標の方位角を算出できる航空機搭載用レーダ装置を得る
ことを目的とする。Further, in addition to the above object, the present invention has another object to obtain an aircraft-mounted radar device capable of calculating a target azimuth angle.
【0012】[0012]
【課題を解決するための手段】この発明に係わる航空機
搭載用レーダ装置は、クラッタを抑圧しS/C比を改善
して小RCSの目標を検出するために、送信信号に位相
変調を施し受信信号を復調して狭パルスを生成すること
により距離分解能を向上させるパルス圧縮器と、航空機
の移動により生じる目標からの受信信号の位相変化を補
償した後に周波数分析を行なうことにより角度分解能を
向上させる位相補償回路と周波数分析器を設けたもので
ある。In order to detect a target with a small RCS by suppressing clutter and improving the S / C ratio, a radar device mounted on an aircraft according to the present invention performs phase modulation on a transmission signal and receives it. A pulse compressor that demodulates the signal to generate narrow pulses to improve range resolution, and a frequency analysis after compensating for the phase change of the received signal from the target caused by the movement of the aircraft to improve angular resolution It is provided with a phase compensation circuit and a frequency analyzer.
【0013】また、この発明に係わる航空機搭載用レー
ダ装置は、上記ぱるす圧縮器の後段に、航空機の移動に
より生じる目標の距離変化を補償して、上記位相補償回
路へ出力する距離移動補償回路を設けたものである。Further, in the radar apparatus mounted on an aircraft according to the present invention, a distance movement compensating circuit for compensating for a target distance change caused by movement of the aircraft and outputting it to the phase compensating circuit is provided at a stage subsequent to the pulse compressor. It is provided.
【0014】さらに、この発明に係わる航空機搭載用レ
ーダ装置は、受信信号の和信号及び差信号を出力するモ
ノパルス・アンテナと、この和信号及び差信号の各々に
上記パルス圧縮器、距離移動補償回路、位相補償回路及
び周波数分析器を設け、さらに、これらの周波数分析器
の出力信号より目標の方位角を検出する角度検出回路を
設けたものである。Further, the on-vehicle radar device according to the present invention comprises a monopulse antenna for outputting the sum signal and the difference signal of the received signals, and the pulse compressor and the distance movement compensating circuit for each of the sum signal and the difference signal. , A phase compensation circuit and a frequency analyzer, and further an angle detection circuit for detecting a target azimuth angle from the output signals of these frequency analyzers.
【0015】[0015]
【作用】この発明においては、パルス圧縮により距離分
解能を向上させ、さらに、受信信号の到来方向の差に起
因するドップラー周波数の差を分解して角度分解能を向
上させることにより、目標と競合するクラッタの照射面
積を減少させ、S/C比を改善して小RCSの目標を検
出する。According to the present invention, the distance resolution is improved by pulse compression, and further, the Doppler frequency difference caused by the difference in the arrival directions of the received signals is resolved to improve the angular resolution. The irradiation area is reduced and the S / C ratio is improved to detect a small RCS target.
【0016】また、この発明においては、さらに、航空
機の移動により生じる目標距離の変化が上記距離分解能
と同等以上の場合においても、受信信号の到来方向の差
に起因するドップラー周波数の差を分解して角度分解能
を向上させることにより、目標と競合するクラッタの照
射面積を減少し、S/C比を改善して小RCSの目標を
検出する。Further, according to the present invention, even when the change in the target distance caused by the movement of the aircraft is equal to or more than the above range resolution, the difference in Doppler frequency caused by the difference in the arrival direction of the received signal is resolved. By increasing the angular resolution by reducing the irradiation area of the clutter that competes with the target and improving the S / C ratio, a target with a small RCS is detected.
【0017】さらに、この発明においては、上記作用で
ある小RCSの目標の検出に加え、モノパルス・アンテ
ナの原理を用いてアンテナの正面方向からの角度誤差を
検出することにより目標の方位角を算出する。Further, in the present invention, in addition to the detection of the target of the small RCS which is the above-mentioned action, the azimuth angle of the target is calculated by detecting the angle error from the front direction of the antenna using the principle of the monopulse antenna. To do.
【0018】[0018]
実施例1 以下、この発明の一実施例を図について説明する。尚、
従来技術と同一の構成要素については、同一番号を付し
て、その説明を省略する。Embodiment 1 An embodiment of the present invention will be described below with reference to the drawings. still,
The same components as those of the conventional technique are designated by the same reference numerals and the description thereof will be omitted.
【0019】図1は、この発明の実施例1の構成を示す
図で、図中10は発振器、11は位相変調器、12は位
相検波器、13はパルス圧縮器、14は位相補償回路、
15は、周波数分析器、16は検波器である。FIG. 1 is a diagram showing the configuration of the first embodiment of the present invention, in which 10 is an oscillator, 11 is a phase modulator, 12 is a phase detector, 13 is a pulse compressor, and 14 is a phase compensation circuit.
Reference numeral 15 is a frequency analyzer, and 16 is a wave detector.
【0020】次に動作を図1及び図2を用いて説明す
る。図1において2〜9は従来のレーダ装置の構成と全
く同一であり、同じ動作を行なう。発振器10では、一
定周波数の連続波を発生させ、位相変調器11で位相変
調を施し、パルス変調器2及び高出力増幅器3で一定の
パルス繰返し周期の送信パルスを生成する。この送信パ
ルスを目標に向けて放射し、目標からの反射信号を位相
検波器12で位相検波し、パルス圧縮器13で上記位相
変調の復調を行なう。これにより、パルス幅がτC の狭
パルスが生成され接地角をψ、光速をCとすると、間隔
が(C・τC )/(2COSψ)の等レンジ線21で海
面の照射領域がレンジ方向に分割される。さらに、位相
補償回路14で航空機の移動により生じる目標からの受
信信号の位相変化を補償し、周波数分析器15で周波数
分析を行ない、検波器16で振幅検出を行なう。Next, the operation will be described with reference to FIGS. 1 and 2. In FIG. 1, 2 to 9 are exactly the same as the configuration of the conventional radar device and perform the same operation. In the oscillator 10, a continuous wave having a constant frequency is generated, the phase modulator 11 performs phase modulation, and the pulse modulator 2 and the high-power amplifier 3 generate a transmission pulse having a constant pulse repetition period. The transmission pulse is radiated toward the target, the reflected signal from the target is phase-detected by the phase detector 12, and the pulse compressor 13 demodulates the phase modulation. As a result, a narrow pulse with a pulse width of τ C is generated, and the contact angle is ψ and the speed of light is C, and the irradiation range on the sea surface is the range line in the equirange line 21 with an interval of (C · τ C ) / (2COS ψ). Is divided into Further, the phase compensating circuit 14 compensates the phase change of the received signal from the target caused by the movement of the aircraft, the frequency analyzer 15 performs frequency analysis, and the detector 16 detects amplitude.
【0021】図3の(a),(b),(c),(d)は
位相補償と周波数分析を示す概念図であり、(b)は位
相補償前、(c)は位相補償後で周波数分析前、(d)
は周波数分析後のドップラー周波数を示す。航空機の移
動により変化するドップラー周波数を位相補償回路14
を通すことにより一定にしその後周波数分析器15に通
す。これにより、周波数分析器15の周波数帯域幅を
B、送信波長をλ、航空機の速度をV、距離をRとする
と、間隔が(λ・B・R)/(2V)の等ドップラー線
22で海面の照射領域がクロスレンジ方向に分割され
る。従って、海面の照射領域は等レンジ線21と等ドッ
プラー線22により分割され、クラッタ照射面積A
C2は、FIGS. 3A, 3B, 3C and 3D are conceptual diagrams showing phase compensation and frequency analysis. FIG. 3B is before phase compensation and FIG. 3C is after phase compensation. Before frequency analysis, (d)
Indicates the Doppler frequency after frequency analysis. Phase compensation circuit 14 for the Doppler frequency that changes with the movement of the aircraft
It is made constant by passing it through and then passed through the frequency analyzer 15. As a result, if the frequency bandwidth of the frequency analyzer 15 is B, the transmission wavelength is λ, the speed of the aircraft is V, and the distance is R, the interval is (λ · B · R) / (2V) in the equal Doppler line 22. The irradiation area on the sea surface is divided in the cross-range direction. Therefore, the irradiation area of the sea surface is divided by the equal range line 21 and the equal Doppler line 22, and the clutter irradiation area A
C2 is
【0022】[0022]
【数3】 [Equation 3]
【0023】となり、“数1”と比較すると目標と競合
するクラッタの照射面積は減少し、クラッタが抑圧され
S/C比は改善される。従って、小RCSの目標を検出
し、目標距離を算出することができる。Therefore, compared to "Equation 1", the irradiation area of the clutter that competes with the target is reduced, the clutter is suppressed, and the S / C ratio is improved. Therefore, the target of the small RCS can be detected and the target distance can be calculated.
【0024】実施例2 次にこの発明の実施例2を図について説明する。図4は
この発明の実施例2の構成を示す図で、図中17は距離
移動補償回路である。Second Embodiment Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a diagram showing the configuration of the second embodiment of the present invention, in which 17 is a distance movement compensation circuit.
【0025】次に動作を図4を用いて説明する。図4に
おいて2〜16は上記実施例1のレーダ装置の構成と全
く同一であり同じ動作を行なう。上記パルス圧縮器13
からの出力信号を距離移動補償回路17に入力し、航空
機の移動により生じる目標距離の変化を補償し、さらに
位相補償回路14で上記航空機の移動により生じる目標
からの受信信号の位相変化を補償し、周波数分析器15
で周波数分析を行ない、検波器16で振幅検出を行な
う。これにより、クラッタを抑圧し、S/C比を改善し
小RCSの目標を検出し目標距離を算出する。Next, the operation will be described with reference to FIG. In FIG. 4, 2 to 16 have exactly the same configuration as the radar device of the first embodiment and perform the same operation. The pulse compressor 13
The output signal from the input signal is input to the distance movement compensation circuit 17, the change in the target distance caused by the movement of the aircraft is compensated, and the phase compensation circuit 14 compensates the phase change of the received signal from the target caused by the movement of the aircraft. , Frequency analyzer 15
The frequency analysis is carried out by and the amplitude is detected by the wave detector 16. Thereby, the clutter is suppressed, the S / C ratio is improved, the target of the small RCS is detected, and the target distance is calculated.
【0026】航空機の移動により生じる目標距離の変化
が上記距離分解能と同等以上の場合には補償が必要であ
る。上記距離移動補償について図5を用いて説明する。
図5の(a)に示すように、受信信号がパルス幅τ(1
レンジビン)ずれるときの送信パルス数をnP とする
と、送信パルス数1の時にレンジビンjに存在した目標
は、送信パルス数nP の時にはレンジビン(j−1)に
ずれ、送信パルス数(m−1)nP (mは整数)の時に
はレンジビン(j−m+1)にずれることになる。そこ
で、図5の(b)に示すように、nP PRI(Puls
e Repetition Interval)毎に1
レンジビンずつ補償量を加えることにより補償する。こ
れにより、小RCSの目標を検出し目標距離を算出す
る。If the change in the target distance caused by the movement of the aircraft is equal to or greater than the above-mentioned distance resolution, compensation is necessary. The distance movement compensation will be described with reference to FIG.
As shown in FIG. 5A, the received signal has a pulse width τ (1
Range bin) When the number of transmission pulses when deviating is n P , the target existing in range bin j when the number of transmission pulses is 1 is shifted to range bin (j−1) when the number of transmission pulses is n P , and the number of transmission pulses (m− 1) When n P (m is an integer), the range is shifted to the range bin (j−m + 1). Therefore, as shown in FIG. 5B, n P PRI (Puls
1 for every e Repetition Interval
Compensation is performed by adding the compensation amount for each range bin. Thereby, the target of the small RCS is detected and the target distance is calculated.
【0027】実施例3 次にこの発明の実施例3を図について説明する。図6は
この発明の実施例3の構成を示す図で、図中18はモノ
パルスアンテナ、19は角度検出回路である。Third Embodiment Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a diagram showing the configuration of a third embodiment of the present invention, in which 18 is a monopulse antenna and 19 is an angle detection circuit.
【0028】次に動作を図6を用いて説明する。図6に
おいて2〜17は上記実施例1、実施例2のレーダ装置
の構成と全く同一であり、同じ動作を行なう。但し、受
信信号の和信号Σと差信号Δを出力するモノパルスアン
テナ18を用い、和信号Σ、差信号Δの各々に上記パル
ス圧縮器13、距離移動補償回路17、位相補償回路1
4及び周波数分析器15を設け、さらに、各々の出力信
号を角度検出回路19に入力しモノパルス・アンテナの
原理を用いて目標の方位角を算出する。図7の(a),
(b)はモノパルス・アンテナの原理を示す概念図であ
り、Δ/Σを計算することにより、ボアサイトからの角
度のずれΔθが求められる。これにより、目標の方位角
を算出することができる。Next, the operation will be described with reference to FIG. In FIG. 6, 2 to 17 have exactly the same configurations as the radar devices according to the first and second embodiments and perform the same operation. However, the monopulse antenna 18 that outputs the sum signal Σ and the difference signal Δ of the received signals is used, and the pulse compressor 13, the distance movement compensation circuit 17, and the phase compensation circuit 1 are used for each of the sum signal Σ and the difference signal Δ.
4 and a frequency analyzer 15 are provided, and each output signal is input to the angle detection circuit 19 to calculate the target azimuth angle using the principle of the monopulse antenna. 7 (a),
(B) is a conceptual diagram showing the principle of the monopulse antenna. By calculating Δ / Σ, the angular deviation Δθ from the boresight can be obtained. Thereby, the target azimuth angle can be calculated.
【0029】[0029]
【発明の効果】以上のようにこの発明によれば、パルス
圧縮により距離分解能を向上させ、さらに、受信信号の
到来方向の差に起因するドップラー周波数の差を分解し
て角度分解能を向上させることによりクラッタを抑圧
し、S/C比を改善し、小RCSの目標を検出し目標距
離を算出することができる。As described above, according to the present invention, the distance resolution is improved by pulse compression, and further the angular resolution is improved by resolving the difference in Doppler frequency caused by the difference in the arrival direction of the received signal. Thus, it is possible to suppress clutter, improve the S / C ratio, detect a target with a small RCS, and calculate the target distance.
【0030】また、この発明によれば、さらに、航空機
の移動により生じる目標距離の変化が上記距離分解能と
同等以上の場合においても、補償を行ない、受信信号の
到来方向の差に起因するドップラー周波数の差を分解し
て角度分解能を向上させることによりクラッタを抑圧
し、S/C比を改善し、小RCSの目標を検出し目標距
離を算出することができる。Further, according to the present invention, even when the change of the target distance caused by the movement of the aircraft is equal to or more than the above-mentioned distance resolution, the compensation is performed and the Doppler frequency caused by the difference in the direction of arrival of the received signal is obtained. The clutter can be suppressed and the S / C ratio can be improved by resolving the difference of the above to improve the angular resolution, and the target of the small RCS can be detected and the target distance can be calculated.
【0031】さらに、この発明によれば、上記発明効果
である小RCSを検出し目標距離を算出することに加
え、モノパルス・アンテナを用いることにより目標の方
位角を算出することができる。Furthermore, according to the present invention, in addition to detecting the small RCS which is the effect of the invention and calculating the target distance, the azimuth angle of the target can be calculated by using the monopulse antenna.
【図1】この発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
【図2】この発明の実施例1の航空機搭載用レーダ装置
における合成ビームの照射面積を示す概念図である。FIG. 2 is a conceptual diagram showing an irradiation area of a synthetic beam in the aircraft-mounted radar device according to the first embodiment of the present invention.
【図3】位相補償及び周波数分析を示す概念図である。FIG. 3 is a conceptual diagram showing phase compensation and frequency analysis.
【図4】この発明の実施例2を示す構成図である。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.
【図5】距離移動補償を示す概念図である。FIG. 5 is a conceptual diagram showing distance movement compensation.
【図6】この発明の実施例3を示す構成図である。FIG. 6 is a configuration diagram showing a third embodiment of the present invention.
【図7】モノパルス・アンテナの原理を示す概念図であ
る。FIG. 7 is a conceptual diagram showing the principle of a monopulse antenna.
【図8】従来の航空機搭載用レーダ装置の構成図であ
る。FIG. 8 is a configuration diagram of a conventional airborne radar device.
【図9】従来の航空機搭載用レーダ装置におけるリアル
ビームの照射面積を示す概念図である。FIG. 9 is a conceptual diagram showing an irradiation area of a real beam in a conventional radar device mounted on an aircraft.
1 電圧制御発振器 2 パルス変調器 3 高出力増幅器 4 アンテナ 5 送受切換器 6 受信機 7 検波器 8 パルス積分回路 9 CFAR回路 10 発振器 11 位相変調器 12 位相検波器 13 パルス圧縮器 14 位相補償回路 15 周波数分析器 16 検波器 17 距離移動補償回路 18 モノパルス・アンテナ 19 角度検出回路 20 実開口アンテナ・ビーム 21 等レンジ線 22 等ドップラー線 1 Voltage Controlled Oscillator 2 Pulse Modulator 3 High Output Amplifier 4 Antenna 5 Transmitter / Receiver Switch 6 Receiver 7 Detector 8 Pulse Integration Circuit 9 CFAR Circuit 10 Oscillator 11 Phase Modulator 12 Phase Detector 13 Pulse Compressor 14 Phase Compensation Circuit 15 Frequency analyzer 16 Detector 17 Distance movement compensation circuit 18 Monopulse antenna 19 Angle detection circuit 20 Real aperture antenna / beam 21 Equal range line 22 Equal Doppler line
Claims (3)
と、この発振器の出力信号に位相変調を施す位相変調器
と、この位相変調器の出力信号を一定のパルス繰返し周
期でパルス変調するパルス変調器と、このパルス変調器
の出力信号を増幅して送信パルス信号を生成する高出力
増幅器と、上記送信パルス信号を目標に向けて放射する
と共に目標からの反射信号を受信するアンテナと、この
アンテナで受信された受信信号を増幅する受信機と、こ
の受信機の出力信号を位相検波する位相検波器と、この
位相検波器の出力信号を入力し、上記位相変調の復調を
行ない狭パルスを生成するパルス圧縮器と、このパルス
圧縮器からの出力信号を入力し航空機の移動により生じ
る目標からの受信信号の位相変化を補償する位相補償回
路と、この位相補償回路の出力信号の周波数分析を行な
う周波数分析器と、この周波数分析器からの出力信号の
振幅検出を行なう検波器と、この検波器からの出力信号
を入力し一定の誤警報確率で目標を検出するCFAR
(Constant False Alarm Rat
e)回路とを備えたことを特徴とする航空機搭載用レー
ダ装置。1. An oscillator for generating a continuous wave of a constant frequency, a phase modulator for phase-modulating an output signal of the oscillator, and a pulse modulation for pulse-modulating the output signal of the phase modulator at a constant pulse repetition period. , A high-power amplifier that amplifies the output signal of the pulse modulator to generate a transmission pulse signal, an antenna that radiates the transmission pulse signal toward a target and receives a reflection signal from the target, and this antenna A receiver that amplifies the received signal received at, a phase detector that phase-detects the output signal of this receiver, and the output signal of this phase detector are input, and the phase modulation is demodulated to generate narrow pulses. Pulse compressor, a phase compensation circuit that receives the output signal from the pulse compressor and compensates the phase change of the received signal from the target caused by the movement of the aircraft, and the phase compensation circuit. A frequency analyzer that analyzes the frequency of the output signal of the path, a detector that detects the amplitude of the output signal from this frequency analyzer, and the output signal from this detector is input to detect the target with a certain false alarm probability. CFAR to
(Constant False Alarm Rat
e) A radar device for mounting on an aircraft, comprising: a circuit.
し上記航空機の移動により生じる目標距離の変化を補償
して上記位相補償回路へ出力する距離移動補償回路を備
えたことを特徴とする請求項1記載の航空機搭載用レー
ダ装置。2. A distance movement compensating circuit for inputting an output signal from the pulse compressor, compensating for a change in a target distance caused by movement of the aircraft, and outputting the compensation signal to the phase compensating circuit. Item 1. An aircraft-mounted radar device according to item 1.
と、この発振器の出力信号に位相変調を施す位相変調器
と、この位相変調器の出力信号を一定のパルス繰返し周
期でパルス変調するパルス変調器と、このパルス変調器
の出力信号を増幅して送信パルス信号を生成する高出力
増幅器と、上記送信パルス信号を目標に向けて放射する
と共に目標からの反射信号を受信し受信信号の和信号及
び差信号を出力するモノパルス・アンテナと、上記和信
号および差信号をそれぞれ増幅する受信機と、上記受信
機の出力信号をそれぞれ位相検波する位相検波器と、上
記位相検波器の出力信号をそれぞれ入力し上記位相変調
の復調を行ない狭パルスを生成するパルス圧縮器と、上
記パルス圧縮器からの出力信号をそれぞれ入力し航空機
の移動により生じる目標距離の変化を補償する距離移動
補償回路と、上記距離移動補償回路からの出力信号をそ
れぞれ入力し航空機の移動により生じる目標からの受信
信号の位相変化を補償する位相補償回路と、上記位相補
償回路の出力信号の周波数分析をそれぞれ行なう周波数
分析器と、この和信号系の周波数分析器からの出力信号
の振幅検出を行なう検波器と、この検波器からの出力信
号を入力し一定の誤警報確率で目標を検出するCFAR
回路と、上記和信号及び差信号系の周波数分析器の出力
信号より目標の方位角を検出する角度検出回路とを備え
たことを特徴とする航空機搭載用レーダ装置。3. An oscillator that generates a continuous wave of a constant frequency, a phase modulator that performs phase modulation on the output signal of the oscillator, and pulse modulation that pulse-modulates the output signal of the phase modulator at a constant pulse repetition period. , A high-power amplifier that amplifies the output signal of the pulse modulator to generate a transmission pulse signal, and radiates the transmission pulse signal toward a target and receives a reflection signal from the target and receives the sum signal of the reception signals. And a monopulse antenna that outputs a difference signal, a receiver that amplifies the sum signal and the difference signal, a phase detector that phase-detects the output signal of the receiver, and an output signal of the phase detector, respectively. A pulse compressor that inputs and demodulates the phase modulation to generate a narrow pulse, and an output signal from the pulse compressor that is input, respectively. A distance movement compensating circuit for compensating for a change in gauge distance, a phase compensating circuit for respectively receiving an output signal from the distance movement compensating circuit and compensating for a phase change of a received signal from a target caused by movement of an aircraft, and the above phase compensation A frequency analyzer that analyzes the frequency of each output signal of the circuit, a detector that detects the amplitude of the output signal from this sum signal system frequency analyzer, and a constant false alarm by inputting the output signal from this detector. CFAR to detect target with probability
An airborne radar device comprising: a circuit; and an angle detection circuit for detecting a target azimuth angle from the output signals of the frequency analyzers of the sum signal and difference signal systems.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04103893A JP3252514B2 (en) | 1993-03-02 | 1993-03-02 | Airborne radar equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04103893A JP3252514B2 (en) | 1993-03-02 | 1993-03-02 | Airborne radar equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06258424A true JPH06258424A (en) | 1994-09-16 |
JP3252514B2 JP3252514B2 (en) | 2002-02-04 |
Family
ID=12597239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04103893A Expired - Fee Related JP3252514B2 (en) | 1993-03-02 | 1993-03-02 | Airborne radar equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3252514B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005326228A (en) * | 2004-05-13 | 2005-11-24 | Mitsubishi Electric Corp | Radar device |
CN108445483A (en) * | 2018-03-16 | 2018-08-24 | 成都锦江电子系统工程有限公司 | Water floats plant radar sensing system |
KR102391935B1 (en) * | 2021-11-15 | 2022-04-28 | 한화시스템 주식회사 | Apparatus and method for estimating angle of the low velocity target in the radar |
-
1993
- 1993-03-02 JP JP04103893A patent/JP3252514B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005326228A (en) * | 2004-05-13 | 2005-11-24 | Mitsubishi Electric Corp | Radar device |
JP4481078B2 (en) * | 2004-05-13 | 2010-06-16 | 三菱電機株式会社 | Radar equipment |
CN108445483A (en) * | 2018-03-16 | 2018-08-24 | 成都锦江电子系统工程有限公司 | Water floats plant radar sensing system |
KR102391935B1 (en) * | 2021-11-15 | 2022-04-28 | 한화시스템 주식회사 | Apparatus and method for estimating angle of the low velocity target in the radar |
Also Published As
Publication number | Publication date |
---|---|
JP3252514B2 (en) | 2002-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0446678B1 (en) | Polystatic correlating radar | |
US4086590A (en) | Method and apparatus for improving the slowly moving target detection capability of an AMTI synthetic aperture radar | |
US5945926A (en) | Radar based terrain and obstacle alerting function | |
US5784026A (en) | Radar detection of accelerating airborne targets | |
US9063225B2 (en) | High resolution Doppler collision avoidance radar | |
US6833808B2 (en) | Signal processing | |
US7167126B2 (en) | Radar system and method for determining the height of an object | |
US5608514A (en) | High range resolution ladar | |
WO1997043666A9 (en) | Radar based terrain and obstacle alerting function | |
US4034373A (en) | Airborne moving-target indicating radar system | |
CN110632587A (en) | Weak moving object monitoring method based on rapid FMCW radar | |
Rajkumar et al. | Design and Development of DSP Interfaces and Algorithm for FMCW Radar Altimeter | |
US5559515A (en) | Channel switching interferometric AMTI radar | |
WO1996035961A1 (en) | Airport surface detection radar | |
US3121868A (en) | High resolution object location system | |
CA2205471C (en) | Unlocked w-band receiver with coherent features | |
Schoenenberger et al. | Principles of independent receivers for use with co-operative radar transmitters | |
US5659320A (en) | Method and device for determining the speed of a moving object by means of a pulse-compression radar or sonar | |
JPH1078481A (en) | Aircraft loaded radar | |
US6369748B1 (en) | Radar system mounted on vehicle | |
US3848253A (en) | Side looking pulse radar system | |
JP3252514B2 (en) | Airborne radar equipment | |
US6765526B1 (en) | GMTI motion compensation | |
Kang et al. | Validity of Stop-and-Go Approximation in High-Resolution Ku-band FMCW SAR with High-Velocity Platform | |
JP3303862B2 (en) | Pulse compression radar device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |