JPH06258415A - Underwater sound scope - Google Patents

Underwater sound scope

Info

Publication number
JPH06258415A
JPH06258415A JP4261193A JP4261193A JPH06258415A JP H06258415 A JPH06258415 A JP H06258415A JP 4261193 A JP4261193 A JP 4261193A JP 4261193 A JP4261193 A JP 4261193A JP H06258415 A JPH06258415 A JP H06258415A
Authority
JP
Japan
Prior art keywords
wave
directivity
receiver
maximum sensitivity
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4261193A
Other languages
Japanese (ja)
Other versions
JP3106334B2 (en
Inventor
Katsu Okubo
克 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP05042611A priority Critical patent/JP3106334B2/en
Publication of JPH06258415A publication Critical patent/JPH06258415A/en
Application granted granted Critical
Publication of JP3106334B2 publication Critical patent/JP3106334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain an underwater sound scope by which the sound can be easily collected at a high S/N ratio in accordance with sea areas which are dominated by focusing band wave or multiple route wave. CONSTITUTION:A group 6 to 12 consisting of odd numbers of non-directional wave reception devices is arranged vertically and, at the same time, while a wave reception device 6 is placed at the center, other wave reception devices on both side thereof are arranged in a manner to be symmetrical, then two dipole-type directional wave-reception devices 13 and 14 are placed adjacent to the center position of the group 6 to 12. The direction of detecting target is measured by using the output from a beam former which alternately makes a first broad-side-type directivity having a maximum sensing axis against the angle where the detection target sound reflects on the sea bottom and returns or a second broad-side-type directivity having a maximum sensing axis in a horizontal direction by a switching device 30 on the basis of the respective outputs from the group 6 to 12, and the outputs from the wave reception devices 13 and 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水中聴音機に関し、特に
集束帯波又は多重経路波が支配的な海域で、海中音源か
らの音波を受音して、その存在の検出や方位の測定等を
行うのに適した水中聴音機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrophone, and in particular, in a sea area where a focused band wave or a multipath wave is dominant, a sound wave from an undersea sound source is received to detect its presence and measure its direction. The present invention relates to a hydrophone that is suitable for performing.

【0002】[0002]

【従来の技術】一般に海中(又は水中)の目標音源か
ら、海中にある受波器に到達する音波は、海面と平行な
面(以下水平面という)から到来する直接波と海面及び
海底に反射又は散乱して伝搬する多くの多重経路波とが
混合されたものである。図6は音波が海中を伝搬して受
波器に伝わる状態を示した説明図である。図において、
1は海面、2は海底、3は音波を伝搬するための媒体と
なる海中、4は検出目標、5はブイ等から海中3に降ろ
された受波器である。同図のように、検出目標4からの
音波を10Km程度離れて受波すると、検出目標4から
放射される音波は海面1及び海底2への入射角が小さい
ため、多くの多重経路波の加算効果によって多重経路波
のレベルの方が直接波のレベルより大きくなるものであ
る。
2. Description of the Related Art Generally, a sound wave reaching a receiver located in the sea from a target sound source in the sea (or underwater) is reflected by a direct wave coming from a plane parallel to the sea surface (hereinafter referred to as a horizontal plane) or the sea surface and the sea floor. It is a mixture of many multipath waves that are scattered and propagated. FIG. 6 is an explanatory diagram showing a state in which a sound wave propagates in the sea and reaches a receiver. In the figure,
1 is the sea surface, 2 is the seabed, 3 is the medium for propagating sound waves, 4 is the detection target, and 5 is a wave receiver dropped from the buoy or the like into the sea 3. As shown in the figure, when the sound wave from the detection target 4 is received at a distance of about 10 km, the sound wave radiated from the detection target 4 has a small angle of incidence on the sea surface 1 and the seabed 2, so that many multipath waves are added. Due to the effect, the level of the multipath wave becomes higher than that of the direct wave.

【0003】また、船舶航走路上の海域や沿岸海域等の
ような航走路雑音(以下トラフィック性雑音という)の
高い海域では、海中雑音における音響周波数の低周波領
域(例えば10〜500Hz)の大部分がトラフイック
性雑音となって、例えば図7に示す方向性を持つもので
ある。このため、特公昭57−19390号公報には、
奇数個の無指向性受波器を垂直直線上で且つ中心の受波
器に対して、他の両側の受波器が対称となるように配列
すると共に、中心の受波器の出力と他の出力とを逆相と
し、また水平面方向に最大感度軸を持つ2個のダイポー
ル型指向性受波器を互の最大感度軸が90度ずれるよう
に配置して、この2個のダイポール型指向性受波器の出
力と、奇数個の無指向性受波器の出力とによって、図8
に示すように8の字型指向性を得て、海中雑音レベルと
目標音レベルの信号対雑音比(S/N)を高めることが
説明されている。つまり、水平面で零感度となる8の字
型指向性により、トラフイック性海中雑音を抑制し、海
面及び海底からの多重経路波を受信してS/N比を高め
るものである。
Further, in a sea area having a high runway noise (hereinafter referred to as traffic noise) such as a sea area on a ship runway or a coastal sea area, a large low frequency region (for example, 10 to 500 Hz) of an acoustic frequency in sea noise is large. The portion becomes traffic noise and has, for example, the directionality shown in FIG. Therefore, Japanese Patent Publication No. 57-19390 discloses that
Arrange an odd number of omnidirectional receivers on a vertical straight line so that the receivers on both sides are symmetrical with respect to the receiver at the center, and the output of the receiver at the center and other , And the two dipole type directional receivers having the maximum sensitivity axis in the horizontal plane direction are arranged so that their maximum sensitivity axes are shifted by 90 degrees. The output of the directional receiver and the output of the odd number of omnidirectional receivers
It is described that the signal-to-noise ratio (S / N) of the undersea noise level and the target sound level is increased by obtaining the figure 8 directivity as shown in FIG. That is, the figure-8 directivity, which has zero sensitivity in the horizontal plane, suppresses the traffic underwater noise, and receives the multipath waves from the sea surface and the sea floor to increase the S / N ratio.

【0004】しかし、一般に深海域における音波伝搬で
は音源と受波器との間の距離が中間(10マイル〜20
マイル)までは、多重経路波が支配的であるが、30マ
イル〜40マイル程度の遠距離では集束帯(コンバーゼ
ンス・ゾーン)波が支配的であるため、この集束帯波を
聴音するのが有効である。そして、この集束帯波は、受
波器に対して海面1よりわずか下方(約−10度)と上
方(約+10度)の角度範囲から到達することが知られ
ている。
However, generally, in sound wave propagation in the deep sea, the distance between the sound source and the receiver is intermediate (10 miles to 20 miles).
Up to the mile, the multipath wave is dominant, but in the long distance of about 30 to 40 miles, the focus zone (convergence zone) wave is dominant, so it is effective to hear this focus zone wave. Is. It is known that this focusing band wave reaches the wave receiver from an angle range slightly below (about -10 degrees) and above (about +10 degrees) the sea level 1.

【0005】このため、特公平4−41312号公報で
は、海中に、奇数個の無指向性受波器を海面に対して垂
直な直線上でかつ中心の受波器に対して他の両側の受波
器が対称となるように配列し、また無指向性受波器の配
列の中心位置の近傍に、2個のダイポール型指向性受波
器を各々の最大感度軸が海面と平行な方向でかつ互いに
90度ずれるように配置すると共に、図8に示すように
無指向性受波器の各出力を海面と平行な面上で零感度と
なる8の字型指向性を造る第1のビームフォーマ及び図
9に示す海面と平行な方向よりわずかに下方又は上方に
ビームを向けたブロードサイド型指向性を造る第2のビ
ームフォーマを備えることによって、集束帯波を聴音す
るようにしてS/N比を高くしていた。
Therefore, in Japanese Patent Publication No. 4-41312, an odd number of omnidirectional receivers are placed in the sea on a straight line perpendicular to the sea surface and on both sides of the center receiver. Arrange the receivers symmetrically, and place two dipole type directional receivers near the center position of the array of omnidirectional receivers, with each maximum sensitivity axis parallel to the sea surface. In addition to arranging them so that they are offset by 90 degrees from each other, as shown in FIG. 8, each output of the omnidirectional receiver has an 8-shaped directivity with zero sensitivity on a plane parallel to the sea surface. By providing a beamformer and a second beamformer that creates broadside type directivity in which the beam is directed slightly below or above the direction parallel to the sea surface shown in FIG. The / N ratio was high.

【0006】[0006]

【発明が解決しようとする課題】上記のような特公平4
−41312号公報の従来の水中聴音機は、多重経路波
が支配的な海域では、トラフイック性雑音を受音しない
ようにして多重経路波の音波を受音するために、海面及
び海底方向に対して最大感度軸を有する8の字型指向性
にしている。しかし、この8の字型指向性は、多重経路
波をS/N比よく受音しようとしても、検出目標からの
音波が入射して来ない上下方向に最大感度をもっている
ため、S/N比が充分に改善されないという問題点があ
った。また、特公平4−41312号公報は集束帯波が
支配的な海域では、これを高いS/Nで受音するため、
海面と平行な方向よりわずかに下方又は上方にビームを
向けたブロードサイド型指向性を造ることで、集束帯波
を高いS/N比で受音するようにしていた。
[Problems to be Solved by the Invention]
In the conventional hydrophone of JP-A-41312, in the sea area where the multipath waves are dominant, in order to receive the sound waves of the multipath waves without receiving the trafic noise, the underwater sounding direction is applied to the sea surface and the seabed. It has an 8-shaped directivity with the maximum sensitivity axis. However, this 8-shaped directivity has the maximum sensitivity in the vertical direction in which the sound wave from the detection target does not enter even when trying to receive a multipath wave with a good S / N ratio, so the S / N ratio is high. However, there was a problem that it was not sufficiently improved. Further, according to Japanese Examined Patent Publication No. 4-41312, in a sea area where the focusing band wave is dominant, the sound is received at a high S / N ratio.
By creating a broadside type directivity in which the beam is directed slightly below or above the direction parallel to the sea surface, the focused band wave is received with a high S / N ratio.

【0007】しかし、ビームの最大感度軸を海面と平行
な方向よりわずかに下方又は上方に向けたブロードサイ
ド型指向性を造っても、図7に示すような指向性を示す
トラフィック性雑音の入射角と集中帯波の入射角は、ほ
ぼ同一角度となるので、トラフィック性雑音の影響を防
ぐことは困難であるという問題点があった。つまり、わ
ざわざトラフイック性雑音を受音しないようにするた
め、水平面方向より、最大感度が下方に10度になるよ
うにしているにもかかわらずトラフイック性雑音を受音
することになるという問題点があった。即ち、従来の水
中聴音機は、集束帯波が支配的は海域又は多重経路波が
支配的な海域に応じて、高いS/N比で受音することが
できないという問題点があった。本発明は以上の問題点
を解決するためになされたもので、集束帯波又は多重経
路波が支配的な海域に応じて、容易に高いS/N比で受
音することができることができる水中聴音機を得ること
を目的とする。
However, even if a broadside type directivity in which the maximum sensitivity axis of the beam is directed slightly downward or upward from the direction parallel to the sea surface is made, the incidence of traffic noise having the directivity as shown in FIG. 7 is introduced. Since the angle of incidence and the angle of incidence of the concentrated band wave are almost the same, there is a problem that it is difficult to prevent the influence of traffic noise. In other words, there is a problem in that the traffic noise is received even though the maximum sensitivity is set to 10 degrees downward from the horizontal plane in order not to receive the traffic noise. there were. That is, the conventional hydrophone has a problem that it cannot receive sound with a high S / N ratio depending on the sea area where the focusing band waves are dominant or the sea area where the multipath waves are dominant. The present invention has been made to solve the above problems, and can easily receive sound with a high S / N ratio depending on the sea area where the focusing band wave or the multipath wave is dominant. Aim to get a hearing aid.

【0008】[0008]

【課題を解決するための手段】本発明に係わる水中聴音
機は、海中に、奇数個の無指向性受波器群を垂直方向
に、且つ中心の受波器に対して他の両側の受波器が対称
となる様に配列し、無指向性受波器群の配列の中心位置
の近傍に、2個のダイポール型指向性受波器を各々最大
感度軸が水平面方向に対して、互いに90度ずれるよう
に配置し、無指向性受波器群の各出力に基づいて、検出
目標音が海底反射して到来する角度に最大感度軸を有す
る第1のブロードサイド型指向性又は水平面方向に最大
感度軸を有する第2のブロードサイド型指向性を択一的
に造るビームフォーマの出力と、2個のダイポール型指
向性受波器の出力とによって、検出目標の方位を測定す
るものである。
SUMMARY OF THE INVENTION A hydrophone according to the present invention has an odd number of omnidirectional receiver groups vertically in the sea and on both sides of the center receiver. Arrange the wave receivers symmetrically, and place two dipole-type directional wave receivers near the center position of the array of omnidirectional wave receiver groups, each with its maximum sensitivity axis in the horizontal direction. The first broadside type directivity or horizontal plane direction, which is arranged so as to be deviated by 90 degrees and has a maximum sensitivity axis at an angle at which the detection target sound is reflected by the seabed and arrives based on each output of the omnidirectional receiver group The direction of the detection target is measured by the output of the beam former which selectively creates the second broadside type directivity having the maximum sensitivity axis and the output of the two dipole type directional receivers. is there.

【0009】[0009]

【作用】本発明においては、選択されることによって、
ビームフォーマが海底反射して到来する角度に最大感度
軸を有する第1のブロードサイド型指向性又は水平面方
向に最大感度軸を有する第2のブロードサイド型指向性
を造り、このビームフォーマの出力と奇数個の無指向性
受波器群の中心位置の近傍に配置された2個のダイポー
ル型指向性受波器の出力に基づいて、検出目標の方位を
測定する。
In the present invention, depending on the selection,
The beamformer creates a first broadside type directivity having a maximum sensitivity axis at an angle at which it reflects from the seabed or a second broadside type directivity having a maximum sensitivity axis in a horizontal plane direction, and outputs the output of this beamformer. The direction of the detection target is measured based on the outputs of the two dipole type directional receivers arranged near the center position of the odd number of omnidirectional receiver groups.

【0010】[0010]

【実施例】図1は本発明の一実施例を示す概略構成図で
ある。図において、1〜3は上記と同様なものである。
6〜12は無指向性受波器、13及び14はダイポール
型指向性受波器、15〜21は移相器(PSC)、30
は切換器であり、接点22〜接点28を備え、制御端子
29に入力する切換信号に基づいて各接点を切換える。
この切換器30はアナログスイッチ等を用いている。3
1、32及び35は加算器、33は低域フィルタ(以下
LPFという)、34は高域パスフィルタ(以下HLP
という)、36は加算器35の出力端子、37はダイポ
ール型指向性受波器13の出力端子、38はダイポール
型指向性受波器14の出力端子である。このような回路
を水中聴音機は備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic block diagram showing an embodiment of the present invention. In the figure, 1 to 3 are the same as above.
6 to 12 are omnidirectional receivers, 13 and 14 are dipole type directional receivers, 15 to 21 are phase shifters (PSCs), 30
Is a switch, which includes contacts 22 to 28, and switches each contact based on a switch signal input to the control terminal 29.
The switch 30 uses an analog switch or the like. Three
1, 32 and 35 are adders, 33 is a low pass filter (hereinafter referred to as LPF), 34 is a high pass filter (hereinafter referred to as HLP).
, 36 is an output terminal of the adder 35, 37 is an output terminal of the dipole directional receiver 13, and 38 is an output terminal of the dipole directional receiver 14. The hydrophone has such a circuit.

【0011】無指向性受波器6〜12は海中3内にて海
面1に対して垂直な直線上に無指向性受波器6を中心と
して、その両側に距離d1をおいて、無指向性受波器7
及び無指向性受波器8が配置され、距離d2をおいて、
無指向性受波器9及び無指向性受波器10が配置され、
距離d3をおいて、無指向性受波器11及び無指向性受
波器12が配置されている。また、ダイポール型指向性
受波器13及びダイポール型指向性受波器14は無指向
性受波器6〜12の中心位置の近傍に、その最大感度軸
が共に水平面方向となり、かつ互いに90度ずれるよう
に配置されている。移相器15〜21、切換器30、加
算器31、加算器32、低域フィルタ(LPF)33、
高域フィルタ(HPF)34、加算器35はビームフォ
ーマを構成するものである。
The omnidirectional receivers 6 to 12 are omnidirectional with the omnidirectional receiver 6 centered on a straight line perpendicular to the sea surface 1 in the sea 3 with a distance d1 on both sides thereof. Sex receiver 7
And the omnidirectional receiver 8 are arranged at a distance d2,
An omnidirectional receiver 9 and an omnidirectional receiver 10 are arranged,
An omnidirectional receiver 11 and an omnidirectional receiver 12 are arranged at a distance d3. Further, the dipole type directional receiver 13 and the dipole type directional receiver 14 are located near the center positions of the omnidirectional receivers 6 to 12, their maximum sensitivity axes are both in the horizontal plane direction, and are 90 degrees from each other. It is arranged so as to be offset. The phase shifters 15 to 21, the switcher 30, the adder 31, the adder 32, the low-pass filter (LPF) 33,
The high-pass filter (HPF) 34 and the adder 35 constitute a beam former.

【0012】そして、このような構成において、移相器
15〜移相器21はそれぞれ無指向性受波器6〜無指向
性受波器12の各出力に、距離d1、d2、d3に応じ
て図2に示すような時間の進み又は遅れ量を付加し水平
面方向より下方に約40度に位相を揃えた信号を出力を
得る。切換器30は制御端子29に入力する切換信号に
よって、各接点22〜28が切換わり、例えば制御信号
がLレベルのとき、各接点22〜28が移相器15〜移
相器21を選択し、それぞれその移相器の信号を出力
し、また制御信号がHレベルにされたときは、各接点2
2〜28が無指向性受波器6〜無指向性受波器12を選
択し、それぞれその無指向性受波器の出力信号を出力す
る。
In such a configuration, the phase shifter 15 to the phase shifter 21 respectively respond to the outputs of the omnidirectional wave receiver 6 to the omnidirectional wave receiver 12 according to the distances d1, d2, d3. 2 is added to obtain a signal whose phase is aligned below the horizontal direction by about 40 degrees by adding a time advance or delay amount. The switching device 30 switches the contacts 22 to 28 by a switching signal input to the control terminal 29. For example, when the control signal is at the L level, the contacts 22 to 28 select the phase shifter 15 to the phase shifter 21. , Each of which outputs the signal of the phase shifter, and when the control signal is set to the H level, each contact 2
2 to 28 select the omnidirectional wave receiver 6 to the omnidirectional wave receiver 12 and output the output signals of the respective omnidirectional wave receivers.

【0013】加算器31は切換器30の接点27、接点
25、接点22、接点26、接点28の信号を入力して
加算し、制御信号によって切換器30が移相器15〜移
相器21を選択していた場合は、距離d2及び距離d3
による、より低周波における下図に説明する水平面方向
より下方約40度に最大感度軸を有する第1のブローサ
イド型指向性を得る。図3は水平面方向より下方約40
度に最大感度軸を有する第1のブローサイド型指向性の
説明図である。同図に示すように、本指向性は最大感度
軸を水平面方向より下方約40度に設けて、海底2から
反射されて到来する音波を受音するため、トラフイック
性雑音を受音しないで、高いS/N比で海底2からの反
射波を受音するものである。
The adder 31 inputs and adds the signals of the contact point 27, the contact point 25, the contact point 22, the contact point 26, and the contact point 28 of the switching device 30, and the switching device 30 causes the switching device 30 to shift the phase shifter 15 to 21 by the control signal. If was selected, distance d2 and distance d3
The first blowside type directivity having a maximum sensitivity axis at a lower frequency of about 40 degrees below the horizontal plane direction described in the following figure. Figure 3 shows about 40 below the horizontal plane.
It is explanatory drawing of the 1st blow side type directivity which has a maximum sensitivity axis | shaft every time. As shown in the figure, this directivity has a maximum sensitivity axis about 40 degrees below the horizontal plane and receives sound waves reflected from the seabed 2 and therefore does not receive traffic noise. It receives a reflected wave from the seabed 2 with a high S / N ratio.

【0014】また、加算器31は制御信号によって切換
器30が無指向性受波器6〜無指向性受波器12を選択
していた場合は、距離d2及び距離d3による、より低
周波における下図に説明する水平面方向に最大感度軸を
有する指向性(第2のブロードサイド型指向性)を得
る。図4は水平面方向に最大感度軸を有する指向性の説
明図である。同図に示すように、本指向性は最大感度軸
を水平面方向にしているため、トラフイック性雑音と、
集束帯波を同時に受音することになる。これは、トラフ
ィック性雑音を避けるために、水平面方向より下方に、
10度の最大感度軸を有する指向性としていたが、トラ
フィック性雑音の到来角度の方が集束帯波の到来角度よ
り大きいため、トラフイック雑音の影響を無くすことは
困難であり、逆に水平面方向に最大感度軸を設けて全て
の集束帯波を受音した方がS/N比が高くなるためであ
る。つまり、集束帯波用として用いるのである。
When the switcher 30 selects the omnidirectional receiver 6 to the omnidirectional receiver 12 by the control signal, the adder 31 operates at a lower frequency depending on the distance d2 and the distance d3. The directivity (second broadside type directivity) having the maximum sensitivity axis in the horizontal plane direction described below is obtained. FIG. 4 is an explanatory diagram of directivity having the maximum sensitivity axis in the horizontal plane direction. As shown in the figure, since the maximum sensitivity axis of this directivity is in the horizontal plane direction, traffic noise and
The focused band wave is received at the same time. This is below the horizontal plane to avoid traffic noise,
Although the directivity has a maximum sensitivity axis of 10 degrees, it is difficult to eliminate the influence of traffic noise because the arrival angle of traffic noise is larger than the arrival angle of the focusing band wave, and conversely in the horizontal plane direction. This is because the S / N ratio is higher when the maximum sensitivity axis is provided and all focusing band waves are received. That is, it is used for the focusing band wave.

【0015】加算器32は切換器30の接点25、接点
23、接点22、接点24、接点26の信号を入力して
加算し、制御信号によって切換器30が移相器15〜移
相器21を選択していた場合は、距離d1及び距離d2
による、より高周波における図3の水平面方向より下方
約40度に最大感度軸を有する指向性(第1のブロード
サイド型指向性)を得る。また、加算器32は制御信号
によって切換器30が無指向性受波器6〜無指向性受波
器12を選択していた場合は、距離d1及び距離d2に
よる、より高周波における図4の水平面方向に最大感度
軸を有する指向性(第2のブロードサイド型指向性)を
得る。
The adder 32 inputs and adds the signals of the contact 25, the contact 23, the contact 22, the contact 24, and the contact 26 of the switching unit 30, and the switching unit 30 causes the switching unit 30 to shift the phase shifter 15 to the phase shifter 21. If was selected, distance d1 and distance d2
, The directivity (first broadside type directivity) having the maximum sensitivity axis at about 40 degrees below the horizontal plane of FIG. 3 at higher frequencies is obtained. Further, when the switcher 30 selects the omnidirectional wave receiver 6 to the omnidirectional wave receiver 12 by the control signal, the adder 32 uses the distance d1 and the distance d2, and the horizontal plane of FIG. 4 at a higher frequency. A directivity having a maximum sensitivity axis in the direction (second broadside type directivity) is obtained.

【0016】そして、加算器31の出力は低域フィルタ
33を介して加算器35に出力され、また加算器32の
出力は高域フィルタ34を介して加算器35に出力さ
れ、加算器35によって合成され、前記同様の図3に示
すような第1のブロード型指向性に対応する出力を、低
周波から高周波に渡って、出力端子36に得る。又は、
前記同様の図4に示すような第2のブロードサイド型指
向性に対応する出力を、低周波から高周波に渡って、出
力端子36に得る。このように、移相器15〜21、切
換器30、加算器31、加算器32、低域フィルタ3
3、高域フィルタ34、加算器35から構成されている
ビームフォーマは制御端子29に入力する制御信号によ
って、その指向性を図3の如く水平面より約40度下方
(以下第1種の方向という)に最大感度軸を造ったとき
も、図4の如く水平面方向(以下第2種の方向という)
に最大感度軸を造ったときも、いずれも水平面上では無
指向性のビームパターンを造ることとなる。
The output of the adder 31 is output to the adder 35 via the low pass filter 33, and the output of the adder 32 is output to the adder 35 via the high pass filter 34. A combined output corresponding to the first broad type directivity as shown in FIG. 3 is obtained from the low frequency to the high frequency at the output terminal 36. Or
Similar to the above, an output corresponding to the second broadside type directivity as shown in FIG. 4 is obtained from the low frequency to the high frequency at the output terminal 36. As described above, the phase shifters 15 to 21, the switching device 30, the adder 31, the adder 32, and the low-pass filter 3
3, the beam former composed of the high-pass filter 34 and the adder 35 is controlled by the control signal inputted to the control terminal 29 so that the directivity thereof is about 40 degrees below the horizontal plane (hereinafter referred to as the first type direction). ), When the maximum sensitivity axis is created, as shown in FIG. 4, the horizontal direction (hereinafter referred to as the second type direction)
Even when the maximum sensitivity axis is made, the beam pattern is omnidirectional on the horizontal plane.

【0017】しかも、低域フィルタ33と高域フィルタ
34を通常のバターワース型フィルタで構成し、無指向
性受波器の間隔で受けもつ周波数領域を分離すると共
に、その遮断周波数と遮断特性を同一とすることによっ
て、低周波から高周波に周波数が変化しても、その加算
器35の出力端子36における出力信号の位相変化が零
となるようにしている。そして、出力端子36に得られ
る第1のブロードサイド型指向性の出力又は第2のブロ
ードサイド型指向性の出力と、前記の最大感度軸が共に
水平面方向を向き、且つ互いに90度ずれたダイポール
型指向性受波器の出力端子37,38に得られる両方の
出力は、例えば特公昭53−22038号公報に詳細に
説明されている伝送方式で伝送され、特公昭55−28
514号公報に詳細に説明されている測定方法で目標の
方位を検出するために使用することができる。なお、前
記実施例では位相を揃えて加算する受波器の個数が5個
の場合を示しているが、前記受波器の個数を増して、位
相を揃えて加算すれば図3及び図4に示す指向性のビー
ム幅を狭くすることができ、S/N比をより向上させる
ことができる。また、前記受波器の個数を増して、より
外側に受波器を設けて、例えば低周波、中間周波、高周
波の如く周波数帯域を増して移相器、加算器とフィルタ
ーの組合せを設ければ、更に広帯域化でき、より広い周
波数帯域の目標音に対して図3及び図4の指向性を保持
することができる。
Moreover, the low-pass filter 33 and the high-pass filter 34 are constituted by a normal Butterworth type filter to separate the frequency regions covered by the intervals of the omnidirectional receivers and to make their cutoff frequencies and cutoff characteristics the same. By this, even if the frequency changes from the low frequency to the high frequency, the phase change of the output signal at the output terminal 36 of the adder 35 becomes zero. Then, the first broadside type directivity output or the second broadside type directivity output obtained at the output terminal 36 and the maximum sensitivity axis are both oriented in the horizontal plane direction, and the dipoles are deviated from each other by 90 degrees. Both outputs obtained at the output terminals 37 and 38 of the type directional receiver are transmitted by the transmission method described in detail in, for example, Japanese Patent Publication No. 53-22038, and Japanese Patent Publication No. 55-28.
The measurement method described in detail in Japanese Patent No. 514 can be used to detect the direction of the target. In the above embodiment, the case where the number of wave receivers for which the phases are aligned and added is five is shown, but if the number of the wave receivers is increased and the phases are aligned and added, then FIG. The beam width of the directivity shown in can be narrowed, and the S / N ratio can be further improved. Further, by increasing the number of the wave receivers and providing the wave receivers on the outer side, for example, by increasing the frequency band such as low frequency, intermediate frequency and high frequency, a combination of a phase shifter, an adder and a filter is provided. If so, the band can be further widened, and the directivity of FIGS. 3 and 4 can be maintained with respect to the target sound of a wider frequency band.

【0018】なお、図5は水平面より約40度下方(第
1種の方向)に最大感度軸を向ける目的を説明する図で
ある。即ち、本発明の第1種の方向は、図5に示す如
く、唯一回の海底反射波を対象として水平面より約40
度下方にビームの主軸を向ける。これにより、海中雑音
の影響を全く受けることなく、自らのビーム幅によって
S/N比を向上させて海底反射波を受音することができ
る。但し、この場合、例えば、水深4kmの海域では図
5の受波器群5の狙う目標迄の距離は約8kmとなり、
受波器群5から半径8kmのリング状領域が探知領域と
なり、このリングの幅は、図3のビーム幅によって決め
られる。
FIG. 5 is a diagram for explaining the purpose of directing the maximum sensitivity axis to about 40 degrees below the horizontal plane (direction of the first type). That is, the direction of the first type of the present invention is, as shown in FIG. 5, about 40 degrees from the horizontal plane for the single ocean bottom reflected wave.
Orient the main axis of the beam downwards. As a result, the S / N ratio can be improved by the beam width of its own and the submarine reflected wave can be received without being affected by the underwater noise. However, in this case, for example, in a sea area with a depth of 4 km, the distance to the target of the receiver group 5 in FIG. 5 is about 8 km,
A ring-shaped region having a radius of 8 km from the wave receiver group 5 serves as a detection region, and the width of this ring is determined by the beam width in FIG.

【0019】更に、図4に示す水平面方向(第2種の方
向)に最大感度軸を持った指向性は、受波器群5を比較
的、浅深度(例えば100m)に吊下して、遠距離から
到来する集束帯波をS/N比良く受音するためのもので
ある。なお、この場合図1により説明した単純な加算器
が利用できるので、小形で安価なハードウェアで容易に
実現できる利点もある。ユーザは使用海域の特性によっ
て本水中聴音機の制御端子29を事前に制御して、移相
器又は無指向性受波器を選択し、図3又は図4の指向性
に切換えて使用する。さらに、図3における約40度の
角度は図7のトラフイック性雑音を避ける目的では大き
な値としたいが、目標信号の海底反射損失を小さくする
目的では小さな値としたく、30〜45度の間を中間値
として設定したものである。さらに、上記実施例では切
換器をアナログスイッチとしたが一般的な複数の接点を
有するリレーであってもよい。
Further, the directivity having the maximum sensitivity axis in the horizontal plane direction (direction of the second kind) shown in FIG. 4 hangs the receiver group 5 at a relatively shallow depth (for example, 100 m), This is for receiving a focused band wave coming from a long distance with a good S / N ratio. In this case, since the simple adder described with reference to FIG. 1 can be used, there is also an advantage that it can be easily realized with a small and inexpensive hardware. The user pre-controls the control terminal 29 of the hydrophone to select a phase shifter or an omnidirectional receiver, and switches to the directivity of FIG. 3 or 4 for use. Further, the angle of about 40 degrees in FIG. 3 is desired to be a large value for the purpose of avoiding the traffic noise of FIG. 7, but it is desired to be a small value for the purpose of reducing the sea bottom reflection loss of the target signal. It is set as an intermediate value. Further, in the above embodiment, the switch is an analog switch, but it may be a general relay having a plurality of contacts.

【0020】[0020]

【発明の効果】以上のように本発明によれば、奇数個の
無指向性受波器群を垂直方向に、且つ中心の受波器に対
して他の両側の受波器が対称となる様に配列し、前記無
指向性受波器群の配列の中心位置の近傍に、2個のダイ
ポール型指向性受波器を各々最大感度軸が水平面方向に
対して、互いに90度ずれるように配置し、無指向性受
波器群の各出力に基づいて、検出目標音が海底反射して
到来する角度に最大感度軸を有する第1のブロードサイ
ド型指向性又は水平面方向に最大感度軸を有する第2の
ブロードサイド型指向性を択一的に造るビームフォーマ
の出力と、2個のダイポール型指向性受波器の出力とに
よって、検出目標の方位を測定するようにしたことによ
り、多重経路波が支配的な海域では、第1のブロードサ
イド型指向性で積極的に海底反射波を受音するためS/
N比が改善し、集束帯波が支配的な海域では、第2のブ
ロードサイド型指向性で水平方向から到来する集束帯波
を受音するためS/N比が改善するので、集束帯波又は
多重経路波が支配的な海域で、検出目標からの到来音波
をS/N比良く受音でき、目標の存在を検出でき、また
目標の方位を精度良く測定することができる効果が得ら
れている。また、本発明による水中聴音機のビームフォ
ーマは、選択されることによって第1のブロードサイド
型指向性又は第2のブロードサイド型指向性を造るよう
にしているので、構造上小型で安価なハードウェアで容
易に実現することができるという効果が得られている。
As described above, according to the present invention, an odd number of omnidirectional receiver groups are arranged in the vertical direction, and the receivers on both sides are symmetrical with respect to the center receiver. Are arranged in the same manner, and two dipole type directional receivers are arranged in the vicinity of the center position of the array of the omnidirectional receivers such that the maximum sensitivity axes are displaced from each other by 90 degrees with respect to the horizontal plane direction. Based on each output of the omnidirectional receiver group, the first broadside type directivity having the maximum sensitivity axis at the angle at which the detection target sound is reflected by the seabed and arrives or the maximum sensitivity axis in the horizontal direction is set. The direction of the detection target is measured by the output of the beam former that selectively creates the second broadside type directivity and the output of the two dipole type directional receivers. In the sea area where the path wave is dominant, the first broadside type directivity Manner to the sound receiving the seabed reflected wave S /
In the sea area where the N ratio is improved and the focused band wave is dominant, the S / N ratio is improved because the focused band wave coming from the horizontal direction is received by the second broadside type directivity, so the focused band wave is improved. Or, in the sea area where the multipath wave is dominant, the effect that the incoming sound wave from the detection target can be received with a good S / N ratio, the presence of the target can be detected, and the direction of the target can be accurately measured can be obtained. ing. Further, the beam former of the hydrophone according to the present invention is adapted to create the first broadside type directivity or the second broadside type directivity depending on the selection. The effect is that it can be easily realized by wear.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】本発明に係るビームフォーマにおける整相のよ
うすを示す説明図である。
FIG. 2 is an explanatory view showing the manner of phasing in the beam former according to the present invention.

【図3】水平面方向より下方約40度に最大感度軸を有
する指向性の説明図である。
FIG. 3 is an explanatory diagram of directivity having a maximum sensitivity axis at about 40 degrees below the horizontal plane direction.

【図4】水平面方向に最大感度軸を有する指向性の説明
図である。
FIG. 4 is an explanatory diagram of directivity having a maximum sensitivity axis in a horizontal plane direction.

【図5】水平面より約40度下方に最大感度軸を向ける
目的を説明する図である。
FIG. 5 is a diagram illustrating the purpose of orienting the maximum sensitivity axis about 40 degrees below the horizontal plane.

【図6】音波が水中を伝搬して受波器に伝わる状態を示
した説明図である。
FIG. 6 is an explanatory diagram showing a state in which a sound wave propagates in water and reaches a receiver.

【図7】トラフイック性雑音の方向性を示す図である。FIG. 7 is a diagram showing the directionality of traffic noise.

【図8】従来の8の字型指向性を示す図である。FIG. 8 is a diagram showing a conventional 8-shaped directivity.

【図9】従来の水平方向より下方約10度にビームを向
けた指向性を示す図である。
FIG. 9 is a diagram showing a directivity in which a beam is directed about 10 degrees below a conventional horizontal direction.

【符号の説明】[Explanation of symbols]

1 海面 2 海底 3 海中 6〜12 無指向性受波器 15〜21 移相器 30 切換器 31 加算器 32 加算器 33 低域フィルタ 34 高域フィルタ 1 sea surface 2 seabed 3 underwater 6-12 omnidirectional wave receiver 15-21 phase shifter 30 switcher 31 adder 32 adder 33 low-pass filter 34 high-pass filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 海中に、奇数個の無指向性受波器群を垂
直方向に、且つ中心の受波器に対して他の両側の受波器
が対称となる様に配列し、前記無指向性受波器群の配列
の中心位置の近傍に、2個のダイポール型指向性受波器
を各々最大感度軸が水平面方向に対して、互いに90度
ずれるように配置し、 前記無指向性受波器群の各出力に基づいて、検出目標音
が海底反射して到来する角度に最大感度軸を有する第1
のブロードサイド型指向性又は水平面方向に最大感度軸
を有する第2のブロードサイド型指向性を択一的に造る
ビームフォーマの出力と、 前記2個のダイポール型指向性受波器の出力とによっ
て、検出目標の方位を測定する水中聴音機。
1. An odd number of omnidirectional receiver groups are vertically arranged in the sea so that the receivers on the other sides are symmetrical with respect to the center receiver. In the vicinity of the center position of the array of directional receivers, two dipole type directional receivers are arranged so that their maximum sensitivity axes are offset from each other by 90 degrees with respect to the horizontal plane, A first sensitivity axis having a maximum sensitivity axis at an angle at which the detection target sound is reflected by the seabed and arrives based on each output of the receiver group.
By the output of the beamformer that selectively creates the broadside type directivity or the second broadside type directivity having the maximum sensitivity axis in the horizontal plane direction and the output of the two dipole type directional receivers. , A hydrophone that measures the direction of the detection target.
JP05042611A 1993-03-03 1993-03-03 Hydrophone Expired - Fee Related JP3106334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05042611A JP3106334B2 (en) 1993-03-03 1993-03-03 Hydrophone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05042611A JP3106334B2 (en) 1993-03-03 1993-03-03 Hydrophone

Publications (2)

Publication Number Publication Date
JPH06258415A true JPH06258415A (en) 1994-09-16
JP3106334B2 JP3106334B2 (en) 2000-11-06

Family

ID=12640831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05042611A Expired - Fee Related JP3106334B2 (en) 1993-03-03 1993-03-03 Hydrophone

Country Status (1)

Country Link
JP (1) JP3106334B2 (en)

Also Published As

Publication number Publication date
JP3106334B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
US9348028B2 (en) Sonar module using multiple receiving elements
US20140010048A1 (en) Sonar System Using Frequency Bursts
CA1063230A (en) Depth sounder
US5729507A (en) Directional energy receiving systems for use in the indication of the direction of arrival of the received signal
JP6179973B2 (en) Signal processing device, underwater detection device, signal processing method, and program
JPH06258415A (en) Underwater sound scope
AU2002328385B2 (en) Imaging sonar and a detection system using one such sonar
US5920524A (en) Hydrophone arrangement and bunker for housing same
JPH1062534A (en) Target detector
JP2861803B2 (en) Signal detection method
JP2647041B2 (en) Passive sonar signal processing method
JPS6144382A (en) Active sonar apparatus
JP5102520B2 (en) Ultrasonic detection apparatus and ultrasonic detection method
RU2793149C1 (en) Small-sized direction finder of hydroacoustic signals
JPS6352346B2 (en)
JP7447513B2 (en) Sonar device and target direction calculation method and program
JPH0213756B2 (en)
JP2002139559A (en) Method for discriminating target
JP3389882B2 (en) Radio wave arrival direction measurement device and radio wave arrival direction measurement method
JPH07253469A (en) Instrument for measuring frequency characteristic of fish
JPS60158367A (en) Active sonar
JPH0441312B2 (en)
JP2024141385A (en) Underwater positioning device, underwater vehicle, underwater positioning system, underwater positioning method, and underwater positioning program
JPS61151487A (en) Sonar apparatus
SU423079A1 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070908

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080908

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080908

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees