JPH06258020A - Submersible robot - Google Patents

Submersible robot

Info

Publication number
JPH06258020A
JPH06258020A JP4098793A JP4098793A JPH06258020A JP H06258020 A JPH06258020 A JP H06258020A JP 4098793 A JP4098793 A JP 4098793A JP 4098793 A JP4098793 A JP 4098793A JP H06258020 A JPH06258020 A JP H06258020A
Authority
JP
Japan
Prior art keywords
magnetic field
optical fiber
azimuth
cable
azimuth meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4098793A
Other languages
Japanese (ja)
Inventor
Satoshi Terakubo
敏 寺久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4098793A priority Critical patent/JPH06258020A/en
Publication of JPH06258020A publication Critical patent/JPH06258020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To provide a submersible robot useful in the work for laying a cable in the water or under the bottom of the water or in the maintenance work of pipe line. CONSTITUTION:The submersible robot comprises a probe 6 for detecting magnetic field generated directly or indirectly from an object A, and an optical azimuth meter 7. The azimuth meter 7 comprises a pair of optical fiber gyro arranged such that the axes of rotation detecting coils intersect perpendicularly while directing horizontally. The azimuth meter 7 is not susceptible to the magnetic field at all and determines the azimuth thereof correctly in the detection relying upon the magnetic field thus specifying the detecting point accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海底ケーブルや海底パ
イプラインの保守などに利用することを可能ならしめた
水中ロボットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater robot which can be used for maintenance of a submarine cable or a submarine pipeline.

【0002】[0002]

【従来の技術】水中で作業を行う水中ロボットは、自己
の位置を認識するための方位計を装備していることが望
まれる。その方位計として従来用いられているものは地
磁気検出型のものに限られている。
2. Description of the Related Art Underwater robots that work underwater are preferably equipped with an azimuth meter for recognizing their position. Conventionally used azimuth meters are limited to geomagnetic detection types.

【0003】[0003]

【発明が解決しようとする課題】従来の水中ロボット
は、方位計を装備していても、その方位計が前述の地磁
気検出タイプであるため、水中布設のケーブルやパイプ
ラインの保守等には利用し難い。
Even if the conventional underwater robot is equipped with an azimuth meter, the azimuth meter is of the above-mentioned geomagnetic detection type. Therefore, it is used for maintenance of cables and pipelines installed underwater. It's hard to do.

【0004】即ち、地磁気検出型の方位計は、微弱な地
磁気の方向を検出して方位を知る。これに対し、ケーブ
ル付近ではケーブル導体に流れる電流により磁界が生じ
て地磁気が乱れており、そのため、上記の方位計では検
出した方位にどうしても狂いが出る。
That is, the geomagnetism detection type azimuth detector detects the direction of weak geomagnetism to know the azimuth. On the other hand, in the vicinity of the cable, a magnetic field is generated by the current flowing through the cable conductor to disturb the earth's magnetism, so that the direction detected by the above direction meter is inevitable.

【0005】また、電流の流れていないパイプライン等
であっても、水底に埋設されているとカメラでの探査は
不能であるので磁気探査法等に頼らざるを得ないケース
が生じてくる。この場合、パイプラインに電流を流して
探査用磁界を発生させる方法や、パイプライン付近で強
力なパルス磁場を発生してパイプラインに誘導電流を生
じさせ、その電流により発生する磁界を検出する等の探
査方法が考えられる。
Further, even in the case of a pipeline or the like in which no current flows, if it is buried in the bottom of the water, it is impossible to search with a camera, and there is a case where the magnetic search method or the like must be relied upon. In this case, a method of flowing a current through the pipeline to generate a magnetic field for exploration, or generating a strong pulsed magnetic field near the pipeline to generate an induced current in the pipeline and detecting the magnetic field generated by the current, etc. The exploration method of

【0006】しかしながら、これ等の方法ではケーブル
やパイプラインの探査はうまくできたとしても地磁気の
乱れに起因した検出方位の狂いにより水中ロボットの方
向が正しく認識できず、布設ルートが正確に把握できな
い。このため、保守等に利用しようとしてもそれができ
なかった。
However, with these methods, even if the cable or pipeline can be successfully searched, the direction of the underwater robot cannot be correctly recognized due to the deviation of the detection direction due to the disturbance of the geomagnetic field, and the installation route cannot be accurately grasped. . Therefore, it was not possible to use it for maintenance.

【0007】本発明は、この問題を解決した水中ロボッ
トを提供しようとするものである。
The present invention is intended to provide an underwater robot that solves this problem.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の水中ロボットは、水中に布設又は水底に埋
設されたケーブルやパイプラインをそれ等から直接又は
間接的に発生する磁界を頼りに探査する手段と、自己の
位置を認識するための光学式方位計を併有する構成にし
た。
In order to solve the above-mentioned problems, the underwater robot of the present invention provides a magnetic field generated directly or indirectly from a cable or pipeline laid in water or buried in the bottom of the water. It has a structure that has both a reliable exploration means and an optical azimuth meter for recognizing its own position.

【0009】なお、ここで用いる光学式方位計は、2組
の光ファイバジャイロを、各ジャイロの回転検出用光フ
ァイバコイルの回転検出軸が互いに直交し、かつ共に水
平方向を向く状態に組合わせてあるものが好ましい。
The optical azimuth meter used here is a combination of two sets of optical fiber gyros in a state in which the rotation detection axes of the rotation detecting optical fiber coils of each gyro are orthogonal to each other and both are oriented in the horizontal direction. Those that are present are preferred.

【0010】[0010]

【作用】磁界感知型の探査手段を有するので、水底に埋
設されているケーブル等であってもその検知が可能であ
る。
Since it has a magnetic field sensing type exploration means, it is possible to detect even a cable buried in the bottom of the water.

【0011】また、磁界感知型の探査手段を用いる場
合、ロボットが探査対象物に生じた磁界を感知できる距
離まで接近する必要があるので地磁気検出型の方位計で
はその磁界の影響を受けてしまうが、光の干渉を利用し
た光学式方位計であれば磁界の影響を全く受けず、探査
対象物に充分に接近しても自己の方位を正しく認識でき
る。
Further, when the magnetic field sensing type exploration means is used, it is necessary for the robot to approach the magnetic field generated in the exploration target to a distance at which it can be sensed, so that the geomagnetic detection type compass is affected by the magnetic field. However, if it is an optical azimuth meter that utilizes the interference of light, it will not be affected by the magnetic field at all, and its own azimuth can be correctly recognized even when it is sufficiently close to the object to be searched.

【0012】[0012]

【実施例】図1に本発明の水中ロボットの一例を示す。FIG. 1 shows an example of the underwater robot of the present invention.

【0013】図1に示すように、この水中ロボットは、
モータ駆動の走行機構1、前方監視用カメラ2、ライト
3、走行メータ4などを備えている。必要に応じてマニ
ピュレータ5や探査対象物の異常検出センサなどを付加
してもよい。
As shown in FIG. 1, this underwater robot is
A motor-driven traveling mechanism 1, a front monitoring camera 2, a light 3, a traveling meter 4 and the like are provided. The manipulator 5 and an abnormality detection sensor for the object to be searched may be added as necessary.

【0014】この水中ロボットには、磁気センサを含む
探査器6と光学式方位計7を具備させてある。走行メー
タ4、探査器6、方位計7からの信号やカメラ2の画像
信号は制御部8に入力され、通信ケーブル9経由で例え
ば船上の遠隔操作部に送られる。また、遠隔操作部から
の指令が制御部8経由で各搭載機器に送られてロボット
の動きが制御される。
This underwater robot is equipped with a probe 6 including a magnetic sensor and an optical azimuth meter 7. Signals from the travel meter 4, the exploration device 6, the compass 7 and the image signal of the camera 2 are input to the control unit 8 and sent to the remote control unit on the ship, for example, via the communication cable 9. Further, a command from the remote control unit is sent to each onboard device via the control unit 8 to control the movement of the robot.

【0015】探査器6は、次の3形式が考えられ、その
中のどれであってもよい。
The probe 6 may be of the following three types, and any of them may be used.

【0016】(1)ケーブル導体に流れる電流によりケ
ーブル周辺に発生している磁界を検知してケーブルの位
置を知るもの。
(1) Detecting the position of the cable by detecting the magnetic field generated around the cable by the current flowing through the cable conductor.

【0017】(2)ケーブルの鎧装鉄線やパイプライン
そのもの等に検知用の電流を流し、この電流で生じた磁
界を検出するもの。
(2) An electric current for detection is passed through the armored iron wire of the cable, the pipeline itself, etc., and the magnetic field generated by this electric current is detected.

【0018】(3)探査器6からパルス状磁界を発して
探査対象物Aに誘導電流を生じさせ、その電流によって
生じる磁界を検知するもの。
(3) A device which emits a pulsed magnetic field from the probe 6 to generate an induced current in the object A to be searched and detects the magnetic field generated by the current.

【0019】図2は、光学式方位計7の具体例として2
組の光ファイバジャイロを組合わせたものを示してい
る。
FIG. 2 shows a specific example of the optical azimuth meter 2
A combination of a set of fiber optic gyros is shown.

【0020】サニャック効果を利用した光ファイバジャ
イロは、図3のような構成のものが一般的である。図中
10は光ファイバコイルであり、発光素子11からの光
を光カップラ12で分岐してコイル10に右回りと左回
りに通す。そして、光ファイバコイル10の回転によっ
て生じる右回り光と左回り光の干渉の大きさを調べ、そ
の大きさから回転の角速度を求めている。なお、図示の
光ファイバジャイロは、右回り光と左回り光の偏波の履
歴の相違による影響を除くため偏光子13を用いている
が、定偏波ファイバを用いてその影響を除くことも考え
られている。また、感度をもたせるため位相変調器14
を用いることもある。
An optical fiber gyro utilizing the Sagnac effect generally has a structure as shown in FIG. Reference numeral 10 in the figure denotes an optical fiber coil, which splits the light from the light emitting element 11 by the optical coupler 12 and passes the light through the coil 10 clockwise and counterclockwise. Then, the magnitude of the interference between the clockwise light and the counterclockwise light generated by the rotation of the optical fiber coil 10 is examined, and the angular velocity of rotation is obtained from the magnitude. Although the illustrated optical fiber gyro uses the polarizer 13 in order to remove the influence of the difference in the polarization histories of the clockwise light and the counterclockwise light, it is also possible to remove the influence by using the polarization maintaining fiber. It is considered. Further, in order to have sensitivity, the phase modulator 14
May be used.

【0021】図2の方位計7は、このような光ファイバ
ジャイロを2組使用し、各ジャイロの光ファイバコイル
10-1、10-2を、その両者が直交し、かつ、両者の回
転検出軸が共に水平方向を向くように組合わせている。
The azimuth meter 7 of FIG. 2 uses two sets of such optical fiber gyros, and the optical fiber coils 10 -1 and 10 -2 of each gyro are orthogonal to each other and rotation detection of both is detected. The axes are combined so that they both point in the horizontal direction.

【0022】この方位計7は、組合わせコイルを鉛直軸
周りに1回転させると、地球自転の影響の度合が変化し
て図3に示すような出力変化が得られる。従って、組合
わせた2つのジャイロの出力が判れば地磁気を検出しな
くても方位を特定でき、基準点からどの方向にどれだけ
移動したかでロボットの位置を正確に把握し得る。この
ようにしてロボットの位置を逐次把握できるため、この
ロボットを布設ルートのマッピングやトラブル点の検出
などに利用することが可能である。
In this azimuth meter 7, when the combined coil is rotated once around the vertical axis, the degree of the influence of the rotation of the earth is changed and the output change as shown in FIG. 3 is obtained. Therefore, if the outputs of the two combined gyros are known, the azimuth can be specified without detecting the geomagnetism, and the position of the robot can be accurately grasped by the direction and the amount of movement from the reference point. In this way, the position of the robot can be sequentially grasped, so that the robot can be used for mapping the installation route and detecting trouble points.

【0023】[0023]

【発明の効果】以上述べたように、本発明の水中ロボッ
トは、磁界感知型の探査器を用いて水底に埋設されてい
る対象物でも探査できるようにし、また、光学式方位計
を用いることで自己の方位を磁界の影響を受けずに正確
に把握できるようにしたので、ケーブルやパイプライン
の位置確認、トラブル点の検出などに利用可能となり、
この種布設物の保守管理の高度化、トラブルの早期修復
などに役立つ。
As described above, the underwater robot of the present invention uses a magnetic field sensing type probe to search for an object buried in the water bottom, and also uses an optical compass. Since it is possible to accurately grasp its own direction without being affected by the magnetic field, it can be used for checking the position of cables and pipelines, detecting trouble points, etc.
This is useful for improving the maintenance and management of this type of laying equipment and for early repair of troubles.

【0024】なお、光ファイバジャイロは、ガス流式ジ
ャイロ、機械式ジャイロ等に比べて可動部が無いため長
寿命で、起動時間が短い、小型化が可能、感度設計の自
由度が高いなどのメリットがあり、従って、ロボット自
身の高度化、小型化、信頼性向上等にもつながる。
Since the optical fiber gyro has no moving parts as compared with the gas flow type gyro and the mechanical type gyro, it has a long service life, a short start-up time, can be downsized, and has a high degree of freedom in sensitivity design. There are merits, and therefore, it also leads to sophistication, downsizing, reliability improvement of the robot itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水中ロボットの一例を示す図FIG. 1 is a diagram showing an example of an underwater robot of the present invention.

【図2】2つの光ファイバジャイロを組合わせた方位計
の光ファイバコイルの組合せ状態を示す図
FIG. 2 is a diagram showing a combined state of optical fiber coils of an azimuth meter in which two optical fiber gyros are combined.

【図3】一般的な光ファイバジャイロの概要を示す図FIG. 3 is a diagram showing an outline of a general optical fiber gyro.

【図4】光ファイバジャイロを用いた方位計の回転によ
る出力変化を示すグラフ
FIG. 4 is a graph showing an output change due to rotation of an azimuth meter using an optical fiber gyro.

【符号の説明】[Explanation of symbols]

1 走行機構 2 監視用カメラ 3 ライト 4 走行メータ 5 マニピュレータ 6 磁界検知型の探査器 7 光学式方位計 8 制御部 9 通信ケーブル 10 回転検出用光ファイバコイル 11 発光素子 12 光カップラ 13 偏光子 14 位相変調器 A 探査対象物 1 traveling mechanism 2 monitoring camera 3 light 4 traveling meter 5 manipulator 6 magnetic field detection type probe 7 optical azimuth meter 8 controller 9 communication cable 10 rotation detection optical fiber coil 11 light emitting element 12 optical coupler 13 polarizer 14 phase Modulator A Object to be searched

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中に布設又は水底に埋設されたケーブ
ルやパイプラインをそれ等から直接又は間接的に発生す
る磁界を頼りに探査する手段と、自己の位置を認識する
ための光学式方位計を併有している水中ロボット。
1. A means for exploring a cable or pipeline laid in water or buried in the bottom of the water, relying on a magnetic field generated directly or indirectly from the cable or pipeline, and an optical compass for recognizing its own position. An underwater robot that has both.
【請求項2】 前記方位計として、2組の光ファイバジ
ャイロを、各ジャイロの回転検出用光ファイバコイルの
回転検出軸が互いに直交し、かつ共に水平方向を向く状
態に組合わせて成るものを装備している請求項1記載の
水中ロボット。
2. An azimuth meter comprising two sets of optical fiber gyros combined such that the rotation detection axes of the rotation detecting optical fiber coils of each gyro are orthogonal to each other and both are oriented in the horizontal direction. The underwater robot according to claim 1, which is equipped.
JP4098793A 1993-03-02 1993-03-02 Submersible robot Pending JPH06258020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4098793A JPH06258020A (en) 1993-03-02 1993-03-02 Submersible robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4098793A JPH06258020A (en) 1993-03-02 1993-03-02 Submersible robot

Publications (1)

Publication Number Publication Date
JPH06258020A true JPH06258020A (en) 1994-09-16

Family

ID=12595785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4098793A Pending JPH06258020A (en) 1993-03-02 1993-03-02 Submersible robot

Country Status (1)

Country Link
JP (1) JPH06258020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290794B1 (en) * 2012-03-30 2013-07-30 삼성중공업 주식회사 Robotic device for pipeline inspection and method of inspecting pipeline using the same
KR20160031239A (en) * 2014-09-12 2016-03-22 한국전력공사 Buried depth measuring apparatus of submarine cable
KR102440650B1 (en) * 2022-05-30 2022-09-06 한국해양과학기술원 Rover lower carriage suspension
KR102442597B1 (en) * 2022-05-30 2022-09-13 한국해양과학기술원 Easy-maintenance rover lower carriage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290794B1 (en) * 2012-03-30 2013-07-30 삼성중공업 주식회사 Robotic device for pipeline inspection and method of inspecting pipeline using the same
KR20160031239A (en) * 2014-09-12 2016-03-22 한국전력공사 Buried depth measuring apparatus of submarine cable
KR102440650B1 (en) * 2022-05-30 2022-09-06 한국해양과학기술원 Rover lower carriage suspension
KR102442597B1 (en) * 2022-05-30 2022-09-13 한국해양과학기술원 Easy-maintenance rover lower carriage

Similar Documents

Publication Publication Date Title
US9285222B2 (en) Autonomous vehicle power line position and load parameter estimation
US5258755A (en) Two-source magnetic field guidance system
US4072200A (en) Surveying of subterranean magnetic bodies from an adjacent off-vertical borehole
US6965320B1 (en) Cathodic test lead and pig monitoring system
US5513710A (en) Solenoid guide system for horizontal boreholes
US20160216304A1 (en) Rapid high-resolution magnetic field measurements for power line inspection
US5850624A (en) Electronic compass
EP3250456A1 (en) Rapid high-resolution magnetic field measurements for power line inspection
WO1996014491A9 (en) Solenoid guide system for horizontal boreholes
US20100207633A1 (en) Localization system for an earth moving machine
JP3274308B2 (en) Magnetic exploration device and its magnetic sensor device
JPH06258020A (en) Submersible robot
FR2550348A1 (en) TRAJECTOGRAPHY SYSTEM OF A NAVAL BUILDING
GB2254430A (en) Drilling apparatus
CN110440796A (en) Pipe robot positioning device and method based on rotating excitation field and inertial navigation fusion
JPH09329668A (en) Submarine cable surveying means
JP2866078B2 (en) Excavation propulsion position detecting device and position detecting method
EP1126129A1 (en) Guidance system for horizontal drilling
US10725191B2 (en) Method and apparatus for simultaneous inductive excitation and locating of utilities
JP5084472B2 (en) Minesweeper magnetic field detector and minesweeper
JP3168789B2 (en) Pipe measurement method
JPH0749960B2 (en) Geomagnetic azimuth measuring device
JPH0972192A (en) Detection method of driving pipe front end position
SU1045187A1 (en) Method of azimuth orientation of multi-instrument three-component probe geophones in wells
JPS5817313A (en) Azimuth meter for vehicle