JPH06257889A - Multi-temperature generator with vapor compression type refrigerating cycle - Google Patents

Multi-temperature generator with vapor compression type refrigerating cycle

Info

Publication number
JPH06257889A
JPH06257889A JP19031993A JP19031993A JPH06257889A JP H06257889 A JPH06257889 A JP H06257889A JP 19031993 A JP19031993 A JP 19031993A JP 19031993 A JP19031993 A JP 19031993A JP H06257889 A JPH06257889 A JP H06257889A
Authority
JP
Japan
Prior art keywords
compressor
valve
pipe
heat exchanger
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19031993A
Other languages
Japanese (ja)
Other versions
JP3036310B2 (en
Inventor
Yoshiaki Tanimura
佳昭 谷村
Kiyoshi Sakuma
清 佐久間
Hitoshi Iijima
等 飯島
Tetsuji Nanatane
哲二 七種
Tetsuji Okada
哲治 岡田
Hiroshi Yuyama
▲ひろし▼ 湯山
Fumio Matsuoka
文雄 松岡
Seiji Inoue
誠司 井上
Yoshihiro Sumida
嘉裕 隅田
Naoki Tanaka
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5190319A priority Critical patent/JP3036310B2/en
Publication of JPH06257889A publication Critical patent/JPH06257889A/en
Application granted granted Critical
Publication of JP3036310B2 publication Critical patent/JP3036310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a multi-temperature generator in which three or more saturation temperatures necessary for cooling/ heating, hot water supply, ice cold storage, etc., can be simultaneously efficiently obtained in a cycle having a plurality of heat exchangers. CONSTITUTION:A first high pressure gas tube 61 is connected to a discharge side of a first compressor 1, a second high pressure gas tube 62 is connected to a discharge side of a second compressor 2 through a first switching vale 21, and a low pressure gas tube 63 is connected to suction sides of the compressors 1, 2. The other sides of the tubes and a liquid tube 64 are connected to heat exchangers 51a, 51b, 51c. The discharge side of the compressor 2 is connected to the tube 61 via a high pressure gas communicating tube 64 through a third switching valve 23, and the discharge side of the compressor 2 is connected to the suction side of the compressor l via a compressor communicating tube 66 through a fourth switching valve 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷暖房や給湯、低温
などの多くの飽和温度を同時にしかも効率よく得ること
のできる蒸気圧縮式冷凍サイクルによる多温度生成回路
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigeration cycle multi-temperature generation circuit capable of simultaneously and efficiently obtaining many saturation temperatures such as heating and cooling, hot water supply, and low temperature.

【0002】[0002]

【従来の技術】従来、この種の蒸気圧縮式サイクルとし
て、例えば、特開平1−167561号公報に記載され
たものがある。図86は上記公報に記載された従来の蒸
気圧縮式サイクルの冷媒系の構成図である。図におい
て、1は圧縮機、11はアキュムレータ、51a〜51
cは熱交換器である。61は圧縮機1の吐出側に接続さ
れた高圧ガス管、63は圧縮機1の吸入側にアキュムレ
ータ11を介して接続された低圧ガス管、64は液管で
ある。また熱交換器51a〜51cには、高圧ガス管6
1、低圧ガス管63とは開閉弁26a,26b,26c
及び28a,28b,28cを介して分岐接続するとと
もに、液管64とは流量制御弁である電子式膨張弁31
a,31b,31cをそれぞれ介して接続している。上
記のように構成された従来の蒸気圧縮式サイクルは、次
のように動作する。ここでは熱交換器51aを室外熱交
換器、熱交換器51b,51cを室内熱交換器とし、室
内熱交換器51bが暖房、室内熱交換器51cが冷房状
態の動作について図87を用いて説明する。
2. Description of the Related Art Conventionally, as a vapor compression type cycle of this type, for example, there is one described in Japanese Patent Application Laid-Open No. 1-167561. FIG. 86 is a configuration diagram of a refrigerant system of the conventional vapor compression cycle described in the above publication. In the figure, 1 is a compressor, 11 is an accumulator, 51a-51
c is a heat exchanger. Reference numeral 61 is a high pressure gas pipe connected to the discharge side of the compressor 1, 63 is a low pressure gas pipe connected to the suction side of the compressor 1 via the accumulator 11, and 64 is a liquid pipe. Further, the heat exchangers 51a to 51c include high pressure gas pipes 6
1. The low-pressure gas pipe 63 is an open / close valve 26a, 26b, 26c
And 28a, 28b, and 28c, and the liquid pipe 64 is an electronic expansion valve 31 which is a flow control valve.
They are connected via a, 31b, and 31c, respectively. The conventional vapor compression cycle configured as described above operates as follows. Here, the operation in which the heat exchanger 51a is an outdoor heat exchanger, the heat exchangers 51b and 51c are indoor heat exchangers, the indoor heat exchanger 51b is in a heating state, and the indoor heat exchanger 51c is in a cooling state will be described with reference to FIG. 87. To do.

【0003】圧縮機1から吐出された高温高圧の冷媒ガ
スは、高圧ガス管61から開閉弁26bを通って暖房室
内熱交換器51bへ流入し、凝縮液化する。この液冷媒
は、流量制御弁31bで減圧され、液管64へ流入す
る。この冷媒は、電子式膨張弁31a及び31cを通っ
て低圧の二相状態となってそれぞれ室外熱交換器51a
と冷房室内熱交換器51cへ流入し、蒸発ガス化して、
低圧ガス管63を通ってアキュムレータ11を経て圧縮
機1に戻る。また、複数の圧縮機を使用した例としては
特開平4−20757号公報の例がある。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 flows from the high-pressure gas pipe 61 through the on-off valve 26b into the heating indoor heat exchanger 51b, and is condensed and liquefied. The liquid refrigerant is decompressed by the flow control valve 31b and flows into the liquid pipe 64. This refrigerant passes through the electronic expansion valves 31a and 31c to become a low-pressure two-phase state, and the outdoor heat exchanger 51a respectively.
To the heat exchanger 51c in the cooling room, evaporate into gas,
It returns to the compressor 1 through the low-pressure gas pipe 63 and the accumulator 11. An example of using a plurality of compressors is disclosed in Japanese Patent Laid-Open No. 20757/1992.

【0004】[0004]

【発明が解決しようとする課題】従来の冷暖房システム
は、以上のように構成されているので、各熱交換器では
凝縮温度と蒸発温度はそれぞれ1つずつしか得られず、
また凝縮温度と蒸発温度の差が大きいときには、圧縮比
が増大するため効率が低下したり、吐出温度が上昇する
などの問題があった。特に冷暖房だけでなく、給湯や氷
蓄熱などを1つのサイクルで行う場合には、高い給湯温
度が得られなかったり、効率が低下する。また、圧縮機
が複数台あり、弁により切り替えられたとしても固定さ
れた2状態のどちらを選択するかの切替えにすぎず、設
置条件に応じて、あるいは変更希望に応じて自由には選
択できないなどの問題があった。
Since the conventional cooling and heating system is configured as described above, each heat exchanger can obtain only one condensation temperature and one evaporation temperature,
Further, when the difference between the condensation temperature and the evaporation temperature is large, there are problems that the compression ratio increases and the efficiency decreases, and the discharge temperature increases. Especially when not only cooling and heating but also hot water supply and ice heat storage are performed in one cycle, a high hot water supply temperature cannot be obtained or efficiency is reduced. Further, even if there are a plurality of compressors and they are switched by the valve, it is only switching between the two fixed states and cannot be freely selected according to the installation conditions or the desire to change. There was such a problem.

【0005】この発明は上記のような問題点を解決する
ためになされたもので、1つの蒸気圧縮式冷凍サイクル
で、各熱交換器に選択自在に要求される機能に応じて、
各熱交換器に多くの飽和温度が設定可能で多種類のサイ
クルを構成でき、しかも効率が高く運転範囲の広いサイ
クルを提供することを目的とする。
The present invention has been made to solve the above problems, and in one vapor compression refrigeration cycle, depending on the function required for each heat exchanger to be freely selected,
It is an object of the present invention to provide a cycle in which a large number of saturation temperatures can be set in each heat exchanger, various types of cycles can be configured, and which is highly efficient and has a wide operating range.

【0006】[0006]

【課題を解決するための手段】この発明の蒸気圧縮式冷
凍サイクルによる多温度生成回路は、複数の開閉弁ある
いは逆止弁を介して直列または並列に接続可能に設けら
れた複数台の圧縮機と、上記圧縮機の各吐出側もしくは
各吸入側のいずれか一方に上記開閉弁もしくは逆止弁を
介して、または直接にそれぞれ接続された複数のガス管
と、上記圧縮機の各吐出側もしくは各吸入側のいずれか
他方に上記開閉弁もしくは逆止弁を介して、または直接
に接続された少なくとも1本の他のガス管と、上記複数
のガス管及び他のガス管に開閉弁を介してそれぞれ一端
が接続されるとともに、他端が減圧手段を介して冷媒を
流す共通の冷媒管にそれぞれ接続された複数台の熱交換
器と、を備えたものである。
A multi-temperature generation circuit using a vapor compression refrigeration cycle according to the present invention is provided with a plurality of compressors which can be connected in series or in parallel via a plurality of on-off valves or check valves. And a plurality of gas pipes respectively connected to either one of the discharge side or each suction side of the compressor via the on-off valve or check valve, or directly, and each discharge side of the compressor or At least one other gas pipe directly connected to either the other of the suction sides via the on-off valve or the check valve, and the plurality of gas pipes and the other gas pipes via the on-off valve. A plurality of heat exchangers, one end of each of which is connected to the other, and the other end of which is connected to a common refrigerant pipe through which the refrigerant flows via the pressure reducing means.

【0007】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1、第2圧縮機、及び複数台の熱
交換器を備え、一端部が上記第1圧縮機の吐出側もしく
は吸入側のいずれか一方に、他端部が開閉器を介して上
記複数台の熱交換器に接続する第1高圧ガス管、一端部
が第1開閉器を介して上記第2圧縮機の吐出側もしくは
吸入側のいずれか一方に、他端部が開閉器を介して上記
複数台の熱交換器に接続するとともに、途中で分岐して
第2開閉器を介して上記第1圧縮機の吸入側もしくは吐
出側のいずれか他方に接続する第2高圧ガス管、一端部
が上記第2圧縮機の吸入側もしくは吐出側のいずれか他
方に接続するとともに第3開閉器を介して上記第1圧縮
機の吸入側もしくは吐出側のいずれか他方に接続し、他
端部が開閉器を介して上記複数台の熱交換器に接続する
低圧ガス管、複数台の熱交換器に冷媒流量制御器を介し
て接続する液管、及び第4開閉器を介して上記第2圧縮
機の吐出側と上記第1圧縮機の吸入側とを連結し上記第
2圧縮機の吐出ガスを上記第1圧縮機に送給する圧縮機
連通管を設けて構成したものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention comprises first and second compressors, and a plurality of heat exchangers, one end of which is the discharge side or the suction side of the first compressor. The other end, a first high-pressure gas pipe having the other end connected to the plurality of heat exchangers via a switch, and one end connected to the discharge side of the second compressor via the first switch or One of the suction sides has the other end connected to the plurality of heat exchangers via a switch, and branches on the way to the suction side of the first compressor via a second switch or A second high-pressure gas pipe connected to either the other side of the discharge side, one end of which is connected to the other side of either the suction side or the discharge side of the second compressor, and the first compressor of the first compressor via a third switch. Connect to either the suction side or the discharge side and the other end through a switch. A low-pressure gas pipe connected to the plurality of heat exchangers, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and a discharge side of the second compressor via a fourth switch. Is connected to the suction side of the first compressor, and a compressor communication pipe for sending the discharge gas of the second compressor to the first compressor is provided.

【0008】また、第5開閉器を介して第2圧縮機の吐
出側と第1高圧ガス管を連結し上記第2圧縮機の吐出ガ
スを上記第1高圧ガス管に送給する高圧ガス連通管を設
ける。
Further, a high pressure gas communication for connecting the discharge side of the second compressor and the first high pressure gas pipe via the fifth switch to feed the discharge gas of the second compressor to the first high pressure gas pipe. Provide a pipe.

【0009】また、第1圧縮機及び第2圧縮機の吸入側
の低圧ガス管に第1アキュムレータを、第1圧縮機の吸
入側の第2高圧ガス管に第2アキュムレータを設ける。
A first accumulator is provided in the low pressure gas pipes on the suction side of the first and second compressors, and a second accumulator is provided in the second high pressure gas pipes on the suction side of the first compressor.

【0010】さらに、液管と第1アキュムレータとを接
続し、管路に第6開閉器と流量制御器を有するバイパス
配管、及び上記流量制御器と第1アキュムレータ間のバ
イパス配管と第1圧縮機の吸入配管との間で熱交換を行
う熱交換部を設ける。
Further, a bypass pipe connecting the liquid pipe and the first accumulator and having a sixth switch and a flow controller in the pipeline, a bypass pipe between the flow controller and the first accumulator, and the first compressor. Provide a heat exchange part for exchanging heat with the suction pipe.

【0011】そして、第1圧縮機または第2圧縮機は能
力可変型圧縮機とする。
The first compressor or the second compressor is a variable capacity compressor.

【0012】この発明による多温度生成回路は、n個の
飽和温度を同時に得ることができる蒸気圧縮式冷凍サイ
クルにおいて、n−1個の圧縮機を備え、それぞれの圧
縮機を複数の開閉弁あるいは逆止弁を介して直列あるい
は並列に接続するとともに、一端部が圧縮機のそれぞれ
の吐出あるいは吸入側に他端部が開閉弁を介して複数台
の熱交換器に接続される任意の飽和温度をもつn個のガ
ス配管群と前記複数台の熱交換器に冷媒流量制御弁を介
して接続する1個の液配管とを設けたものである。
The multi-temperature generation circuit according to the present invention is provided with n-1 compressors in a vapor compression refrigeration cycle capable of simultaneously obtaining n saturation temperatures, and each compressor is provided with a plurality of on-off valves or Any saturation temperature that is connected in series or in parallel via a check valve, and has one end connected to each discharge or suction side of the compressor and the other end connected to multiple heat exchangers via open / close valves. Is provided with one gas pipe group having n gas pipes and one liquid pipe connected to the plurality of heat exchangers via a refrigerant flow control valve.

【0013】この発明による多温度生成回路は、第1圧
縮機、第2圧縮機及び複数台の熱交換器を備え、一端部
が第1の逆止弁を介して上記第1圧縮機の吐出側もしく
は吸入側のいずれか一方に、他端部が開閉弁を介して上
記複数台の熱交換器に接続する第1ガス管、一端部が上
記第2圧縮機の吐出側もしくは吸入側のいずれか一方
に、他端部が開閉弁を介して上記複数台の熱交換器に接
続する第2ガス管、一端部がアキュムレータの吸入側も
しくは吐出側のいずれか他方に、他端部が開閉弁を介し
て複数台の熱交換器に接続する第3ガス管、複数台の熱
交換器に冷媒流量制御器を介して接続する液管を設ける
とともに、上記アキュムレータの吐出側と第1、第2の
圧縮機の吸入側とをそれぞれ、第2、第3の逆止弁を介
して個々に接続し、上記第1ガス管の第1の逆止弁出口
側の配管と第2ガス管とを第1の開閉弁を介して連通さ
せたものである。
A multi-temperature generation circuit according to the present invention comprises a first compressor, a second compressor and a plurality of heat exchangers, and one end of the multi-temperature generation circuit discharges the first compressor via a first check valve. Side or suction side, the other end is a first gas pipe connected to the plurality of heat exchangers via an on-off valve, and one end is either the discharge side or the suction side of the second compressor. On the other hand, the other end is a second gas pipe connected to the plurality of heat exchangers through the on-off valve, one end is on either the suction side or the discharge side of the accumulator, and the other end is the on-off valve. A third gas pipe connected to a plurality of heat exchangers via a heat exchanger, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and the discharge side of the accumulator and the first and second And the suction side of the compressor are individually connected via the second and third check valves, It is obtained communicates serial first check valve outlet pipe of the first gas pipe and the second gas pipe via a first on-off valve.

【0014】この発明による多温度生成回路は、第1圧
縮機、第2圧縮機及び給湯熱交換器、風呂の追焚き熱交
換器、室内熱交換器、室外熱交換器の複数台の熱交換器
を備え、一端部が第1の逆止弁を介して上記第1圧縮機
の吐出側もしくは吸入側のいずれか一方に、他端部が開
閉弁を介して給湯熱交換器、追焚き熱交換器、室外熱交
換器にそれぞれ接続する第1ガス管、一端部が上記第2
圧縮機の吐出側もしくは吸入側のいずれか一方に、他端
部が開閉弁を介して室内熱交換器、室外熱交換器にそれ
ぞれ接続する第2ガス管、一端部がアキュムレータの吸
入側もしくは吐出側のいずれか他方に、他端部が開閉弁
を介して上記複数台の熱交換器のそれぞれに接続する第
3ガス管、上記複数台の熱交換器のそれぞれに冷媒流量
制御器を介して接続する液管を設けるとともに、上記ア
キュムレータの吐出側と第1、第2の圧縮機の吸入側と
をそれぞれ、第2、第3の逆止弁を介して個々に接続
し、上記第1ガス管の第1の逆止弁出口側の配管と第2
ガス管とを第1の開閉弁を介して連通させたものであ
る。
The multi-temperature generation circuit according to the present invention includes a plurality of heat exchangers including a first compressor, a second compressor, a hot water heat exchanger, a bath reheating heat exchanger, an indoor heat exchanger, and an outdoor heat exchanger. And a heat exchanger for reheating the hot water, the other end of which is connected to either the discharge side or the suction side of the first compressor through the first check valve and the other end of which is connected through the opening / closing valve. A first gas pipe connected to the exchanger and the outdoor heat exchanger, respectively, and the one end portion is the second gas pipe.
Either the discharge side or the suction side of the compressor, the other end is the second gas pipe connected to the indoor heat exchanger and the outdoor heat exchanger via the on-off valve, and the one end is the suction side or the discharge of the accumulator. On the other side of the other side, the other end is connected to each of the plurality of heat exchangers via an on-off valve, and a third gas pipe is connected to each of the plurality of heat exchangers via a refrigerant flow controller. A liquid pipe to be connected is provided, and the discharge side of the accumulator and the suction sides of the first and second compressors are individually connected via second and third check valves, and the first gas is connected. The pipe on the outlet side of the first check valve and the second pipe
The gas pipe is communicated with the first open / close valve.

【0015】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液管と、前記第1圧縮機の吐出
側と前記第2圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から第7開閉弁を
介して前記液管に至る第1のバイパス路と、前記液管か
ら第8開閉弁を介して前記第1圧縮機の吸入側へ至る第
2バイパス路と、を備えたものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention has a first compressor, a second compressor, a plurality of heat exchangers, and one end on the discharge side of the first compressor. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via the first on-off valve, and the other end via the on-off valve. It is connected to the plurality of heat exchangers and branches from between the first on-off valve and the on-off valve to branch through the fifth on-off valve and the second check valve to the first
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second opening / closing valve in this order to suction the first compressor. A low-pressure gas pipe connected to the side, the other end is connected to the plurality of heat exchangers via an on-off valve, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, A high-pressure gas communication pipe that connects the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve, the discharge side of the second compressor, the first check valve, and the second A compressor communication pipe that connects between the open / close valves via a fourth open / close valve, a first bypass path from the medium pressure gas pipe to the liquid pipe via a seventh open / close valve, and a liquid pipe from the liquid pipe And a second bypass passage extending to the suction side of the first compressor via an eight-way on-off valve.

【0016】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液管と、前記第1圧縮機の吐出
側と前記第2圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から冷媒流量制御
器を介して前記液管に至る第1のバイパス路と、前記液
管から第8開閉弁を介して前記第1圧縮機の吸入側へ至
る第2バイパス路と、を備えたものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention has a first compressor, a second compressor, a plurality of heat exchangers, and one end on the discharge side of the first compressor. A high pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via the first on-off valve, and the other end via the on-off valve. The first heat exchanger is connected to the plurality of heat exchangers, and branches from between the first on-off valve and the on-off valve to branch through the fifth on-off valve and the second check valve.
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second opening / closing valve in this order to suck the first compressor. A low-pressure gas pipe connected to the side, the other end is connected to the plurality of heat exchangers via an on-off valve, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, A high-pressure gas communication pipe that connects the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, the discharge side of the second compressor, the first check valve, and the second check valve. A compressor communication pipe connecting between the on-off valves via a fourth on-off valve, a first bypass path from the medium-pressure gas pipe to the liquid pipe via a refrigerant flow controller, and a first pipe from the liquid pipe to the liquid pipe. And a second bypass passage extending to the suction side of the first compressor via an eight-way on-off valve.

【0017】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液レシーバーと、前記第1圧縮
機の吐出側と前記第2圧縮機の吐出側を第3開閉弁を介
して連結する高圧ガス連通管と、前記第2圧縮機の吐出
側と前記第1逆止弁と第2開閉弁の間を第4開閉弁を介
して連結する圧縮機連通管と、前記中圧ガス管から第7
開閉弁を介して前記液レシーバーに至る第1のバイパス
路と、前記液レシーバーから第8開閉弁を介して前記第
1圧縮機の吸入側へ至る第2バイパス路と、を備えたも
のである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor. A high pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via the first on-off valve, and the other end via the on-off valve. The first heat exchanger is connected to the plurality of heat exchangers, and branches from between the first on-off valve and the on-off valve to branch through the fifth on-off valve and the second check valve.
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second opening / closing valve in this order to suck the first compressor. A low pressure gas pipe connected to the side, the other end is connected to the plurality of heat exchangers via an on-off valve, a liquid receiver connected to the plurality of heat exchangers via a refrigerant flow controller, A high-pressure gas communication pipe that connects the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, the discharge side of the second compressor, the first check valve, and the second check valve. The compressor communication pipe that connects the on-off valves via the fourth on-off valve and the medium-pressure gas pipe to the seventh pipe.
A first bypass passage leading to the liquid receiver via an opening / closing valve and a second bypass passage leading from the liquid receiver to the suction side of the first compressor via an eighth opening / closing valve are provided. .

【0018】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が第1の開閉弁を有する第1の吐
出管を介して前記第1圧縮機の吐出側に、他端が開閉弁
を介して前記複数台の熱交換器に接続する高圧ガス管
と、一端が第2の開閉弁を有する第2の吐出管を介して
前記第2圧縮機の吐出側に、他端が開閉弁を介して前記
複数台の熱交換器に接続する中圧ガス管と、一端が第4
の開閉弁を有する第2の吸入管を介して前記第2圧縮機
の吸入側に、他端が開閉弁を介して前記複数台の熱交換
器に接続する低圧ガス管と、前記複数台の熱交換器に冷
媒流量制御器を介して接続する液管と、前記中圧ガス管
と前記第1圧縮機の吸入側とを第3の開閉弁を介して接
続する第1の吸入管と、前記第1の吐出管と前記第2の
吐出管を第7の開閉弁及び第8の開閉弁を介して接続す
る吐出側接続管と、前記第1の吸入管と前記第2の吸入
管を第9の開閉弁及び第10の開閉弁を介して接続する
吸入側接続管と、前記中圧ガス管と前記第2の吸入管と
を第5の開閉弁を介して接続する第1のバイパス管と、
前記低圧管と前記第1の吸入管を第6開閉弁を介して接
続する第2のバイパス管と、前記第7の開閉弁、第8の
開閉弁の間と前記第9の開閉弁、第10の開閉弁の間を
第11の開閉弁を介して接続する第3のバイパス管と、
前記第2の吐出管と前記高圧ガス管とを第13の開閉弁
を介して接続する第4のバイパス管と、前記第1の吐出
管と前記中圧ガス管とを第12の開閉弁を介して接続す
る第5のバイパス管と、を備えたものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention is a first compressor having a first compressor, a second compressor, a plurality of heat exchangers, and a first opening / closing valve at one end. On the discharge side of the first compressor via a discharge pipe, the other end has a high-pressure gas pipe connected to the plurality of heat exchangers via an on-off valve, and a second end having a second on-off valve. On the discharge side of the second compressor via a discharge pipe, the other end is a medium pressure gas pipe connected to the plurality of heat exchangers via an on-off valve, and one end is a fourth pipe.
A low-pressure gas pipe connected to the plurality of heat exchangers via the on-off valve on the suction side of the second compressor via a second suction pipe having the on-off valve, and A liquid pipe connected to the heat exchanger via a refrigerant flow controller; a first suction pipe connecting the medium-pressure gas pipe to the suction side of the first compressor via a third opening / closing valve; A discharge-side connecting pipe that connects the first discharge pipe and the second discharge pipe via a seventh opening / closing valve and an eighth opening / closing valve, and the first suction pipe and the second suction pipe. A suction side connecting pipe connected via a ninth opening / closing valve and a tenth opening / closing valve, and a first bypass connecting the intermediate pressure gas pipe and the second suction pipe via a fifth opening / closing valve. With a tube,
A second bypass pipe connecting the low-pressure pipe and the first suction pipe via a sixth opening / closing valve, between the seventh opening / closing valve, the eighth opening / closing valve, and the ninth opening / closing valve, A third bypass pipe connecting between the 10 open / close valves via an 11th open / close valve;
A fourth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth on-off valve, and a twelfth on-off valve connecting the first discharge pipe and the medium-pressure gas pipe to each other. And a fifth bypass pipe connected via the above.

【0019】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、四方弁と、一端が第1の開閉弁を有す
る第1の吐出管を介して前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第2の開閉弁を有する第2の吐出管
を介して前記第2圧縮機の吐出側に、他端が開閉弁を介
して前記複数台の熱交換器に接続するとともに、途中か
ら分岐して前記四方弁に接続する中圧ガス管と、一端が
前記四方弁に、他方が開閉弁を介して前記複数台の熱交
換器に接続する低圧ガス管と、前記複数台の熱交換器に
冷媒流量制御器を介して接続する液管と、前記四方弁と
前記第1圧縮機の吸入側とを第3の開閉弁を介して接続
する第1の吸入管と、前記四方弁と前記第2圧縮機の吸
入側とを第4の開閉弁を介して接続する第2の吸入管
と、前記第1の吐出管と前記第2の吐出管を第7の開閉
弁及び第8の開閉弁を介して接続する吐出側接続管と、
前記第1の吸入管と前記第2の吸入管を第9の開閉弁及
び第10の開閉弁を介して接続する吸入側接続管と、前
記第7の開閉弁、第8の開閉弁の間と前記第9の開閉
弁、第10の開閉弁の間を第11の開閉弁を介して接続
する第3のバイパス管と、前記第2の吐出管と前記高圧
ガス管とを第13の開閉弁を介して接続する第4のバイ
パス管と、前記第1の吐出管と前記中圧ガス管とを第1
2の開閉弁を介して接続する第5のバイパス管と、を備
えたものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, a four-way valve, and a first opening / closing valve at one end. A high pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve and a second on-off valve at one end are provided on the discharge side of the first compressor via the first discharge pipe. The other end is connected to the plurality of heat exchangers via an on-off valve on the discharge side of the second compressor via the second discharge pipe, and is branched from the middle to be connected to the four-way valve. Medium pressure gas pipe, one end to the four-way valve, the other is a low-pressure gas pipe connected to the plurality of heat exchangers via the on-off valve, and the plurality of heat exchangers via the refrigerant flow controller A first suction pipe that connects the liquid pipe to be connected, the four-way valve, and the suction side of the first compressor via a third opening / closing valve. A second suction pipe connecting the four-way valve and a suction side of the second compressor via a fourth opening / closing valve, and a seventh opening / closing of the first discharge pipe and the second discharge pipe. A discharge side connecting pipe connected through the valve and the eighth opening / closing valve,
Between the suction side connecting pipe that connects the first suction pipe and the second suction pipe via the ninth opening / closing valve and the tenth opening / closing valve, and the seventh opening / closing valve and the eighth opening / closing valve. And a third bypass pipe connecting between the ninth on-off valve and the tenth on-off valve via an eleventh on-off valve, and the second discharge pipe and the high-pressure gas pipe on a thirteenth open / close A fourth bypass pipe connected via a valve, the first discharge pipe and the medium pressure gas pipe to the first
And a fifth bypass pipe connected through the on-off valve.

【0020】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、第1の四方弁と、第2の四方弁と、一
端が前記第1の四方弁が接続された第1の吐出管を介し
て前記第1圧縮機の吐出側に、他端が開閉弁を介して前
記複数台の熱交換器に接続する高圧ガス管と、他端が開
閉弁を介して前記複数台の熱交換器に接続する中圧ガス
管と、一端が前記第2圧縮機の吸入側に第2の開閉弁を
介して接続する第2の吸入管に、他端が開閉弁を介して
前記複数台の熱交換器に接続する低圧ガス管と、前記複
数台の熱交換器に冷媒流量制御器を介して接続する液管
と、前記低圧ガス管と前記第1圧縮機とを前記第2の四
方弁を介して接続する第1の吸入管と、前記第2の圧縮
機の吐出側と前記第1の開閉弁の間と前記第1の四方弁
とを接続する第1の接続管と、前記第2の圧縮機の吸入
側と前記第2の開閉弁との間に前記第2の四方弁とを接
続する第2の接続管と、前記第1の四方弁と第2の四方
弁を第3の開閉弁を介して接続する第3の接続管と、前
記第3の開閉弁の両側から分岐し、第4の開閉弁、第5
の開閉弁を介してそれぞれ前記中圧ガス管の一端に接続
する第4の接続管及び第5の接続管と、を備えたもので
ある。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, a first four-way valve, and a second four-way valve. And one end is connected to the discharge side of the first compressor via the first discharge pipe to which the first four-way valve is connected, and the other end is connected to the plurality of heat exchangers via open / close valves. A high-pressure gas pipe, the other end is connected to the plurality of heat exchangers via an on-off valve, and a medium-pressure gas pipe is connected at one end to the suction side of the second compressor via a second on-off valve. A low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, and a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller to the second suction pipe. A first suction pipe connecting the low-pressure gas pipe and the first compressor via the second four-way valve; a discharge side of the second compressor; A first connecting pipe connecting between the first on-off valve and the first four-way valve, and the second four-way valve between the suction side of the second compressor and the second on-off valve. A second connecting pipe connecting the first connecting valve and the second connecting valve, a third connecting pipe connecting the first four-way valve and the second four-way valve via a third opening / closing valve, and from both sides of the third opening / closing valve. Branch, 4th on-off valve, 5th
And a fourth connecting pipe and a fifth connecting pipe respectively connected to one end of the medium pressure gas pipe via the on-off valve.

【0021】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、給湯
用熱交換器及び複数台の熱交換器と、第1の四方弁と、
第2の四方弁と、第3の四方弁と、一端が前記第1圧縮
機の吐出側に、他端が前記給湯用熱交換器及び前記第1
の四方弁、第3の四方弁を介して前記複数台の熱交換器
に接続する高圧ガス管と、一端が第1開閉弁を介して前
記第2圧縮機の吐出側に、他端が第2の四方弁、第3の
四方弁を介して前記複数台の熱交換器に接続するととも
に、途中で分岐して第5開閉弁を介して第1圧縮機の吸
入側に接続する中圧ガス管と、一端が前記第2圧縮機の
吸入側に接続するとともに第1逆止弁と第2開閉弁をこ
の順に介して前記第1圧縮機の吸入側に接続し、他端が
第1の四方弁、第2の四方弁を介して前記複数台の熱交
換器に接続する低圧ガス管と、前記給湯用熱交換器及び
前記複数台の熱交換器に冷媒流量制御器を介して接続す
る液管と、前記第1圧縮機の吐出側と前記第2圧縮機の
吐出側を第3開閉弁を介して連結する高圧ガス連通管
と、前記第2圧縮機の吐出側と前記第1逆止弁と第2開
閉弁の間を第4開閉弁を介して連結する圧縮機連通管
と、を備えたものである。
The multi-temperature generation circuit by the vapor compression refrigeration cycle of the present invention includes a first compressor, a second compressor, a hot water heat exchanger and a plurality of heat exchangers, and a first four-way valve. ,
A second four-way valve, a third four-way valve, one end on the discharge side of the first compressor, and the other end on the hot water supply heat exchanger and the first
High pressure gas pipe connected to the plurality of heat exchangers via the four-way valve and the third four-way valve, one end to the discharge side of the second compressor via the first opening / closing valve, and the other end to the first side. Medium pressure gas that is connected to the plurality of heat exchangers via the second four-way valve and the third four-way valve, and branches in the middle to connect to the suction side of the first compressor via the fifth on-off valve. The pipe, one end of which is connected to the suction side of the second compressor, the first check valve and the second opening / closing valve are connected in this order to the suction side of the first compressor, and the other end of which is the first A low pressure gas pipe connected to the plurality of heat exchangers via a four-way valve and a second four-way valve, and a hot water supply heat exchanger and the plurality of heat exchangers are connected via a refrigerant flow controller. A liquid pipe, a high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, and the second compressor A compressor communicating pipe for connecting the discharge side to the first check valve and the second on-off valve via the fourth on-off valve, in which with a.

【0022】[0022]

【作用】この発明の蒸気圧縮式冷凍サイクルによる多温
度生成回路は、直並列接続可能な圧縮機より多いガス管
を切り換えて多くの飽和温度を同時に自由に設定可能と
するものである。
The multi-temperature generation circuit by the vapor compression refrigeration cycle of the present invention is capable of freely setting a large number of saturation temperatures simultaneously by switching more gas pipes than a compressor that can be connected in series and parallel.

【0023】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、上記のように構成しているので、所
望の運転モード(冷暖房や給湯、氷蓄熱などの各熱交換
器に要求される機能)に応じて、各熱交換器毎の多数の
飽和温度設定が可能となる。また、凝縮温度と蒸発温度
の差が小さい時や大きい時で、第1、第2圧縮機の運転
を並列もしくは単独運転、または直列運転(二段圧縮運
転)に使い分けることができ、高効率なサイクルが実現
できる。
Since the multi-temperature generation circuit by the vapor compression refrigeration cycle of the present invention is configured as described above, the desired operation mode (functions required for each heat exchanger such as cooling / heating, hot water supply, and ice storage). ), It is possible to set a large number of saturation temperatures for each heat exchanger. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, the operation of the first and second compressors can be selectively used in parallel or alone operation, or in series operation (two-stage compression operation), resulting in high efficiency. Cycle can be realized.

【0024】また、高圧ガス連通管を設けているので、
第1圧縮機の吐出ガスに第2圧縮機の吐出ガスを足して
凝縮(または蒸発)能力を向上できる。
Since a high pressure gas communication pipe is provided,
The discharge gas of the second compressor can be added to the discharge gas of the first compressor to improve the condensation (or evaporation) capacity.

【0025】また、圧縮機の吸入側にアキュムレータを
設けているので、起動時や運転モード切り換え時の圧縮
機への液戻りが防止でき、圧縮機が保護できるととも
に、冷媒量の調整が行える。
Further, since the accumulator is provided on the suction side of the compressor, it is possible to prevent the liquid from returning to the compressor at the time of start-up or switching the operation mode, protect the compressor, and adjust the amount of refrigerant.

【0026】さらに、凝縮温度と蒸発温度の差が比較的
大きく、第1、第2の圧縮機が直列運転となる場合に
は、熱交換部でバイパス配管を流れる低温の二相冷媒に
より第1(高段側)圧縮機の吸入冷媒ガスを冷却でき、
その吐出温度上昇が防止でき、運転範囲を拡大すること
ができる。
Further, when the difference between the condensation temperature and the evaporation temperature is relatively large and the first and second compressors are operated in series, the first two-phase refrigerant having a low temperature flows through the bypass pipe in the heat exchange section. (High-stage side) Can cool the refrigerant gas sucked into the compressor,
The rise in discharge temperature can be prevented, and the operating range can be expanded.

【0027】そして、第1または第2圧縮機を能力可変
型圧縮機とすることにより、設定飽和温度での冷媒流量
を可変にでき、各熱交換器で必要な能力を発揮すること
ができる。
By using the variable capacity compressor as the first or second compressor, the flow rate of the refrigerant at the set saturation temperature can be made variable, and the necessary capacity can be exhibited in each heat exchanger.

【0028】この発明における多温度生成回路は、n個
のガス配管部と液配管部の両端部に設けている複数の開
閉弁の切り換えにより、所望の運転モードに応じて各熱
交換器毎にn個の飽和温度の設定が可能となり、しかも
高効率で運転範囲の広いサイクルが実現できる。
In the multi-temperature generation circuit according to the present invention, a plurality of on-off valves provided at both ends of the n gas pipes and the liquid pipes are switched to change each heat exchanger according to a desired operation mode. It is possible to set n saturation temperatures, and it is possible to realize a cycle with high efficiency and a wide operating range.

【0029】また、この発明における多温度生成回路
は、所望の運転モード(冷暖房や給湯、氷蓄熱などの各
熱交換器毎に要求される機能)に応じて、各熱交換器毎
に多数の飽和温度の設定が可能となり特に第1の開閉弁
の切り換えにより、各運転モードを効率よく実現でき
る。
Further, the multi-temperature generation circuit according to the present invention has a large number of heat exchangers for each heat exchanger depending on a desired operation mode (functions required for each heat exchanger such as cooling and heating, hot water supply, and ice heat storage). Since the saturation temperature can be set, each operation mode can be efficiently realized by switching the first opening / closing valve.

【0030】また、この発明における多温度生成回路
は、第1の開閉弁の切り換えにより第1圧縮機と第2圧
縮機の使い分けが可能となり、また第1〜第3ガス管、
液管と給湯用追焚き用、室内、室外の各熱交換器とを接
続している開閉弁の切り換えにより上記各熱交換器の凝
縮、蒸発の設定が自由に実現できるため、暖房と給湯、
暖房と追焚き等の2凝縮の同時運転が可能となるととも
に、1凝縮1蒸発の運転においても給湯等の熱源利用が
可能となり高効率のサイクルの実現が可能となる。
Further, in the multi-temperature generation circuit according to the present invention, the first compressor and the second compressor can be selectively used by switching the first on-off valve, and the first to third gas pipes,
Since the setting of condensation and evaporation of each heat exchanger can be freely realized by switching the on-off valve that connects the liquid pipe and the hot water supply for reheating, indoor and outdoor heat exchangers, heating and hot water supply,
Simultaneous operation of two condensations such as heating and reheating can be performed, and a heat source such as hot water supply can be used even in the operation of one condensation and one evaporation, and a highly efficient cycle can be realized.

【0031】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的大
きく、圧縮比が比較的大きい高温給湯・暖房同時運転や
氷蓄熱・給湯同時運転の場合、低段側圧縮機の吐出ガス
を開閉弁を介して液管に通して冷却した後、高段側圧縮
機に吸入させる2段圧縮運転を行うことで、吐出温度上
昇を防止し、かつ2つの凝縮温度と1つの蒸発温度を効
率よく得られる。凝縮温度と蒸発温度の差が比較的大き
く、圧縮比が比較的大きい氷蓄冷・冷暖房・給湯同時運
転のような場合には、低段側圧縮機の吐出ガスを液管か
ら開閉弁を介してバイパスさせた液を合流させて冷却し
た後、高段側圧縮機に吸入させる2段圧縮運転を行うこ
とで、吐出温度上昇を防止し、かつ1つの凝縮温度と2
つの蒸発温度が効率よく得られる。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention is used for high-temperature hot water supply / heating simultaneous operation or ice heat storage / hot water simultaneous operation with a relatively large difference between the condensation temperature and the evaporation temperature and a relatively large compression ratio. In this case, the discharge temperature rise is prevented by performing a two-stage compression operation in which the discharge gas of the low-stage compressor is passed through the liquid pipe through the on-off valve to be cooled and then sucked into the high-stage compressor. Two condensation temperatures and one evaporation temperature can be efficiently obtained. When the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large, such as during ice cold storage / cooling / heating / hot water simultaneous operation, the discharge gas of the low-stage compressor is passed from the liquid pipe through the on-off valve. After the bypassed liquids are merged and cooled, a two-stage compression operation in which the high-stage compressor is sucked in is performed to prevent the discharge temperature from rising and to prevent a single condensation temperature and
Two evaporation temperatures can be obtained efficiently.

【0032】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的大
きく、圧縮比が比較的大きい高温給湯・暖房同時運転の
場合、低段側圧縮機の吐出ガスを膨張弁を介して液管に
通して冷却した後、高段側圧縮機に吸入させる2段圧縮
運転を行うことで、吐出温度上昇を防止すると同時に、
高段側へのバイパス量を最適制御することで、より高い
給湯圧力を得ることが可能で、また暖房能力も同時に確
保し、かつ2つの凝縮温度と1つの蒸発温度を効率よく
得られる。凝縮温度と蒸発温度の差が比較的大きく、圧
縮比が比較的大きい氷蓄冷・冷房・給湯同時運転のよう
な場合には、低段側圧縮機の吐出ガスを液管から膨張弁
を介してバイパスさせた液と合流させて冷却した後、高
段側圧縮機に吸入させる2段圧縮運転を行うことで、吐
出温度上昇を防止すると同時に液バイパス量を最適制御
することで、高段側圧縮機の液圧縮を防止しながら、よ
り高い凝縮温度を得ることが可能で、かつ1つの凝縮温
度と2つの蒸発温度が効率よく得られる。
In the multi-temperature generation circuit by the vapor compression refrigeration cycle of the present invention, in the high temperature hot water supply / heating simultaneous operation in which the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large, the low stage side compressor is used. After the discharge gas of No. 2 is passed through the liquid pipe through the expansion valve and cooled, the two-stage compression operation in which it is sucked into the high-stage compressor is performed to prevent the discharge temperature from rising and
By optimally controlling the bypass amount to the high-stage side, it is possible to obtain a higher hot water supply pressure, secure the heating capacity at the same time, and efficiently obtain two condensation temperatures and one evaporation temperature. In the case of simultaneous ice cold storage / cooling / hot water supply operation where the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor is passed from the liquid pipe through the expansion valve. By performing a two-stage compression operation in which the bypassed liquid is combined and cooled, and then sucked into the high-stage compressor, the discharge temperature rise is prevented and at the same time the liquid bypass amount is optimally controlled. It is possible to obtain a higher condensation temperature while preventing liquid compression of the machine, and to efficiently obtain one condensation temperature and two evaporation temperatures.

【0033】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的大
きく、圧縮比が比較的大きい高温給湯・暖房同時運転や
氷蓄熱・給湯同時運転の場合、低段側圧縮機の吐出ガス
を開閉弁を介して液レシーバーに通して、冷却と気液分
離を同時に行った後、高段側圧縮機に吸入させる2段圧
縮運転を行うことで、吐出温度上昇及び高段側圧縮機の
液圧縮を防止しながら、より高い凝縮温度を得ることが
可能で、かつ2つの凝縮温度と1つの蒸発温度を効率よ
く得られる。凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい氷蓄冷・冷房・給湯同時運転のよ
うな場合には、低段側圧縮機の吐出ガスを液レシーバー
から開閉弁を介してバイパスさせた液と合流させて冷却
した後、高段側圧縮機に吸入させる2段圧縮運転を行う
ことで、吐出温度上昇を防止し、より高い凝縮温度を得
ることが可能で、かつ1つの凝縮温度と2つの蒸発温度
が効率よく得られる。
The multi-temperature generation circuit using the vapor compression refrigeration cycle of the present invention is suitable for high-temperature hot water supply / heating simultaneous operation and ice heat storage / hot water simultaneous operation in which the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large. In this case, the discharge gas of the low-stage side compressor is passed through the liquid receiver through the on-off valve to perform the cooling and the gas-liquid separation at the same time, and then the high-stage side compressor is sucked to perform the two-stage compression operation. It is possible to obtain a higher condensation temperature while efficiently preventing discharge temperature rise and liquid compression of the high-stage compressor, and efficiently obtain two condensation temperatures and one evaporation temperature. The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous ice cold storage / cooling / hot water supply operation with a relatively large compression ratio, the discharge gas of the low-stage compressor is combined with the liquid bypassed from the liquid receiver via the on-off valve to cool, By performing the two-stage compression operation in which the high-stage compressor is sucked, it is possible to prevent the discharge temperature from rising and obtain a higher condensation temperature, and efficiently obtain one condensation temperature and two evaporation temperatures. .

【0034】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的小
さく、圧縮比が比較的小さい通常の冷暖房運転のような
場合などには、第1、第2の圧縮機の並列あるいは単独
運転を行ない、通常の回路と同様に効率よく得られる。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention has the first difference in the case of normal cooling and heating operation in which the difference between the condensation temperature and the evaporation temperature is relatively small and the compression ratio is relatively small. , The second compressor is operated in parallel or in isolation, and can be efficiently obtained in the same manner as a normal circuit.

【0035】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい高温給湯運転や給湯・氷蓄熱同時
運転時のような場合などには、第1、第2の圧縮機を直
列に運転し、低段側圧縮機の吐出ガスを高段側圧縮機に
吸入させる二段圧縮運転を行うことにより、高圧縮比に
適した高効率な運転で2つの飽和温度が得られる。そし
てさらに運転状態により、第1、第2の圧縮機それぞれ
を低段側、高段側とに切り替えられるため高効率な運転
を行うことができる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of high-temperature hot-water supply operation with a relatively high compression ratio or simultaneous hot-water supply / ice heat storage operation, the first and second compressors are operated in series and the discharge gas of the low-stage compressor is set to the high-stage. By performing the two-stage compression operation in which the side compressor is sucked, two saturation temperatures can be obtained with a highly efficient operation suitable for a high compression ratio. Further, the first and second compressors can be switched between the low-stage side and the high-stage side depending on the operating state, so that highly efficient operation can be performed.

【0036】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい暖房・給湯同時運転時のような場
合などには、2台の圧縮機の並列運転を行い、それぞれ
の圧縮機の凝縮温度を変えることにより、2つの凝縮温
度と1つの蒸発温度が効率よく得られる。また、圧縮機
が2台となっているため運転負荷により圧縮機の選択が
行え十分な能力を得ることができる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous operation of heating and hot water supply where the compression ratio is relatively small, two compressors are operated in parallel and the condensing temperature of each compressor is changed to obtain two condensing temperatures and one condensing temperature. The evaporation temperature can be obtained efficiently. Further, since there are two compressors, it is possible to select a compressor depending on the operating load and obtain sufficient capacity.

【0037】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい暖房・高温給湯運転のような場合
などには、圧縮機を直列に運転し、低段側圧縮機の吐出
ガスの一部を高段側圧縮機に吸入させ、給湯用には二段
圧縮された冷媒ガスを用い、暖房用には低段側圧縮機の
吐出ガスの残りを用いることにより効率の高い運転で運
転を行うことにより、高圧縮機に適した高効率な運転で
2つの凝縮温度と1つの蒸発温度が得られる。そしてさ
らに運転状態により、第1、第2の圧縮機それぞれを低
段側、高段側とに切り替えられるため運転負荷により選
択が行え十分な能力を得ることができる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of heating / high-temperature hot-water supply operation where the compression ratio is relatively large, the compressors are operated in series so that part of the gas discharged from the low-stage compressor is sucked into the high-stage compressor to supply hot water. A two-stage compressed refrigerant gas is used for the heating, and the rest of the discharge gas of the low-stage compressor is used for heating. In operation, two condensing temperatures and one evaporating temperature are obtained. Further, since the first compressor and the second compressor can be switched between the low-stage side and the high-stage side depending on the operating state, selection can be made according to the operating load and sufficient capacity can be obtained.

【0038】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい冷房・氷蓄熱同時運転のような場
合には、2台の圧縮機の並列運転を行い、それぞれの圧
縮機の蒸発温度を変えることにより、2つの蒸発温度と
1つの凝縮温度が効率よく得られる。また、圧縮機が2
台となっているため運転負荷により圧縮機の選択が行え
十分な能力を得ることができる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous operation of cooling and ice storage with a relatively small compression ratio, two compressors are operated in parallel and the evaporation temperature of each compressor is changed to obtain two evaporation temperatures and one condensation. The temperature can be obtained efficiently. Also, the compressor is 2
Since it is a stand, the compressor can be selected depending on the operating load and sufficient capacity can be obtained.

【0039】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい冷房・給湯・氷蓄熱同時運転のよ
うな場合には、2台の圧縮機の同時運転を行い、低段側
圧縮機の吐出ガスを高段側圧縮機に吸入させ、給湯用に
は高段側圧縮機の凝縮温度を用い、冷房用には高段側圧
縮機の蒸発温度を用い、氷蓄熱用には低段側圧縮機の蒸
発温度を用いることにより効率の高い運転で、1つの凝
縮温度と2つの蒸発温度が効率よく得られる。また、冷
房や氷蓄熱と暖房や給湯が同時に運転されるときには、
冷房や氷蓄熱の廃熱が給湯に利用することができ、さら
に効率の高い回路を実現することができる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of cooling, hot water supply, and ice heat storage with a relatively high compression ratio, two compressors are operated simultaneously, and the gas discharged from the low-stage compressor is sucked into the high-stage compressor, High efficiency is achieved by using the condensation temperature of the high-stage compressor for hot water supply, the evaporation temperature of the high-stage compressor for cooling, and the evaporation temperature of the low-stage compressor for ice heat storage. In operation, one condensation temperature and two evaporation temperatures are efficiently obtained. Also, when cooling and ice heat storage and heating and hot water supply are operated at the same time,
Waste heat from cooling or ice storage can be used for hot water supply, and a more efficient circuit can be realized.

【0040】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、上記のように構成しているので、所
望の運転モード(冷暖房や給湯、蓄冷熱などの各熱交換
器に要求される機能)に応じて、各熱交換器毎に3つ以
上の飽和温度設定が可能となる。また、凝縮温度と蒸発
温度の差が小さい時や大きい時で、第1、第2圧縮機の
運転を並列もしくは単独運転、または直列運転(二段圧
縮運転)に使い分けることができ、高効率なサイクルが
実現できる。
Since the multi-temperature generating circuit by the vapor compression refrigeration cycle of the present invention is constructed as described above, the desired operation mode (functions required for each heat exchanger such as cooling / heating, hot water supply, and cold storage heat) ), It is possible to set three or more saturation temperatures for each heat exchanger. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, the operation of the first and second compressors can be selectively used in parallel or alone operation, or in series operation (two-stage compression operation), resulting in high efficiency. Cycle can be realized.

【0041】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい通常の冷暖房運転のような場合な
どには、第1、第2、複数台の圧縮機の並列あるいは単
独運転を行い、通常のサイクルと同様に効率よく得られ
る。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of a normal cooling and heating operation with a relatively small compression ratio, the first, second, and plural compressors are operated in parallel or individually, and the same efficiency can be obtained as in a normal cycle.

【0042】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい高温給湯運転や給湯、氷蓄熱同時
運転時のような場合などには、第1、第2の圧縮機を直
列に運転し、第2(低段側)圧縮機の吐出ガスを圧縮機
連通管を経て第1(高段側)圧縮機に吸入させる二段圧
縮運転を行うことにより、高圧縮比に適した高効率な運
転で2つの飽和温度が得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of high-temperature hot water supply operation with a relatively large compression ratio, hot water supply, and ice heat storage simultaneous operation, the first and second compressors are operated in series and the discharge of the second (low-stage side) compressor is performed. By performing the two-stage compression operation in which the gas is sucked into the first (higher-stage side) compressor through the compressor communication pipe, two saturation temperatures can be obtained in a highly efficient operation suitable for a high compression ratio.

【0043】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい暖房・給湯同時運転のような場合
などには、第1、第2例えば2台の圧縮機の並列運転を
行い、それぞれの圧縮機の凝縮温度を変えることによ
り、2つの凝縮温度と1つの蒸発温度が効率よく得られ
る。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous heating / hot water supply operation with a relatively small compression ratio, the first and second compressors, for example, two compressors are operated in parallel, and the condensing temperature of each compressor is changed to obtain two The condensation temperature and one evaporation temperature are efficiently obtained.

【0044】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい暖房・高温給湯同時運転のような
場合などには、第1、第2例えば2台の圧縮機の同時運
転を行い、第2(低段側)圧縮機の吐出ガスの一部を圧
縮機連通管を経て第1(高段側)圧縮機に吸入させ、給
湯用には二段圧縮された冷媒を用い、暖房用には第2
(低段側)圧縮機の吐出ガスの残りの冷媒を用いること
により、効率の高い運転で、2つの凝縮温度と1つの蒸
発温度が効率よく得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous heating / high-temperature hot water supply operation with a relatively high compression ratio, the first and second compressors, for example, two compressors are operated simultaneously, and the discharge gas of the second (low-stage side) compressor is Part of it is sucked into the first (higher-stage side) compressor through the compressor communication pipe, and the second-stage compressed refrigerant is used for hot water supply, and the second is used for heating.
By using the remaining refrigerant of the discharge gas of the (low-stage side) compressor, two condensation temperatures and one evaporation temperature can be efficiently obtained in a highly efficient operation.

【0045】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい冷房・氷蓄熱同時運転のような場
合などには、第1、第2例えば2台の圧縮機の並列運転
を行い、それぞれの圧縮機の蒸発温度を変えることによ
り、1つの凝縮温度と2つの蒸発温度が効率よく得られ
る。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous operation of cooling and ice heat storage with a relatively small compression ratio, the first and second compressors, for example, two compressors are operated in parallel, and the evaporation temperature of each compressor is changed. One condensation temperature and two evaporation temperatures are efficiently obtained.

【0046】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい冷房、給湯、氷蓄熱同時運転のよ
うな場合などには、第1、第2、例えば2台の圧縮機の
同時運転を行い、第2(低段側)圧縮機の吐出ガスを圧
縮機連通管を経て第1(高段側)圧縮機に吸入させ、給
湯用には第1(高段側)圧縮機の凝縮温度を用い、冷房
用には第1(高段側)圧縮機の蒸発温度を用い、氷蓄熱
には第2(低段側)圧縮機の蒸発温度を用いることによ
り、効率の高い運転で、1つの凝縮温度と2つの蒸発温
度が効率よく得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In cases such as cooling, hot water supply, and ice heat storage simultaneous operation where the compression ratio is relatively large, the first and second compressors, for example, two compressors are operated simultaneously, and the second (low-stage side) compressor is operated. The discharge gas is sucked into the first (higher-stage side) compressor through the compressor communication pipe, the condensing temperature of the first (higher-stage side) compressor is used for hot water supply, and the first (higher-stage side) compressor is used for cooling. Side) compressor's evaporation temperature and ice heat storage uses the second (low-stage side) compressor's evaporation temperature to efficiently obtain one condensation temperature and two evaporation temperatures with high efficiency operation. To be

【0047】[0047]

【実施例】【Example】

実施例1.図1はこの発明の一実施例の蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。図において、1は第1圧縮機、2は第2圧縮機、1
1は第1アキュムレータ、12は第2アキュムレータ、
51a,51b,51cは熱交換器である。61は第1
圧縮機1の吐出側に接続された第1高圧ガス管、62は
第2圧縮機2の吐出側に第1開閉器である第1開閉弁2
1を介して接続された第2高圧ガス管、63は第1圧縮
機1吸入側に第1アキュムレータ11を介して接続され
た低圧ガス管、64は液管である。第1圧縮機1と第1
アキュムレータ11の間の低圧ガス管63には第3開閉
器を構成する第2開閉弁22と第1逆止弁41が設けら
れている。23は第2圧縮機2と第1開閉弁21の間の
第2高圧ガス管62と第1高圧ガス管61とを接続する
高圧ガス連通管65に設けられた第5開閉器の第3開閉
弁、24は第2圧縮機2と第3開閉弁23の間の高圧ガ
ス連通管65と第2開閉弁22と第1逆止弁41の間の
低圧ガス管63とを接続する圧縮機連通管66に設けら
れた第4開閉弁で、この場合は第4開閉器は第2開閉
弁、第4開閉弁及び第1逆止弁で構成されている。25
は分岐して第1圧縮機1の吸入側に接続する第2高圧ガ
ス管62の分岐点と第2アキュムレータ12間の第2高
圧ガス管62に設けられた第5開閉弁、42は第1圧縮
機1と第2アキュムレータ12の間の第2高圧ガス管6
2に設けられた第2逆止弁で、第2開閉器は第5開閉弁
25と第2逆止弁42で構成されている。また熱交換器
51a,51b,51cには、第1高圧ガス管61、第
2高圧ガス管62、低圧ガス管63が各々開閉弁26
a,27a,28a,26b,27b,28b及び2
6,27c,28cを介して分岐接続するとともに、液
管64が冷媒流量制御器である電子式膨張弁31a,3
1b,31cをそれぞれ介して接続している。
Example 1. FIG. 1 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle according to an embodiment of the present invention. In the figure, 1 is a first compressor, 2 is a second compressor, 1
1 is a first accumulator, 12 is a second accumulator,
51a, 51b, 51c are heat exchangers. 61 is the first
A first high-pressure gas pipe connected to the discharge side of the compressor 1, 62 is a first opening / closing valve 2 which is a first switch on the discharge side of the second compressor 2.
The second high-pressure gas pipe connected via 1 is a low-pressure gas pipe 63 connected to the suction side of the first compressor 1 via the first accumulator 11, and 64 is a liquid pipe. First compressor 1 and first
The low pressure gas pipe 63 between the accumulators 11 is provided with a second on-off valve 22 and a first check valve 41 that form a third switch. 23 is the third opening / closing of the fifth switch provided in the high pressure gas communication pipe 65 connecting the second high pressure gas pipe 62 and the first high pressure gas pipe 61 between the second compressor 2 and the first on-off valve 21. A valve 24 is a compressor communication connecting the high pressure gas communication pipe 65 between the second compressor 2 and the third on-off valve 23 and the low pressure gas pipe 63 between the second on-off valve 22 and the first check valve 41. A fourth opening / closing valve provided in the pipe 66, and in this case, the fourth opening / closing valve includes a second opening / closing valve, a fourth opening / closing valve, and a first check valve. 25
Is a fifth opening / closing valve provided in the second high-pressure gas pipe 62 between the second accumulator 12 and the branch point of the second high-pressure gas pipe 62 connected to the suction side of the first compressor 1, and 42 is the first Second high pressure gas pipe 6 between the compressor 1 and the second accumulator 12
In the second check valve provided in No. 2, the second switch is composed of the fifth switch valve 25 and the second check valve 42. Further, the heat exchangers 51a, 51b, 51c are provided with a first high pressure gas pipe 61, a second high pressure gas pipe 62, and a low pressure gas pipe 63, respectively.
a, 27a, 28a, 26b, 27b, 28b and 2
6, 27c and 28c are branched and connected, and the liquid pipe 64 is an electronic expansion valve 31a, 3 which is a refrigerant flow rate controller.
1b and 31c are connected respectively.

【0048】この発明の多温度生成回路には、表1に示
すように6つの運転モードがある。以下、この6つの運
転モードを図2〜7を用いて説明する。
The multi-temperature generation circuit of the present invention has six operation modes as shown in Table 1. The six operation modes will be described below with reference to FIGS.

【0049】[0049]

【表1】 [Table 1]

【0050】まず、図2のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と1つの蒸発温度を生成する2温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房あるいは暖
房時などに適用される。
First, using the explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment in FIG. 2, at the time of generating two temperatures, one condensation temperature and one evaporation temperature are generated, the condensation temperature and the evaporation The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0051】図2では、熱交換器51aが凝縮器、熱交
換器51bが停止、熱交換器51cが蒸発器として動作
する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27cを閉止状態(図中塗り
つぶし)としている。第1圧縮機1、第2圧縮機2は並
列運転される。矢印で冷媒の流れを示す。
FIG. 2 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator. The first opening / closing valve 21 and the fourth opening / closing valve 2 are shown.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c and 27c are in a closed state (filled in the figure). The first compressor 1 and the second compressor 2 are operated in parallel. The arrow indicates the flow of the refrigerant.

【0052】第2圧縮機2から吐出された高温高圧冷媒
ガスは高圧ガス連通管65を経て第1高圧ガス管61で
第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 merges with the high-temperature high-pressure refrigerant gas discharged from the first compressor 1 in the first high-pressure gas pipe 61 through the high-pressure gas communication pipe 65, and the on-off valve is opened. It flows into the heat exchanger 51a through 26a and is condensed and liquefied. The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and the first compressor 1 and the second compressor 1.
It is sucked into the compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0053】図2では冷暖房時に1凝縮+1蒸発温度と
いうように使用されるが、この場合吐出圧力16〜21
Kg/cm2 abs(凝縮)、吸入圧力4〜6Kg/c
2abs(蒸発)という条件が一般的である。ここ
で、凝縮温度と蒸発温度の差が比較的小さい場合、と
は、圧縮比、すなわち吐出圧力/吸入圧力が6以下と小
さい場合を指す。一般に冷房や暖房では低負荷時ではこ
の圧縮比が2位であり、通常は最大4〜5位で使用して
いる。
In FIG. 2, it is used as 1 condensation + 1 evaporation temperature at the time of cooling and heating. In this case, the discharge pressure is 16 to 21.
Kg / cm 2 abs (condensation), suction pressure 4-6 Kg / c
The condition of m 2 abs (evaporation) is general. Here, the case where the difference between the condensation temperature and the evaporation temperature is relatively small means that the compression ratio, that is, the discharge pressure / suction pressure is 6 or less. Generally, in cooling or heating, this compression ratio is the second highest when the load is low, and normally it is used at the maximum of the fourth to fifth highest.

【0054】ここで51aが室内機熱交換器、51cが
室外機熱交換器とすると、図2の流れは暖房運転の場合
を示している。冷房の場合は、開閉弁26cが開き、開
閉弁27c,28cが閉じることになり、51aが蒸発
器として作用し、開閉弁26a,27aが閉じ、開閉弁
28aが開くことになり、51aが蒸発器として作用す
ることになる(図2の逆)。
If 51a is an indoor unit heat exchanger and 51c is an outdoor unit heat exchanger, the flow of FIG. 2 shows the case of heating operation. In the case of cooling, the opening / closing valve 26c opens, the opening / closing valves 27c, 28c close, 51a acts as an evaporator, the opening / closing valves 26a, 27a close, the opening / closing valve 28a opens, and 51a evaporates. It acts as a container (reverse of FIG. 2).

【0055】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい通常の冷暖房運転のような場合な
どには、第1、第2、複数台の圧縮機の並列あるいは単
独運転を行い、通常のサイクルと同様に効率よく得られ
る。しかも、この例の場合では利用側と熱源側の熱交換
器を入れ換えることも可能で、システム構成を自由に選
択できる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of a normal cooling and heating operation with a relatively small compression ratio, the first, second, and plural compressors are operated in parallel or individually, and the same efficiency can be obtained as in a normal cycle. Moreover, in the case of this example, the heat exchangers on the use side and the heat source side can be exchanged, and the system configuration can be freely selected.

【0056】次に図3のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば高温給湯や給湯+氷蓄熱
時などに適用される。図3では、熱交換器51aが凝縮
器、熱交換器51bが停止、熱交換器51cが蒸発器と
して動作する例を示しており、第1開閉弁21、第3開
閉弁23、第5開閉弁25、開閉弁27a,28a,2
6b,27b,28b,26c,27cを閉止状態(図
中塗りつぶし)としている。第1圧縮機1、第2圧縮機
2は直列運転される。矢印で冷媒の流れを示す。
Next, using the explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment of FIG. 3, the condensation temperature and the evaporation temperature are generated at the time of generating two temperatures for generating one condensation temperature and one evaporation temperature. The operation when the temperature difference is relatively large will be described. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage. FIG. 3 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator. The first opening / closing valve 21, the third opening / closing valve 23, and the fifth opening / closing valve 21 are shown. Valve 25, open / close valves 27a, 28a, 2
6b, 27b, 28b, 26c and 27c are in a closed state (filled in the figure). The first compressor 1 and the second compressor 2 are operated in series. The arrow indicates the flow of the refrigerant.

【0057】第2圧縮機2から吐出された冷媒ガスは、
高圧ガス連通管65とこれから分岐した圧縮機連通管6
6に流入し、第4開閉弁24及び第2開閉弁22を通っ
て第1圧縮機に吸入され、二段圧縮され高温高圧の冷媒
ガスとなって第1高圧ガス管61に流入する。このガス
冷媒は、開閉弁26aを通って熱交換器51aに流入
し、凝縮液化される。この液冷媒は、電気式膨張弁31
aを通って液管64に流入し、電気式膨張弁31cを通
って低圧の二相状態となって熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、低圧ガス管63を
通って第1アキュムレータ11を経て、第2圧縮機2に
吸入される。このように、この運転モードでは、二段圧
縮運転となり、熱交換器51aで凝縮温度が、熱交換器
51cで蒸発温度が得られる。
The refrigerant gas discharged from the second compressor 2 is
High-pressure gas communication pipe 65 and compressor communication pipe 6 branched from this
6 and is sucked into the first compressor through the fourth opening / closing valve 24 and the second opening / closing valve 22 and is compressed in two stages to become a high-temperature high-pressure refrigerant gas, which then flows into the first high-pressure gas pipe 61. This gas refrigerant flows into the heat exchanger 51a through the opening / closing valve 26a and is condensed and liquefied. This liquid refrigerant is used in the electric expansion valve 31.
flowing into the liquid pipe 64 through a, flowing into the heat exchanger 51c through the electric expansion valve 31c in a low-pressure two-phase state,
Evaporative gasification. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. In this way, in this operation mode, the two-stage compression operation is performed, and the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0058】図3では高温給湯+氷蓄熱時に1凝縮+1
蒸発温度というように使用され、吐出圧力26〜27K
g/cm2 abs(1凝縮)、吸入圧力3Kg/cm2
abs(1蒸発)という条件の二段圧縮回路という例を
示している。ここで、凝縮温度と蒸発温度の差が比較的
大きい場合とは、圧縮比が0.6以上ある場合を示すも
のを考えている。
In FIG. 3, 1 condensation + 1 at high temperature hot water supply + ice heat storage
Used as evaporation temperature, discharge pressure 26-27K
g / cm 2 abs (1 condensation), suction pressure 3 Kg / cm 2
An example of a two-stage compression circuit under the condition of abs (1 evaporation) is shown. Here, the case where the difference between the condensation temperature and the evaporation temperature is relatively large is considered to indicate the case where the compression ratio is 0.6 or more.

【0059】図3では、51aが給湯熱交換器、51c
が蓄熱熱交換器となっており、51aが凝縮器、51c
が蒸発器として作用するため、51aの放熱により水の
温度が上昇し、51cの吸熱により水が氷となる。
In FIG. 3, 51a is a hot water supply heat exchanger, and 51c.
Is a heat storage heat exchanger, 51a is a condenser, and 51c
Acts as an evaporator, the temperature of the water rises due to the heat radiation of 51a, and the water becomes ice due to the heat absorption of 51c.

【0060】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい高温給湯運転や給湯・氷蓄熱同時
運転時のような場合などには、第1、第2の圧縮機を直
列に運転し、第2(低段側)圧縮機の吐出ガスを圧縮機
連通管を経て第1(高段側)圧縮機に吸入させる二段圧
縮運転を行うことにより、高圧縮比に適した高効率な運
転で2つの飽和温度が得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of high-temperature hot-water supply operation with a relatively large compression ratio or simultaneous hot-water supply / ice heat storage operation, the first and second compressors are operated in series and the discharge of the second (low-stage side) compressor is performed. By performing the two-stage compression operation in which the gas is sucked into the first (higher-stage side) compressor through the compressor communication pipe, two saturation temperatures can be obtained in a highly efficient operation suitable for a high compression ratio.

【0061】次に図4のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、2つの凝縮温度と
1つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合、すなわち、圧縮比が
比較的小さい条件での動作について説明する。この運転
モードは、例えば通常の暖房+比較的低い給湯運転時な
どに適用される。
Next, with reference to the explanatory view showing the operating state of the multi-temperature generation circuit of this embodiment in FIG. 4, at the time of generating three temperatures for generating two condensation temperatures and one evaporation temperature, the condensation temperature and the evaporation The operation under the condition that the temperature difference is relatively small, that is, the compression ratio is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation.

【0062】図4では、熱交換器51aが第1凝縮器、
熱交換器51bが第2凝縮器、熱交換器51cが蒸発器
として動作する例を示しており、第3開閉弁23、第4
開閉弁24、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27cを閉止状態(図中塗り
つぶし)としている。矢印で冷媒の流れを示す。
In FIG. 4, the heat exchanger 51a is the first condenser,
An example in which the heat exchanger 51b operates as the second condenser and the heat exchanger 51c operates as the evaporator is shown, and the third opening / closing valve 23, the fourth
Open / close valve 24, fifth open / close valve 25, open / close valves 27a, 28a,
26b, 28b, 26c and 27c are in a closed state (filled in the figure). The arrow indicates the flow of the refrigerant.

【0063】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a which is the first condenser, and is condensed and liquefied. To be done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 through the first opening / closing valve 21, passes through the opening / closing valve 27b, and is the second condenser heat exchanger 51b. And is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant is used as an electric expansion valve 31c.
Through it to a low-pressure two-phase state, which flows into the heat exchanger 51c and is vaporized and gasified. This gas refrigerant is a low pressure gas pipe 6
After passing through 3, the first accumulator 11 is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0064】図4の暖房+給湯(2凝縮+1蒸発)時に
は通常、吐出圧力1(暖房)16〜21Kg/cm2
bs、吐出圧力2(給湯)21Kg/cm2 という2凝
縮と、吸入圧力4〜5Kg/cm2 absという1蒸発
の条件である。
At the time of heating + hot water supply (2 condensation + 1 evaporation) in FIG. 4, normally, discharge pressure 1 (heating) 16 to 21 kg / cm 2 a
bs, discharge pressure 2 (hot water supply) 21 Kg / cm 2 for 2 condensation, and suction pressure 4-5 Kg / cm 2 abs for 1 evaporation.

【0065】ここで、51aが給湯用熱交換器、51b
が室内機熱交換器、51cが室外機熱交換器となってお
り、51a,51bが凝縮器として、51aが給湯、5
1bが暖房用として作用する。51cは蒸発器として作
用する。ここで第1圧縮機1は給湯用、第2圧縮機2は
暖房用として、パラレルに運転する。
Here, 51a is a heat exchanger for hot water supply, and 51b.
Is an indoor unit heat exchanger, 51c is an outdoor unit heat exchanger, 51a and 51b are condensers, 51a is hot water supply, 5
1b works for heating. 51c acts as an evaporator. Here, the first compressor 1 is for hot water supply, and the second compressor 2 is for heating, and they are operated in parallel.

【0066】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい暖房・給湯同時運転のような場合
などには、第1、第2、例えば2台の圧縮機の並列運転
を行い、それぞれの圧縮機の凝縮温度を変えることによ
り、2つの凝縮温度と1つの蒸発温度が効率よく得られ
る。しかも2台圧縮機のそれぞれに対応して自由に熱交
換器との組合を選ぶこともできる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous heating and hot water supply operation with a relatively small compression ratio, the first and second compressors, for example, two compressors are operated in parallel and the condensing temperature of each compressor is changed to One condensation temperature and one evaporation temperature are efficiently obtained. Moreover, it is possible to freely select a combination with the heat exchanger corresponding to each of the two compressors.

【0067】次に図5のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、2つの凝縮温度と
1つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合、すなわち、圧縮比が
比較的大きい条件での動作について説明する。この運転
モードは、例えば通常の暖房+比較的高い給湯運転時な
どに適用される。
Next, with reference to the explanatory view showing the operating state of the multi-temperature generation circuit of this embodiment in FIG. 5, at the time of generating three temperatures for generating two condensation temperatures and one evaporation temperature, the condensation temperature and the evaporation The operation under the condition that the temperature difference is relatively large, that is, the condition that the compression ratio is relatively large will be described. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation.

【0068】図5では、熱交換器51aが第1凝縮器、
熱交換器51bが第2凝縮器、熱交換器51cが蒸発器
として動作する例を示しており、第3開閉弁23、第5
開閉弁25、開閉弁27a,28a,26b,28b,
26c,27cを閉止状態(図中塗りつぶし)としてい
る。矢印で冷媒の流れを示す。
In FIG. 5, the heat exchanger 51a is the first condenser,
The example in which the heat exchanger 51b operates as the second condenser and the heat exchanger 51c operates as the evaporator is shown, and the third opening / closing valve 23, the fifth
Open / close valve 25, open / close valves 27a, 28a, 26b, 28b,
26c and 27c are in a closed state (filled in the figure). The arrow indicates the flow of the refrigerant.

【0069】第2圧縮機2から吐出された冷媒ガスの一
部は、圧縮機連通管66に流入し、第4開閉弁24及び
第2開閉弁22を通って第1圧縮機に吸入され、二段圧
縮され高温高圧の冷媒ガスとなって第1高圧ガス管61
に流入する。このガス冷媒は、開閉弁26aを通って第
1凝縮器である熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電気式膨張弁31aを通って液管6
4に流入する。一方、第2圧縮機2から吐出された冷媒
ガスの残りは、第1開閉弁21を通って第2高圧ガス管
62に流入し、開閉弁27bを通って第2凝縮器である
熱交換器51bに流入し、凝縮液化される。この液冷媒
は、電気式膨張弁31bを通って液管64に流入し、第
1凝縮器である熱交換器51aからの液冷媒と合流す
る。この合流した液冷媒は、電気式膨張弁31cを通っ
て低圧の二相状態となって熱交換器51cへ流入し、蒸
発ガス化される。このガス冷媒は、低圧ガス管63を通
って第1アキュムレータ11を経て、第2圧縮機2に吸
入される。このように、この運転モードでは、熱交換器
51aで第1の凝縮温度が、熱交換器51bで第2の凝
縮温度が、熱交換器51cで蒸発温度が得られる。
A part of the refrigerant gas discharged from the second compressor 2 flows into the compressor communication pipe 66, is sucked into the first compressor through the fourth opening / closing valve 24 and the second opening / closing valve 22, The first high-pressure gas pipe 61 becomes a high-temperature high-pressure refrigerant gas after being compressed in two stages.
Flow into. This gas refrigerant flows through the opening / closing valve 26a into the heat exchanger 51a, which is the first condenser, and is condensed and liquefied. This liquid refrigerant passes through the electric expansion valve 31a and the liquid pipe 6
Inflow to 4. On the other hand, the rest of the refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 through the first opening / closing valve 21 and passes through the opening / closing valve 27b to be the second condenser heat exchanger. It flows into 51b and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant flows through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0070】図5の暖房+高温給湯(2凝縮+1蒸発)
時には、吐出圧力1(暖房)16〜21Kg/cm2
bs、吐出圧力2(給湯)26〜27Kg/cm2 ab
sという2凝縮と、吸入圧力4〜5Kg/cm2 abs
(1蒸発)という条件で2段圧縮回路の例を示す。
Heating in FIG. 5 + hot water supply (2 condensation + 1 evaporation)
Occasionally, discharge pressure 1 (heating) 16 to 21 Kg / cm 2 a
bs, discharge pressure 2 (hot water supply) 26-27 Kg / cm 2 ab
s 2 condensation and suction pressure 4-5 Kg / cm 2 abs
An example of a two-stage compression circuit under the condition of (1 evaporation) is shown.

【0071】51a,51b,51cの熱交換器の作用
は図4と同様であるが、圧縮機がシリーズ運転(2段圧
縮)となり、第2圧縮機2で中圧まで圧縮し(暖房可能
な圧力)、さらに第1圧縮機1で高圧まで圧縮する(高
温給湯可能な圧力)。
The operation of the heat exchangers 51a, 51b and 51c is the same as that of FIG. 4, but the compressor is operated in series (two-stage compression), and the second compressor 2 compresses it to an intermediate pressure (heating is possible). Pressure), and further compressed to high pressure by the first compressor 1 (pressure at which hot water can be supplied).

【0072】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい暖房・高温給湯同時運転のような
場合などには、第1、第2、例えば2台の圧縮機の同時
運転を行い、第2(低段側)圧縮機の吐出ガスの一部を
圧縮機連通管を経て第1(高段側)圧縮機に吸入させ、
給湯用には二段圧縮された冷媒を用い、暖房用には第2
(低段側)圧縮機の吐出ガスの残りの冷媒を用いること
により、効率の高い運転で、2つの凝縮温度と1つの蒸
発温度が効率よく得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of heating and high-temperature hot water with a relatively large compression ratio, the first and second compressors, for example, two compressors are simultaneously operated, and the discharge gas of the second (low-stage side) compressor is discharged. Part of the air is sucked into the first (higher stage) compressor through the compressor communication pipe,
A two-stage compressed refrigerant is used for hot water supply and the second stage is used for heating.
By using the remaining refrigerant of the discharge gas of the (low-stage side) compressor, two condensation temperatures and one evaporation temperature can be efficiently obtained in a highly efficient operation.

【0073】次に図6のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
2つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば冷房+氷蓄熱運転時など
に適用される。
Next, referring to FIG. 6 which is an explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment, at the time of generating three temperatures for generating one condensation temperature and two evaporation temperatures, the condensation temperature and evaporation The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during cooling + ice heat storage operation.

【0074】図6では、熱交換器51aが凝縮器、熱交
換器51bが第1蒸発器、熱交換器51cが第2蒸発器
として動作する例を示しており、第1開閉弁21、第2
開閉弁22、第4開閉弁24、開閉弁27a,28a,
26b,28b,26c,27cを閉止状態(図中塗り
つぶし)としている。矢印で冷媒の流れを示す。
FIG. 6 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. Two
Open / close valve 22, fourth open / close valve 24, open / close valves 27a, 28a,
26b, 28b, 26c and 27c are in a closed state (filled in the figure). The arrow indicates the flow of the refrigerant.

【0075】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第2圧縮機2の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し、蒸発ガス化される。この
ガス冷媒は、第2高圧ガス管62を通って第5開閉弁2
5、第2アキュムレータ12、第2逆止弁を経て、第1
圧縮機1に吸入される。一方、液管64に流入した残り
の液冷媒は、電気式膨張弁31cを通って低圧の二相状
態となって第2蒸発器である熱交換器51へ流入し、蒸
発ガス化される。このガス冷媒は、低圧ガス管63を通
って第1アキュムレータ11を経て、第2圧縮機2に吸
入される。このように、この運転モードでは、熱交換器
51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 passes through the third on-off valve 23, the high-pressure gas communication pipe 65, and the discharge refrigerant gas of the second compressor 2 and the first high-pressure gas pipe 6.
At 1, they merge, pass through the on-off valve 26a, flow into the heat exchanger 51a, and are condensed and liquefied. This liquid refrigerant is used for the electric expansion valve 3
It flows through the liquid pipe 64 through 1a, and a part of it flows through the electric expansion valve 31b into a low-pressure two-phase state and flows into the heat exchanger 51b which is the first evaporator, and is vaporized and gasified. . This gas refrigerant passes through the second high-pressure gas pipe 62 and the fifth on-off valve 2
5, the second accumulator 12, the second check valve, the first
It is sucked into the compressor 1. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51 that is the second evaporator, and is vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature, the heat exchanger 51b obtains the first evaporation temperature, and the heat exchanger 51c obtains the second evaporation temperature.

【0076】図6の冷房+氷蓄熱(1凝縮+2蒸発)時
には通常、吐出圧力18Kg/cm2 absという1凝
縮と、吸入圧力1(冷房)5〜6Kg/cm2 abs、
吸入圧力2(氷蓄熱)3Kg/cm2 absという2蒸
発という例である。
When cooling + ice heat storage (1 condensation + 2 evaporation) in FIG. 6, normally, one condensation of discharge pressure 18 Kg / cm 2 abs and suction pressure 1 (cooling) 5-6 Kg / cm 2 abs,
The suction pressure 2 (ice heat storage) is 3 Kg / cm 2 abs, which is an example of 2 evaporations.

【0077】51aが室外熱交換器、51bが室内熱交
換器、51cが蓄熱熱交換器となっており、51aが凝
縮器として作用し、51b,51cが蒸発器として作用
し、51bが冷房、51cが氷蓄熱を行う。ここで第1
圧縮機1は冷房用、第2圧縮機2は氷蓄熱用として、パ
ラレルに運転する。
51a is an outdoor heat exchanger, 51b is an indoor heat exchanger, 51c is a heat storage heat exchanger, 51a acts as a condenser, 51b and 51c act as an evaporator, 51b is cooling, 51c stores ice heat. Here first
The compressor 1 is for cooling, and the second compressor 2 is for ice heat storage, and they are operated in parallel.

【0078】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい冷房・氷蓄熱同時運転のような場
合などには、第1、第2、例えば2台の圧縮機の並列運
転を行い、それぞれの圧縮機の蒸発温度を変えることに
より、1つの凝縮温度と2つの蒸発温度が効率よく得ら
れる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of cooling / ice heat storage simultaneous operation with a relatively small compression ratio, the first and second compressors, for example, two compressors are operated in parallel, and the evaporation temperature of each compressor is changed. One condensation temperature and two evaporation temperatures are efficiently obtained.

【0079】次に図7のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
2つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば冷房+氷蓄熱+高温給湯
運転時などに適用される。
Next, using the explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment in FIG. 7, the condensation temperature and the evaporation temperature are generated at the time of generating three temperatures for generating one condensation temperature and two evaporation temperatures. The operation when the temperature difference is relatively large will be described. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation.

【0080】図7では、熱交換器51aが凝縮器、熱交
換器51bが第1蒸発器、熱交換器51cが第2蒸発器
として動作する例を示しており、第3開閉弁23、第5
開閉弁25、開閉弁27a,28a,26b,28b,
26c,27cを閉止状態(図中塗りつぶし)としてい
る。矢印で冷媒の流れを示す。
FIG. 7 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 5
Open / close valve 25, open / close valves 27a, 28a, 26b, 28b,
26c and 27c are in a closed state (filled in the figure). The arrow indicates the flow of the refrigerant.

【0081】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第1高圧ガス管61に流入し、開閉弁26a
を通って熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31aを通って液管64に流
入し、その一部は電気式膨張弁31bを通って低圧の二
相状態となって第1蒸発器である熱交換器51bへ流入
し、蒸発ガス化される。このガス冷媒は、第2高圧ガス
管62を通って第1開閉弁21を経て、第2圧縮機の吐
出ガスと合流し、第4開閉弁24、第2開閉弁22を経
て、第1圧縮機1に吸入される。一方、液管64に流入
した残りの液冷媒は、電気式膨張弁31cを通って低圧
の二相状態となって第2蒸発器である熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、低圧ガス
管63を通って第1アキュムレータ11を経て、第2圧
縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51bで第
1蒸発温度が、熱交換器51cで第2蒸発温度が得られ
る。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61 and the on-off valve 26a.
Through which it flows into the heat exchanger 51a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant flows through the electric expansion valve 31b into a low-pressure two-phase state, which is the heat exchanger 51b as the first evaporator. And is vaporized into gas. This gas refrigerant passes through the second high-pressure gas pipe 62, passes through the first on-off valve 21, merges with the discharge gas of the second compressor, passes through the fourth on-off valve 24, the second on-off valve 22, and passes through the first compression. Inhaled into machine 1. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c that is the second evaporator, and is vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature, the heat exchanger 51b obtains the first evaporation temperature, and the heat exchanger 51c obtains the second evaporation temperature.

【0082】上記のように、この実施例では上記した6
つの運転モード、冷暖房や給湯、氷蓄熱などの各熱交換
器に要求される機能に応じて、各熱交換器毎に3つの飽
和温度設定が可能となる。また、凝縮温度と蒸発温度の
差が小さい時や大きい時で、第1、第2圧縮機の運転を
単独あるいは並列運転、または直列運転(二段圧縮運
転)に使い分けることができ、高効率なサイクルが実現
できる。さらに冷房や氷蓄熱と暖房や給湯が同時に運転
されるときには、冷房や氷蓄熱の排熱が暖房や給湯に利
用することができるので、さらに効率の高いサイクルを
実現することができる。第1、第2の圧縮機の吸入側に
アキュムレータを設けているので、圧縮機が保護でき、
冷媒量の調整が行える。
As described above, in this embodiment, the above 6
It is possible to set three saturation temperatures for each heat exchanger according to one operation mode and functions required for each heat exchanger such as cooling and heating, hot water supply, and ice storage. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, the operation of the first and second compressors can be used separately, in parallel operation, or in series operation (two-stage compression operation), resulting in high efficiency. Cycle can be realized. Further, when cooling and ice heat storage and heating and hot water supply are operated at the same time, the exhaust heat of cooling and ice heat storage can be used for heating and hot water supply, so that a more efficient cycle can be realized. Since the accumulator is provided on the suction side of the first and second compressors, the compressor can be protected,
The amount of refrigerant can be adjusted.

【0083】図7の冷房+氷蓄熱+給湯(1凝縮+2蒸
発)時には、吐出圧力(給湯)21Kg/cm2 abs
という1凝縮と、吸入圧力1(冷房)5〜6Kg/cm
2 abs、吸入圧力2(氷蓄熱)3Kg/cm2 abs
という2蒸発による2段圧縮の例である。
At the time of cooling + ice heat storage + hot water supply (1 condensation + 2 evaporation) in FIG. 7, discharge pressure (hot water supply) 21 Kg / cm 2 abs
1 condensation and suction pressure 1 (cooling) 5-6 Kg / cm
2 abs, suction pressure 2 (ice heat storage) 3 Kg / cm 2 abs
Is an example of two-stage compression by two evaporations.

【0084】51aが給湯熱交換器、51bが室内熱交
換器、51cが蓄熱熱交換器となっており、51aが凝
縮器として作用し、51b,51cが蒸発器として作用
する。ここで、圧縮機はシリーズ運転(2段圧縮)とな
り、第2圧縮機2で中圧まで圧縮し(冷房可能な圧
力)、第1圧縮機1でさらに高圧まで圧縮する(給湯可
能な圧力)。
51a is a hot water supply heat exchanger, 51b is an indoor heat exchanger, and 51c is a heat storage heat exchanger. 51a acts as a condenser, and 51b and 51c act as an evaporator. Here, the compressor is in series operation (two-stage compression), the second compressor 2 compresses it to an intermediate pressure (cooling pressure), and the first compressor 1 further compresses it to a higher pressure (hot water supply pressure). .

【0085】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい冷房・給湯・氷蓄熱同時運転のよ
うな場合には、第1、第2、例えば2台の圧縮機の同時
運転を行い、第2(低段側)圧縮機の吐出ガスを圧縮機
連通管を経て第1(高段側)圧縮機に吸入させ、給湯用
には第1(高段側)圧縮機の凝縮温度を用い、冷房用に
は第1(高段側)圧縮機の蒸発温度を用い、氷蓄熱用に
は第2(低段側)圧縮
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of cooling, hot water supply, and ice heat storage with a relatively high compression ratio, the first and second, for example, two compressors are operated simultaneously, and the discharge of the second (low-stage side) compressor is performed. The gas is sucked into the first (higher stage side) compressor through the compressor communication pipe, the condensing temperature of the first (higher stage side) compressor is used for hot water supply, and the first (higher stage side) is used for cooling. ) The second (low-stage) compression is used for ice heat storage, using the evaporation temperature of the compressor

【0086】実施例2.図8はこの発明の実施例2の蒸
気圧縮式冷凍サイクルによる多温度生成回路の冷媒系の
構成図である。図において、67は液管64と第1アキ
ュムレータ11とを第6開閉弁30d及び流量制御器で
ある毛細管32を介して接続するバイパス配管であり、
このバイパス配管67の毛細管32と第1アキュムレー
タ11との間の配管と第1圧縮機1の吸入配管との間で
熱交換を行う熱交換部71が設けられている。
Example 2. FIG. 8 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit according to the vapor compression refrigeration cycle of Embodiment 2 of the present invention. In the figure, 67 is a bypass pipe that connects the liquid pipe 64 and the first accumulator 11 via the sixth opening / closing valve 30d and the capillary pipe 32 that is a flow rate controller,
A heat exchanging section 71 for exchanging heat between the pipe between the capillary tube 32 of the bypass pipe 67 and the first accumulator 11 and the suction pipe of the first compressor 1 is provided.

【0087】2温度生成あるいは3温度生成時で凝縮温
度と蒸発温度の差が比較的大きく、2台の圧縮機が直列
運転となる場合には、第6開閉弁30dを開放し、液管
64内の液冷媒の一部をバイパス配管67へ導き、毛細
管32によって低圧低温の二相冷媒とし、第1圧縮機の
吸入冷媒ガスと熱交換部71で熱交換した後、第1アキ
ュムレータへ導入する。このように、バイパス配管67
を流れる低温の二相冷媒により、高段側圧縮機である第
1圧縮機1の吸入冷媒ガスを冷却できるため、その吐出
温度上昇を防止でき、運転範囲を拡大することができ
る。図8は2段圧縮回路時の吐出温度対策であり、図
3、図5、図7の場合の2段圧縮時における高段側(第
1圧縮機)の吐出温度の上昇を防ぐためで、第1圧縮機
の吸入温度が低くなるように熱交換している。
When the difference between the condensing temperature and the evaporating temperature is relatively large when two or three temperatures are generated, when the two compressors are operated in series, the sixth opening / closing valve 30d is opened and the liquid pipe 64 is opened. A part of the liquid refrigerant inside is guided to the bypass pipe 67, is converted into a low-pressure low-temperature two-phase refrigerant by the capillary tube 32, is heat-exchanged with the suction refrigerant gas of the first compressor in the heat exchange section 71, and is then introduced into the first accumulator. . In this way, the bypass pipe 67
Since the low-temperature two-phase refrigerant flowing through the refrigerant can cool the suction refrigerant gas of the first compressor 1, which is the high-stage compressor, the discharge temperature can be prevented from rising and the operating range can be expanded. FIG. 8 shows a discharge temperature countermeasure at the time of the two-stage compression circuit. In order to prevent the discharge temperature from rising on the high stage side (first compressor) during the two-stage compression in the case of FIGS. 3, 5, and 7, Heat is exchanged so that the suction temperature of the first compressor becomes low.

【0088】なお、この実施例2では、バイパス配管6
7の流量制御器として毛細管32を用いたが、機械式や
電気式膨張弁を用いてそれぞれの運転条件でのバイパス
量を適正に制御し、吐出温度上昇をより正確に防止すれ
ば、運転範囲をさらに拡大することができる。
In the second embodiment, the bypass pipe 6
Although the capillary tube 32 is used as the flow rate controller of No. 7, if the bypass amount under each operating condition is properly controlled by using a mechanical or electric expansion valve, and if the discharge temperature rise is more accurately prevented, the operating range is increased. Can be further expanded.

【0089】また、上記実施例では3台の熱交換器51
a,51b,51cを用いた場合について説明したが、
4台以上の能力が異なる熱交換器の場合でも良く、しか
も第1圧縮機1及び第2圧縮機2のどちらか一方あるい
は両方を、周波数変換型、極数変換型、アンローダ型な
どの能力可変型圧縮機とすれば、設定飽和温度での冷媒
流量を可変にでき、各熱交換器で必要な能力を発揮する
ことができる。
In the above embodiment, three heat exchangers 51 are used.
The case of using a, 51b, 51c has been described,
It is also possible to use four or more heat exchangers having different capacities, and one or both of the first compressor 1 and the second compressor 2 may have a variable capacity such as frequency conversion type, pole number conversion type, and unloader type. With the type compressor, the flow rate of the refrigerant at the set saturation temperature can be varied, and the required capacity of each heat exchanger can be exhibited.

【0090】さらに、上記実施例では圧縮機が2台の場
合について説明したが、3台以上用いることにより、4
つ以上の飽和温度が設定でき、これらを並列もしくは単
独運転、または直列運転(二段圧縮運転)可能に接続し
て使い分けることにより、同様に高効率なサイクルが実
現できる。
Furthermore, in the above embodiment, the case where the number of compressors is two has been described, but by using three or more compressors,
It is possible to set three or more saturation temperatures, and by connecting these in parallel or in single operation or in series operation (two-stage compression operation) and using them properly, it is possible to realize a highly efficient cycle as well.

【0091】この発明の実施例1,2における蒸気圧縮
式冷凍サイクルによる多温度生成回路は、以上説明した
ように構成されているので、以下に記載されたような効
果を奏する。
Since the multi-temperature generation circuit by the vapor compression refrigeration cycle in the first and second embodiments of the present invention is configured as described above, it has the effects described below.

【0092】一端部が第1圧縮機の吐出側に、他端部が
開閉器を介して複数台の熱交換器に接続する第1高圧ガ
ス管、一端部が第1開閉器を介して第2圧縮機の吐出側
に、他端部が開閉器を介して上記複数台の熱交換器に接
続するとともに、途中で分岐して第2開閉器を介して上
記第1圧縮機の吸入側に接続する第2高圧ガス管、一端
部が上記第2圧縮機の吸入側に接続するとともに第3開
閉器を介して上記第1圧縮機の吸入側に接続し、他端部
が開閉器を介して上記複数台の熱交換器に接続する低圧
ガス管、複数台の熱交換器に冷媒流量制御器を介して接
続する液管、及び第4開閉器を介して上記第2圧縮機の
吐出側と上記第1圧縮機の吸入側とを連結し上記第2圧
縮機の吐出ガスを上記第1圧縮機に送給する圧縮機連通
管を設けて構成したので、冷暖房や給湯、氷蓄熱などの
各熱交換器に要求される機能に応じて、各熱交換器毎に
圧縮機台数より多い飽和温度が設定できる。また、凝縮
温度と蒸発温度の差が小さい時や大きい時で、複数台の
圧縮機の運転を使い分けることによって、高効率なサイ
クルが実現できる。また、冷房や氷蓄熱と暖房や給湯が
同時に運転されるときには、冷房や氷蓄熱の排熱が暖房
や給湯に利用することができるので、エネルギーの有効
利用ができる。
One end is a discharge side of the first compressor, the other end is a first high pressure gas pipe connected to a plurality of heat exchangers via a switch, and one end is a first high pressure gas pipe connected via a first switch. 2 On the discharge side of the compressor, the other end is connected to the plurality of heat exchangers via a switch, and branched on the way to the suction side of the first compressor via a second switch. A second high-pressure gas pipe to be connected, one end of which is connected to the suction side of the second compressor and which is connected to the suction side of the first compressor through a third switch and the other end of which is connected through a switch. A low-pressure gas pipe connected to the plurality of heat exchangers, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and a discharge side of the second compressor via a fourth switch. And a suction pipe of the first compressor, and a compressor communication pipe for sending the discharge gas of the second compressor to the first compressor. Because, air conditioning and hot water, depending on the functionality required to each heat exchanger, such as ice storage, can be set greater saturation temperature from the compressor number within each heat exchanger. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, a highly efficient cycle can be realized by selectively operating the plurality of compressors. Further, when cooling or ice heat storage and heating or hot water supply are operated at the same time, exhaust heat of cooling or ice heat storage can be used for heating or hot water supply, so that energy can be effectively used.

【0093】また、高圧ガス連通管を設けているので、
第2圧縮機の吐出ガスを第1圧縮機の吐出ガスに足せ、
凝縮(または蒸発)能力を向上できる。
Since a high pressure gas communication pipe is provided,
Add the discharge gas of the second compressor to the discharge gas of the first compressor,
The condensation (or evaporation) ability can be improved.

【0094】また、圧縮機の吸入側にアキュムレータを
設けているので、起動時や運転モード切換え時の圧縮機
への液戻りが防止でき、圧縮機が保護できるとともに、
冷媒量の調整が行える。
Further, since the accumulator is provided on the suction side of the compressor, it is possible to prevent the liquid from returning to the compressor at the time of starting or switching the operation modes, and protect the compressor.
The amount of refrigerant can be adjusted.

【0095】さらに、液管と第1アキュムレータとを第
6開閉弁と流量制御器を介してバイパス配管で接続し、
バイパス配管の流量制御器と第1アキュムレータとの間
の配管と第1圧縮機の吸入配管との間で熱交換を行う熱
交換部を設けたことにより、凝縮温度と蒸発温度の差が
比較的大きく、2台の圧縮機が直列運転となる場合に
は、高段側圧縮機の吸入冷媒ガスを冷却して、その吐出
温度上昇を防止し、運転範囲を拡大することができる。
Further, the liquid pipe and the first accumulator are connected by a bypass pipe via the sixth opening / closing valve and the flow rate controller,
By providing the heat exchange section for exchanging heat between the pipe between the flow controller of the bypass pipe and the first accumulator and the suction pipe of the first compressor, the difference between the condensation temperature and the evaporation temperature is relatively small. When the two compressors are operated in series, it is possible to cool the intake refrigerant gas of the high-stage compressor to prevent its discharge temperature from rising and to expand the operating range.

【0096】そして、第1または第2圧縮機を能力可変
型圧縮機とすることにより、設定飽和温度での冷媒流量
を可変にでき、各熱交換器で必要な能力を発揮すること
ができる。
By using the variable capacity compressor as the first or second compressor, the flow rate of the refrigerant at the set saturation temperature can be made variable, and the required capacity of each heat exchanger can be exhibited.

【0097】実施例3.以下、この発明の実施例3を図
9〜図11に基づいて説明する。図9はこの発明の一実
施例を示すn=4として4つの飽和温度を生成するため
の一般的な冷媒回路の構成図である。図において1〜3
はそれぞれ第1、第2、第3圧縮機、20a〜20d,
4a〜4dはそれぞれの圧縮機を接続する吸入側及び吐
出側の開閉弁、5は一端部が第1圧縮機1の吐出配管1
5に、他端部が開閉弁26a〜26dを介して第1〜第
4熱交換器51a〜51dのそれぞれに接続された第1
ガス管、6は一端部が第2圧縮機2の吐出配管14ある
いは第1圧縮機1の吸入配管18に、他端部が開閉弁2
7a〜27dを介して第1〜第4の熱交換器51a〜5
1dのそれぞれに接続された第2ガス管、7は一端部が
第3圧縮機3の吐出配管13あるいは第2圧縮機2の吸
入配管17に、他端部が開閉弁28a〜28dを介して
第1〜第4熱交換器51a〜51dのそれぞれに接続さ
れた第3ガス管、8は一端部が第3圧縮機3の吸入配管
16に、他端部が開閉弁29a〜29dを介して第1〜
第4の熱交換器51a〜51dのそれぞれに接続された
第4ガス管である。64は上記熱交換器51a〜51d
のそれぞれに冷媒流量制御弁31a〜31dを介して接
続された液管である。
Example 3. The third embodiment of the present invention will be described below with reference to FIGS. FIG. 9 is a block diagram of a general refrigerant circuit for generating four saturation temperatures with n = 4 showing an embodiment of the present invention. 1-3 in the figure
Are the first, second and third compressors 20a to 20d,
4a to 4d are on-off valves on the suction side and the discharge side for connecting the respective compressors, and 5 is a discharge pipe 1 of the first compressor 1 at one end.
5, the first end of which the other end is connected to each of the first to fourth heat exchangers 51a to 51d via the on-off valves 26a to 26d.
One end of the gas pipe 6 is the discharge pipe 14 of the second compressor 2 or the suction pipe 18 of the first compressor 1, and the other end is the open / close valve 2
The first to fourth heat exchangers 51 a to 5 via 7 a to 27 d
The second gas pipe 7 connected to each of 1d has one end connected to the discharge pipe 13 of the third compressor 3 or the suction pipe 17 of the second compressor 2 and the other end connected to the on-off valves 28a to 28d. A third gas pipe connected to each of the first to fourth heat exchangers 51a to 51d, one end of the third gas pipe 8 to the suction pipe 16 of the third compressor 3 and the other end of the third gas pipe 8 to the on-off valves 29a to 29d. First to
It is the 4th gas pipe connected to each of the 4th heat exchangers 51a-51d. 64 is the heat exchangers 51a to 51d
Is a liquid pipe connected to each of these via the refrigerant flow control valves 31a to 31d.

【0098】次にこの回路の動作について説明する。4
つの飽和温度を自由に得ることができ、種々の組合せの
回路が可能となるが、ここでは代表例として3凝縮1蒸
発及び2凝縮2蒸発の飽和温度を得ることができる回路
の動作について説明する。図10は3凝縮1蒸発を得る
ことができる回路の運転動作状態を示す説明図である。
ここで、51a〜51cは第1〜第3凝縮器、51dは
蒸発器として作用するものとする。図中、開閉弁が閉止
状態の場合塗りつぶしている。矢印で冷媒の流れを示
す。第1圧縮機1から吐出された高温・高圧冷媒ガスは
第1ガス管5に流入し、開閉弁26aを通って第1凝縮
器である熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は冷媒流量制御弁31aを通って液管64に流
入する。
Next, the operation of this circuit will be described. Four
One saturation temperature can be freely obtained, and various combinations of circuits are possible. Here, the operation of the circuit that can obtain the saturation temperatures of 3 condensation 1 evaporation and 2 condensation 2 evaporation will be described as a typical example. . FIG. 10: is explanatory drawing which shows the driving | running operation state of the circuit which can obtain 3 condensation 1 evaporation.
Here, 51a to 51c act as first to third condensers, and 51d acts as an evaporator. In the figure, it is filled when the on-off valve is closed. The arrow indicates the flow of the refrigerant. The high temperature / high pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, passes through the on-off valve 26a, flows into the heat exchanger 51a which is the first condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a.

【0099】同様に、第2、第3圧縮機2,3のそれぞ
れから吐出された高温・高圧ガス冷媒は、それぞれ開閉
弁4b,4dを経て第2、第3ガス管6,7に流入し、
それぞれ、開閉弁27b,28cを通って第2、第3凝
縮器である熱交換器51b,51cに流入し、凝縮液化
される。熱交換器51b,51cのそれぞれで凝縮液化
した液冷媒は冷媒流量制御弁31b,31cを通って液
管64に流入し、熱交換器51aからの液冷媒と合流す
る。この3つの熱交換器51a〜51cから合流した液
冷媒は、冷媒流量制御弁31dを通って低圧の二相状態
となって熱交換器51dに流入し、蒸発ガス化される。
このガス冷媒は第4ガス管8を通って第1、第2、第3
圧縮機に吸入される。このように、この運転モードで
は、熱交換器51aで第1の凝縮温度、51bで第2の
凝縮温度、51cで第3の凝縮温度が、51dで蒸発温
度が得られる。図11は、2凝縮・2蒸発を得ることが
できる回路の運転動作状態を示す説明図である。ここ
で、51a,51bは第1、第2凝縮器、51c,51
dは第1、第2の蒸発器作用するものとする。図11も
同様、図中開閉弁が閉状態の場合塗りつぶしている。矢
印で冷媒の流れを示す。
Similarly, the high temperature / high pressure gas refrigerant discharged from each of the second and third compressors 2 and 3 flows into the second and third gas pipes 6 and 7 through the on-off valves 4b and 4d, respectively. ,
Each of them flows through the on-off valves 27b and 28c into the heat exchangers 51b and 51c, which are the second and third condensers, and is condensed and liquefied. The liquid refrigerant condensed and liquefied in each of the heat exchangers 51b and 51c flows into the liquid pipe 64 through the refrigerant flow control valves 31b and 31c, and joins with the liquid refrigerant from the heat exchanger 51a. The liquid refrigerant joined from the three heat exchangers 51a to 51c passes through the refrigerant flow control valve 31d to be in a low-pressure two-phase state, flows into the heat exchanger 51d, and is vaporized and gasified.
This gas refrigerant passes through the fourth gas pipe 8 and is passed through the first, second and third gas pipes.
Inhaled into the compressor. Thus, in this operation mode, the heat exchanger 51a obtains the first condensing temperature, 51b the second condensing temperature, 51c the third condensing temperature, and 51d the evaporating temperature. FIG. 11 is an explanatory diagram showing a driving operation state of a circuit capable of obtaining 2 condensation / 2 evaporation. Here, 51a and 51b are first and second condensers, 51c and 51b.
d acts on the first and second evaporators. Similarly in FIG. 11, when the on-off valve is closed in the figure, it is painted out. The arrow indicates the flow of the refrigerant.

【0100】第1圧縮機1から吐出される高温・高圧ガ
ス冷媒と、第2圧縮機から吐出された高温・高圧ガス冷
媒は合流して第1ガス管5に流入し、開閉弁26aを通
って第1凝縮器である熱交換器51aに流入し、凝縮液
化される。この液冷媒は冷媒流量制御弁31aを通って
液管64に流入する。一方、第3圧縮機3から吐出され
た高温・高圧ガス冷媒は第3ガス管7に流入し、開閉弁
28bを通って第2凝縮器である熱交換器51bに流入
し、凝縮液化される。この液冷媒は冷媒流量制御弁31
bを通って液管64に流入し熱交換器51aからの液冷
媒と合流する。この合流した液冷媒の一部は冷媒流量制
御弁31cを通って低圧の二相状態となり第1蒸発器で
ある熱交換器51cに流入し蒸発ガス化される。このガ
ス冷媒は第2ガス管6を通って、第1圧縮機の吸入配管
18を経て第1、第2圧縮機に吸入される。一方、残り
の液冷媒は冷媒流量制御弁31dを通って低圧二相状態
となり、第2蒸発器である熱交換器51dに流入し、蒸
発ガス化される。このガス冷媒は、第4ガス管8を通っ
て第3圧縮機に吸入される。
The high temperature / high pressure gas refrigerant discharged from the first compressor 1 and the high temperature / high pressure gas refrigerant discharged from the second compressor merge into the first gas pipe 5 and pass through the on-off valve 26a. Flow into the heat exchanger 51a which is the first condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a. On the other hand, the high-temperature / high-pressure gas refrigerant discharged from the third compressor 3 flows into the third gas pipe 7, passes through the on-off valve 28b, flows into the heat exchanger 51b that is the second condenser, and is condensed and liquefied. . This liquid refrigerant is the refrigerant flow control valve 31.
It flows into the liquid pipe 64 through b and merges with the liquid refrigerant from the heat exchanger 51a. A part of the combined liquid refrigerant passes through the refrigerant flow control valve 31c to be in a low-pressure two-phase state and flows into the heat exchanger 51c which is the first evaporator to be vaporized and gasified. This gas refrigerant passes through the second gas pipe 6 and is sucked into the first and second compressors through the suction pipe 18 of the first compressor. On the other hand, the remaining liquid refrigerant passes through the refrigerant flow rate control valve 31d to be in a low-pressure two-phase state, flows into the heat exchanger 51d which is the second evaporator, and is evaporated and gasified. The gas refrigerant is drawn into the third compressor through the fourth gas pipe 8.

【0101】このようにこの運転モードでは、熱交換器
51aで第1の凝縮温度、51bで第2の凝縮温度が、
51cで第1の蒸発温度が、51dで第2の蒸発温度が
得られる。なお、吸入側開閉弁20a〜20d、吐出側
開閉弁4a〜4dの数、位置及びガス管5〜7と吸入配
管16〜18、吐出配管13〜15との接続の有無につ
いては、どういう運転モードを実現したいかによって異
なってくる。また、実現する運転モードにおいて逆止弁
への置き換えも可能である。さらに接続される熱交換器
の数も実施例では4つになっているが、これ以上増やし
ても特に問題はない。なお、一つの飽和温度の範囲は、
圧縮機吐出から凝縮器出口(凝縮温度)、もしくは蒸発
器入口から圧縮機吸入(蒸発温度)までである。すなわ
ち、圧縮機吐出側−ガス管−熱交換器−減圧手段もしく
は圧縮機吸入側−ガス管熱交換器−減圧手段をいってい
る。
As described above, in this operation mode, the first condensing temperature at the heat exchanger 51a and the second condensing temperature at 51b are
A first evaporation temperature is obtained at 51c, and a second evaporation temperature is obtained at 51d. In addition, regarding the number and position of the suction side opening / closing valves 20a to 20d and the discharge side opening / closing valves 4a to 4d, and whether or not the gas pipes 5 to 7 are connected to the suction pipes 16 to 18 and the discharge pipes 13 to 15, what operation mode is selected? It depends on how you want to realize. In addition, it is possible to replace with a check valve in the realized operation mode. Further, although the number of heat exchangers connected is four in the embodiment, there is no particular problem even if the number is further increased. In addition, one saturation temperature range is
From the compressor discharge to the condenser outlet (condensation temperature) or from the evaporator inlet to the compressor suction (evaporation temperature). That is, the term "compressor discharge side-gas tube-heat exchanger-pressure reducing means" or the compressor suction side-gas tube heat exchanger-pressure reducing means is used.

【0102】実施例4.次に実施例2について図12,
13に基づいて説明する。図12は3つの飽和温度の生
成、特に2凝縮1蒸発温度(無論1凝縮1蒸発も可能)
が複雑な構成とすることなく実現できる冷媒回路構成図
の一実施例である。図において1,2は第1、第2の圧
縮機、5は一端部が第1の逆止弁52を介して上記第1
圧縮機1の吐出側に、他端部が開閉弁26a〜26dを
介して第1〜第3の熱交換器51a〜51cに接続され
た第1ガス管、6は一端部が上記第2圧縮機2の吐出側
に、他端部が開閉弁27a〜27cを介して第1〜第3
の熱交換器51a〜51cに接続された第2ガス管、7
は一端部がアキュムレータ56の吸入側に、他端部が開
閉弁28a〜28cを介して第1〜第3熱交換器51a
〜51cに接続された第3ガス管、64は上記第1〜第
3の熱交換器51a〜51cのそれぞれに冷媒流量制御
弁31a〜31cを介して接続された液管である。ま
た、上記アキュムレータ56の吐出側と第1、第2の圧
縮機1,2の吸入側とをそれぞれ第2、第3の逆止弁5
4,55を介して個々に接続し、さらに、上記第1ガス
管5の第1の逆止弁52の出口側の配管と第2ガス管6
とを第1開閉弁53を介して連通させている。なお、本
実施例ではアキュムレータが1つであり、1蒸発運転が
原則となり、もし2蒸発の場合はそれぞれの圧縮機にア
キュムレータを設ければよい。次に、この回路の動作に
ついて説明する。図13は2凝縮1蒸発温度を得ること
ができる回路の運転動作状態を示す説明図である。ここ
で51a,51bは第1、第2凝縮器、51cは蒸発器
として作用するものとする。図中、開閉弁が閉止状態の
場合塗りつぶしている。矢印で冷媒の流れを示す。
Example 4. Next, regarding Example 2, FIG.
13 will be described. Fig. 12 shows the generation of three saturation temperatures, especially 2 condensation 1 evaporation temperatures (of course 1 condensation 1 evaporation is also possible)
2 is an example of a refrigerant circuit configuration diagram that can be realized without a complicated configuration. In the figure, reference numerals 1 and 2 denote first and second compressors, and one end portion of the first and second compressors 5 is connected to the first check valve 52 through the first check valve 52.
On the discharge side of the compressor 1, the other end is a first gas pipe connected to the first to third heat exchangers 51a to 51c via the on-off valves 26a to 26d, and one end of the 6 is the second compression pipe. On the discharge side of the machine 2, the other end is connected to the first to the third through the opening / closing valves 27a to 27c.
Second gas pipe connected to the heat exchangers 51a to 51c of
Has one end on the suction side of the accumulator 56 and the other end via the on-off valves 28a to 28c to the first to third heat exchangers 51a.
To 51c, a third gas pipe, and 64 is a liquid pipe connected to each of the first to third heat exchangers 51a to 51c via refrigerant flow control valves 31a to 31c. Further, the discharge side of the accumulator 56 and the suction sides of the first and second compressors 1 and 2 are connected to the second and third check valves 5 respectively.
4, 55, and the second gas pipe 6 and the pipe of the first gas pipe 5 on the outlet side of the first check valve 52.
And are communicated with each other via the first opening / closing valve 53. In this embodiment, the number of accumulators is one, and one evaporation operation is a principle, and in the case of two evaporations, each compressor may be provided with an accumulator. Next, the operation of this circuit will be described. FIG. 13 is an explanatory diagram showing a driving operation state of a circuit capable of obtaining 2 condensation 1 evaporation temperatures. Here, 51a and 51b act as first and second condensers, and 51c acts as an evaporator. In the figure, it is filled when the on-off valve is closed. The arrow indicates the flow of the refrigerant.

【0103】第1圧縮機1から吐出された高温高圧冷媒
ガスは第1の逆止弁52を経て、第1ガス管5に流入
し、開閉弁26aを通って第1凝縮器である熱交換器5
1aに流入し、凝縮液化される。この液冷媒は冷媒流量
制御弁31aを通って液管64に流入する。一方、第2
圧縮機2から吐出された高温高圧冷媒ガスは第2ガス管
6に流入し、開閉弁27bを通って第2凝縮器である熱
交換器51bに流入し、凝縮液化される。この液冷媒
は、冷媒流量制御弁31bを通って液管64に流入し、
第1凝縮器である熱交換器51aからの液冷媒と合流す
る。この合流した液冷媒は、冷媒流量制御弁31cを通
って低圧の二相状態となって熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、第3ガス管7を通
ってアキュムレータ56を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで第1の凝縮温度が、熱交換器51
bで第2の凝縮温度が、熱交換器51cで蒸発温度が得
られる。ここで、第1の開閉弁53は、2凝縮と1凝縮
との運転の切換えに使用する。(1凝縮の場合、開状
態) また、第1の逆止弁52は1凝縮運転において、負荷が
小さくなり、第1圧縮機1停止時、第2圧縮機2から第
1圧縮機1への冷媒の流入を防ぐためにある。第2、第
3の逆止弁54,55は、第1、第2圧縮機1,2停止
時、それぞれの吐出から吸入への冷媒の洩れを防止する
ためにある。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5 through the first check valve 52, passes through the open / close valve 26a, and is the first condenser heat exchange. Bowl 5
It flows into 1a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a. Meanwhile, the second
The high-temperature high-pressure refrigerant gas discharged from the compressor 2 flows into the second gas pipe 6, passes through the on-off valve 27b, flows into the heat exchanger 51b that is the second condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31b,
It joins with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant flows into the heat exchanger 51c through the refrigerant flow control valve 31c in a low-pressure two-phase state.
Evaporative gasification. This gas refrigerant passes through the third gas pipe 7 and the accumulator 56, and then passes through the first compressor 1 and the second compressor 1.
It is sucked into the compressor 2. As described above, in this operation mode, the first condensing temperature in the heat exchanger 51a is
The second condensation temperature is obtained at b, and the evaporation temperature is obtained at the heat exchanger 51c. Here, the first on-off valve 53 is used to switch the operation between the 2 condensation and the 1 condensation. (In the case of one condensation, the open state) In addition, the load of the first check valve 52 is reduced in one condensation operation, and when the first compressor 1 is stopped, the first check valve 52 moves from the second compressor 2 to the first compressor 1. This is to prevent the inflow of refrigerant. The second and third check valves 54 and 55 are provided to prevent the leakage of the refrigerant from the discharge to the suction when the first and second compressors 1 and 2 are stopped.

【0104】実施例5.次に実施例5について図14〜
図24に基づいて説明する。図14は2凝縮1蒸発の3
温度生成回路の給湯ヒートポンプへの利用を図った冷媒
回路の構成図の一実施例である。図において基本構成は
実施例4と同じであり、相違点のみ記述する。ガス管5
〜7、液管64に接続される熱交換器は、57が給湯用
熱交換器、58が風呂の湯の追焚き用熱交換器、59が
室内熱交換器、60は室外熱交換器である。
Example 5. Next, FIG. 14 to FIG.
It will be described with reference to FIG. Figure 14 shows 2 condensation 1 evaporation 3
It is an example of a block diagram of a refrigerant circuit intended for use in a hot water supply heat pump of a temperature generation circuit. In the figure, the basic configuration is the same as that of the fourth embodiment, and only different points will be described. Gas pipe 5
~ 7, the heat exchanger connected to the liquid pipe 64, 57 is a hot water supply heat exchanger, 58 is a bath water reheating heat exchanger, 59 is an indoor heat exchanger, 60 is an outdoor heat exchanger is there.

【0105】第1ガス管5は開閉弁26a,26b,2
6dを介して給湯用熱交換器57、追焚き用熱交換器5
8、室外熱交換器60に接続されている。第2ガス管6
は開閉弁27c,27dを介して室内熱交換器59、室
外熱交換器60に接続されている。次に動作について説
明する。図15〜図24は主要な運転動作状態を示す説
明図である。図中、開閉弁が閉止状態の場合、塗りつぶ
している。矢印で冷媒の流れを示す。
The first gas pipe 5 is provided with open / close valves 26a, 26b, 2
Heat exchanger 57 for hot water supply and heat exchanger 5 for additional heating via 6d
8. Connected to the outdoor heat exchanger 60. Second gas pipe 6
Is connected to the indoor heat exchanger 59 and the outdoor heat exchanger 60 via the on-off valves 27c and 27d. Next, the operation will be described. 15 to 24 are explanatory views showing main driving operation states. In the figure, when the on-off valve is closed, it is filled. The arrow indicates the flow of the refrigerant.

【0106】図15は、冷房運転時の動作状態を示す説
明図である。図において、第1圧縮機1から吐出された
高温高圧冷媒ガスは第1の逆止弁22及び第1の開閉弁
23を経て、第2ガス管6で第2圧縮機2から吐出され
た高温高圧冷媒ガスと合流し、開閉弁27dを通って室
外熱交換器60に流入し、凝縮液化される。この液冷媒
は、冷媒流量制御弁31dを通って液管64に流入し、
冷媒流量制御弁31cを通って低圧の二相状態となって
室内熱交換器59へ流入し、蒸発ガス化される。このガ
ス冷媒は、第3ガス管7を通ってアキュムレータ56を
経て、第1圧縮機1及び第2圧縮機2に吸入される。こ
のように、この運転モードでは、室外熱交換器60で凝
縮温度が、室内熱交換器59で蒸発温度が得られる。次
に、暖房運転時の動作状態について図16に基づいて説
明する。
FIG. 15 is an explanatory diagram showing the operating state during the cooling operation. In the figure, the high-temperature high-pressure refrigerant gas discharged from the first compressor 1 passes through the first check valve 22 and the first on-off valve 23, and the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 through the second gas pipe 6. It merges with the high-pressure refrigerant gas, flows into the outdoor heat exchanger 60 through the on-off valve 27d, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31d,
After passing through the refrigerant flow control valve 31c, a low-pressure two-phase state flows into the indoor heat exchanger 59, where it is vaporized and gasified. This gas refrigerant is drawn into the first compressor 1 and the second compressor 2 through the third gas pipe 7 and the accumulator 56. Thus, in this operation mode, the outdoor heat exchanger 60 obtains the condensation temperature and the indoor heat exchanger 59 obtains the evaporation temperature. Next, the operating state during the heating operation will be described based on FIG.

【0107】第1圧縮機1から吐出された高温高圧冷媒
ガスは第1の逆止弁52、第1の開閉弁53を経て、第
2ガス管6で第2圧縮機2から吐出された高温高圧冷媒
ガスと合流し、開閉弁27cを通って室内熱交換器59
に流入し、凝縮液化される。この液冷媒は、冷媒流量制
御弁31cを通って液管64に流入し、冷媒流量制御弁
31dを通って低圧の二相状態となって室外熱交換器6
0へ流入し、蒸発ガス化される。このガス冷媒は、第3
ガス管7を通ってアキュムレータ56を経て、第1圧縮
機1及び第2圧縮機2に吸入される。このように、この
運転モードでは、室内熱交換器59で凝縮温度が、室外
熱交換器60で蒸発温度が得られる。次に、給湯運転時
の動作状態について図17に基づいて説明する。第1圧
縮機1から吐出された高温高圧冷媒ガスは第1の逆止弁
52を経て、第1ガス管5に流入し、開閉弁26aを通
って給湯用熱交換器57に流入し、水を加熱し凝縮液化
される。この液冷媒は、冷媒流量制御弁31aを通って
液管64に流入し、冷媒流量制御弁31dを通って低圧
の二相状態となって室外熱交換器60へ流入し、蒸発ガ
ス化される。このガス冷媒は、第3ガス管7を通ってア
キュムレータ56を経て、第1圧縮機1に吸入される。
このように、この運転モードでは、給湯用熱交換器57
で凝縮温度が、室外熱交換器60で蒸発温度が得られ
る。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 passes through the first check valve 52 and the first on-off valve 53, and the high-temperature refrigerant discharged from the second compressor 2 through the second gas pipe 6. The indoor heat exchanger 59 merges with the high-pressure refrigerant gas and passes through the on-off valve 27c.
And is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow rate control valve 31c, passes through the refrigerant flow rate control valve 31d, and becomes a low-pressure two-phase state.
It flows into 0 and is vaporized and gasified. This gas refrigerant is
It is sucked into the first compressor 1 and the second compressor 2 through the gas pipe 7 and the accumulator 56. Thus, in this operation mode, the indoor heat exchanger 59 obtains the condensation temperature and the outdoor heat exchanger 60 obtains the evaporation temperature. Next, the operating state during the hot water supply operation will be described based on FIG. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5 via the first check valve 52, flows into the hot water heat exchanger 57 through the opening / closing valve 26a, and water Is heated to be condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow rate control valve 31a, flows into the outdoor heat exchanger 60 in a low-pressure two-phase state through the refrigerant flow rate control valve 31d, and is vaporized and gasified. . This gas refrigerant is drawn into the first compressor 1 through the third gas pipe 7 and the accumulator 56.
Thus, in this operation mode, the hot water supply heat exchanger 57 is
To obtain the condensation temperature, and the outdoor heat exchanger 60 to obtain the evaporation temperature.

【0108】次に、冷房給湯運転時の動作状態について
図18に基づいて説明する。第2圧縮機2から吐出され
た高温高圧冷媒ガスは第1の逆止弁52、第1の開閉弁
53を経て、第1ガス管5で第1圧縮機1から吐出され
た高温高圧冷媒ガスと合流し、開閉弁26aを通って給
湯用熱交換器57に流入し、凝縮液化される。この液冷
媒は、冷媒流量制御弁31aを通って液管64に流入
し、冷媒流量制御弁31cを通って低圧の二相状態とな
って室内熱交換器59へ流入し、蒸発ガス化される。こ
のガス冷媒は、第3ガス管7を通ってアキュムレータ5
6を経て、第1圧縮機1及び第2圧縮機2に吸入され
る。このように、この運転モードでは、給湯用熱交換器
57で凝縮温度が、室内熱交換器59で蒸発温度が得ら
れる。また、冷房を行いながらの給湯運転であるため、
夏場は給湯の負荷が小さく、冷房運転時の給湯のみで負
荷がまかなえるかで、給湯としての電気料金は冷房に含
まれるためにほとんど不用となる。次に、暖房・給湯運
転時の動作状態について図19に基づいて説明する。第
1圧縮機1から吐出された高温高圧冷媒ガスは、第1ガ
ス管5に流入し、開閉弁26aを通って給湯用熱交換器
57に流入し、凝縮液化される。この液冷媒は、冷媒流
量制御弁31aを通って液管64に流入する。一方、第
2圧縮機2から吐出された高温高圧冷媒ガスは、第2ガ
ス管6に流入し、開閉弁27cを通って室内熱交換器5
9に流入し、凝縮液化される。この液冷媒は、冷媒流量
制御弁31cを通って液管64に流入し、給湯用熱交換
器57からの液冷媒と合流する。この合流した液冷媒
は、冷媒流量制御弁31dを通って低圧の二相状態とな
って室外熱交換器60へ流入し、蒸発ガス化される。こ
のガス冷媒は、第3ガス管7を通ってアキュムレータ5
6を経て、第1圧縮機1及び第2圧縮機2に吸入され
る。このように、この運転モードでは、給湯用熱交換器
57で第1の凝縮温度が、室内熱交換器59で第2の凝
縮温度が、室外熱交換器60で蒸発温度が得られる。以
上説明したように、2つのコンプレッサーの使い分けに
より、暖房、給湯ともそれに適した凝縮温度を生成でき
るため、暖房能力の低下を招くことなく、給湯運転が実
現できることになる。
Next, the operating state during the cooling hot water supply operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 passes through the first check valve 52 and the first on-off valve 53, and the high-temperature high-pressure refrigerant gas discharged from the first compressor 1 through the first gas pipe 5. And flows into the hot water supply heat exchanger 57 through the on-off valve 26a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow rate control valve 31a, enters the indoor heat exchanger 59 in a low-pressure two-phase state through the refrigerant flow rate control valve 31c, and is vaporized and gasified. . The gas refrigerant passes through the third gas pipe 7 and the accumulator 5
It is sucked into the first compressor 1 and the second compressor 2 via 6. Thus, in this operation mode, the condensing temperature is obtained by the hot water supply heat exchanger 57 and the evaporation temperature is obtained by the indoor heat exchanger 59. Also, since it is hot water supply operation while cooling,
In the summer, the load of hot water supply is small, and the load can be covered only by the hot water supply during cooling operation. Therefore, the electricity charge for hot water supply is almost unnecessary because it is included in cooling. Next, the operating state during the heating / hot water supply operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, passes through the on-off valve 26a, flows into the hot water supply heat exchanger 57, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the second gas pipe 6, passes through the on-off valve 27c, and the indoor heat exchanger 5
9 and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow rate control valve 31c and merges with the liquid refrigerant from the hot water supply heat exchanger 57. The combined liquid refrigerant flows into the outdoor heat exchanger 60 in a low-pressure two-phase state through the refrigerant flow control valve 31d, and is vaporized and gasified. The gas refrigerant passes through the third gas pipe 7 and the accumulator 5
It is sucked into the first compressor 1 and the second compressor 2 via 6. Thus, in this operation mode, the hot water supply heat exchanger 57 obtains the first condensation temperature, the indoor heat exchanger 59 obtains the second condensation temperature, and the outdoor heat exchanger 60 obtains the evaporation temperature. As described above, by properly using the two compressors, it is possible to generate a condensation temperature suitable for both heating and hot water supply, so that hot water supply operation can be realized without lowering the heating capacity.

【0109】次に、追焚き運転時の動作状態について図
20に基づいて説明する。第1圧縮機1から吐出された
高温高圧冷媒ガスは第1の逆止弁52を経て、第1ガス
管5に流入し、開閉弁26bを通って追焚き用熱交換器
58に流入し、凝縮液化される。この液冷媒は、冷媒流
量制御弁31bを通って液管64に流入し、冷媒流量制
御弁31dを通って低圧の二相状態となって室外熱交換
器60へ流入し、蒸発ガス化される。このガス冷媒は、
第3ガス管7を通ってアキュムレータ56を経て、第1
圧縮機1に吸入される。このように、この運転モードで
は、追焚き用熱交換器58で凝縮温度が、室外熱交換器
60で蒸発温度が得られる。以上説明したように、浴槽
内の湯をヒートポンプ運転により、暖めることが可能と
なる。
Next, the operating state during the additional heating operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5 via the first check valve 52, flows into the reheating heat exchanger 58 through the on-off valve 26b, Condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow rate control valve 31b, enters the outdoor heat exchanger 60 in a low pressure two-phase state through the refrigerant flow rate control valve 31d, and is vaporized and gasified. . This gas refrigerant is
First through the accumulator 56 through the third gas pipe 7.
It is sucked into the compressor 1. Thus, in this operation mode, the condensing temperature is obtained by the reheating heat exchanger 58 and the evaporation temperature is obtained by the outdoor heat exchanger 60. As described above, the hot water in the bathtub can be warmed by the heat pump operation.

【0110】次に、給湯熱利用急速追焚き運転時の動作
状態について図21に基づいて説明する。第1圧縮機1
から吐出された高温高圧冷媒ガスは第1の逆止弁52を
経て、第1ガス管5に流入し、開閉弁26bを通って追
焚き用熱交換器58に流入し、凝縮液化される。この液
冷媒は、冷媒流量制御弁31bを通って液管64に流入
し、冷媒流量制御弁31aを通って低圧の二相状態とな
って給湯用熱交換器57へ流入し、蒸発ガス化される。
このガス冷媒は、第3ガス管7を通ってアキュムレータ
56を経て、第1圧縮機1に吸入される。このように、
この運転モードでは、追焚き用熱交換器58で凝縮温度
が、給湯用熱交換器57で蒸発温度が得られる。以上説
明したように、高温の熱を熱源として利用するので、外
気熱源に比べて大幅に能力が向上し、浴槽内のお湯を急
速に暖めることができる。
Next, the operating state during the hot water heating rapid reheating operation will be described with reference to FIG. First compressor 1
The high-temperature high-pressure refrigerant gas discharged from the above flows into the first gas pipe 5 through the first check valve 52, passes through the on-off valve 26b, flows into the reheating heat exchanger 58, and is condensed and liquefied. This liquid refrigerant flows through the refrigerant flow control valve 31b into the liquid pipe 64, passes through the refrigerant flow control valve 31a into a low-pressure two-phase state, flows into the hot water supply heat exchanger 57, and is vaporized and gasified. It
This gas refrigerant is drawn into the first compressor 1 through the third gas pipe 7 and the accumulator 56. in this way,
In this operation mode, the condensing temperature is obtained by the reheating heat exchanger 58 and the evaporation temperature is obtained by the hot water supply heat exchanger 57. As described above, since high-temperature heat is used as a heat source, the capacity is greatly improved as compared with the outside air heat source, and the hot water in the bathtub can be warmed rapidly.

【0111】次に、暖房・追焚き運転時の動作状態につ
いて図22に基づいて説明する。第1圧縮機1から吐出
された高温高圧冷媒ガスは、第1ガス管5に流入し、開
閉弁26bを通って追焚き用熱交換器58に流入し、凝
縮液化される。この液冷媒は、冷媒流量制御弁31bを
通って液管64に流入する。一方、第2圧縮機2から吐
出された高温高圧冷媒ガスは、第2ガス管6に流入し、
開閉弁27cを通って室内熱交換器59に流入し、凝縮
液化される。この液冷媒は、冷媒流量制御弁31cを通
って液管64に流入し、追焚き用熱交換器59からの液
冷媒と合流する。この合流した液冷媒は、冷媒流量制御
弁31dを通って低圧の二相状態となって室外熱交換器
60へ流入し、蒸発ガス化される。このガス冷媒は、第
3ガス管7を通ってアキュムレータ56を経て、第1圧
縮機1及び第2圧縮機2に吸入される。このように、こ
の運転モードでは、追焚き用熱交換器58で第1の凝縮
温度が、室内熱交換器59で第2の凝縮温度が、室外熱
交換器60で蒸発温度が得られる。暖房給湯運転と同
様、暖房能力の低下を招くことなく、追焚き運転が実現
できることになる。
Next, the operating state during the heating / heating operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, passes through the on-off valve 26b, flows into the reheating heat exchanger 58, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31b. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the second gas pipe 6,
It flows into the indoor heat exchanger 59 through the on-off valve 27c and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31c, and merges with the liquid refrigerant from the reheating heat exchanger 59. The combined liquid refrigerant flows into the outdoor heat exchanger 60 in a low-pressure two-phase state through the refrigerant flow control valve 31d, and is vaporized and gasified. This gas refrigerant is drawn into the first compressor 1 and the second compressor 2 through the third gas pipe 7 and the accumulator 56. As described above, in this operation mode, the first condensing temperature is obtained by the reheating heat exchanger 58, the second condensing temperature is obtained by the indoor heat exchanger 59, and the evaporation temperature is obtained by the outdoor heat exchanger 60. Similar to the heating and hot water supply operation, the reheating operation can be realized without lowering the heating capacity.

【0112】次に、浴槽内の残湯の熱回収利用給湯運転
時の動作状態について図23に基づいて説明する。第1
圧縮機1から吐出された高温高圧冷媒ガスは第1の逆止
弁52を経て、第1ガス管5に流入し、開閉弁26aを
通って給湯用熱交換器57に流入し、凝縮液化される。
この液冷媒は、冷媒流量制御弁31aを通って液管64
に流入し、冷媒流量制御弁31bを通って低圧の二相状
態となって追焚き用熱交換器58へ流入し、蒸発ガス化
される。このガス冷媒は、第3ガス管7を通ってアキュ
ムレータ56を経て、第1圧縮機1に吸入される。この
ように、この運転モードでは、給湯用熱交換器57で凝
縮温度が、追焚き用熱交換器58で蒸発温度が得られ
る。以上説明したように、無駄に捨てられる残湯の熱を
有効に給湯に利用できるので、外気熱源による給湯より
も省エネが実現できる。
Next, the operating state during the hot water supply operation for recovering heat of the residual hot water in the bathtub will be described with reference to FIG. First
The high-temperature high-pressure refrigerant gas discharged from the compressor 1 flows into the first gas pipe 5 through the first check valve 52, flows into the hot water heat exchanger 57 through the opening / closing valve 26a, and is condensed and liquefied. It
The liquid refrigerant passes through the refrigerant flow control valve 31a and the liquid pipe 64
Into a low-pressure two-phase state through the refrigerant flow control valve 31b, and then into the reheating heat exchanger 58, where it is vaporized and gasified. This gas refrigerant is drawn into the first compressor 1 through the third gas pipe 7 and the accumulator 56. As described above, in this operation mode, the condensing temperature is obtained by the hot water supply heat exchanger 57, and the evaporation temperature is obtained by the additional heating heat exchanger 58. As described above, the heat of the waste hot water that is wasted can be effectively used for hot water supply, so that energy saving can be realized compared to hot water supply by the outside air heat source.

【0113】最後に、給湯利用のデフロスト暖房運転時
の動作状態について図24に基づいて説明する。第1圧
縮機1から吐出された高温高圧冷媒ガスは、第1ガス管
5に流入し、開閉弁26dを通って室外熱交換器60に
流入し、凝縮液化し、その熱により霜を溶かす。この液
冷媒は、冷媒流量制御弁26dを通って液管64に流入
する。一方、第2圧縮機2から吐出された高温高圧冷媒
ガスは、第2ガス管6に流入し、開閉弁27cを通って
室内熱交換器59に流入し、凝縮液化される。この液冷
媒は、冷媒流量制御弁31cを通って液管64に流入
し、室外熱交換器60からの液冷媒と合流する。この合
流した液冷媒は、冷媒流量制御弁31aを通って低圧の
二相状態となって熱交換器57へ流入し、蒸発ガス化さ
れる。このガス冷媒は、第3ガス管7を通ってアキュム
レータ56を経て、第1圧縮機1及び第2圧縮機2に吸
入される。このように、この運転モードでは、室外熱交
換器60で第1の凝縮温度が、室内熱交換器59で第2
の凝縮温度が、給湯用熱交換器57で蒸発温度が得られ
る。以上説明したように、給湯の熱を熱源として利用で
きるため、暖房しながらのデフロスト運転が可能とな
り、しかも暖房・デフロストともそれぞれに最適な凝縮
温度が生成できるため暖房能力の低下も招くことはな
い。
Finally, the operating state during the defrost heating operation using hot water supply will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, passes through the open / close valve 26d and flows into the outdoor heat exchanger 60, is condensed and liquefied, and melts frost by the heat. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 26d. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the second gas pipe 6, passes through the on-off valve 27c, flows into the indoor heat exchanger 59, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31c and merges with the liquid refrigerant from the outdoor heat exchanger 60. The combined liquid refrigerant flows through the refrigerant flow control valve 31a into a low-pressure two-phase state, flows into the heat exchanger 57, and is vaporized and gasified. This gas refrigerant is drawn into the first compressor 1 and the second compressor 2 through the third gas pipe 7 and the accumulator 56. Thus, in this operation mode, the first condensing temperature in the outdoor heat exchanger 60 and the second condensing temperature in the indoor heat exchanger 59 are
The condensing temperature of is the evaporation temperature in the hot water supply heat exchanger 57. As described above, since the heat of the hot water supply can be used as a heat source, the defrost operation can be performed while heating, and the heating capacity is not deteriorated because optimal condensing temperatures can be generated for both heating and defrost. .

【0114】この発明の実施例3〜5における蒸気圧縮
式冷凍サイクルによる多温度生成回路は、以上のように
構成されているので、所望の運転モードに応じて各熱交
換器毎にn個の飽和温度の設定が可能となり、しかも高
効率で運転範囲の広いサイクルが実現できる効果があ
る。
Since the multi-temperature generation circuit by the vapor compression refrigeration cycle in Embodiments 3 to 5 of the present invention is configured as described above, n heat exchangers are provided for each heat exchanger according to the desired operation mode. The saturation temperature can be set, and moreover, there is an effect that a cycle with high efficiency and a wide operating range can be realized.

【0115】また、多温度生成回路は、以上のように構
成されているので2凝縮・1蒸発の運転モードを高効率
で実現できる効果がある。また、多温度生成回路は、以
上のように構成されているので、暖房能力の低下を招く
ことなく給湯や追焚き運転が同時に実現できるととも
に、給湯熱利用による浴槽内のお湯の急速追焚き運転、
ノンストップ暖房運転(デフロスト中にも暖房運転可
能)及び冷房排熱や風呂の残湯の熱回収による高効率給
湯運転が可能となるため、経済的(省エネ)で快適な住
生活を提供できる効果がある。
Further, since the multi-temperature generation circuit is constructed as described above, there is an effect that the operation modes of 2 condensation and 1 evaporation can be realized with high efficiency. Moreover, since the multi-temperature generation circuit is configured as described above, hot water supply and reheating operation can be realized at the same time without deteriorating the heating capacity, and hot water replenishment operation in the bathtub can be performed by using the heat from the hot water supply. ,
Non-stop heating operation (heating can be performed even during defrosting) and highly efficient hot water supply operation by recovering heat from cooling exhaust heat and residual hot water in the bath are possible, so that an economical (energy saving) and comfortable living life can be provided There is.

【0116】実施例6.図25はこの発明の実施例6の
蒸気圧縮式冷凍サイクルの冷媒系の構成図である。図に
おいて、1は第1圧縮機、2は第2圧縮機、11は第1
アキュムレータ、12は第2アキュムレータ、51a,
51b,51cは熱交換器である。61は第1圧縮機1
の吐出側に接続された第1高圧ガス管、62は第2圧縮
機2の吐出側に第1開閉弁21を介して接続された中圧
ガス管、63は第1圧縮機1吸入側に第1アキュムレー
タ11を介して接続された低圧ガス管、64は液管であ
る。第1圧縮機1と第1アキュムレータ11の間の配管
には第2開閉弁22と第1逆止弁41が設けられてい
る。23は第2圧縮機2と第1開閉弁21の間の配管と
高圧ガス管61とを接続する配管に設けられた第3開閉
弁、24は第2圧縮機2と第3開閉弁23の間の配管と
第2開閉弁22と第1逆止弁41の間の配管とを接続す
る配管に設けられた第4開閉弁、25は中圧ガス管62
と第2アキュムレータ12の間の配管に設けられた第5
開閉弁、42は第1圧縮機1と第2アキュムレータ12
の間の配管に設けられた第2逆止弁である。また熱交換
器51a,51b,51cには、高圧ガス管61、中圧
ガス管62、低圧ガス管63とは各々開閉弁26a,2
7a,28a及び26b,27b,28b及び26,2
7c,28cを介して分岐接続するとともに、液管64
が冷媒流量制御器である電子式膨張弁31a,31b,
31cをそれぞれ介して接続している。また、中圧ガス
管62から開閉弁30aを介して液管64へ至る第1の
バイパス路68と液管64から開閉弁30bを介して第
1圧縮機1の吸入側へ至る第2のバイパス路67を有し
ている。
Example 6. FIG. 25 is a configuration diagram of a refrigerant system of a vapor compression refrigeration cycle of Embodiment 6 of the present invention. In the figure, 1 is a first compressor, 2 is a second compressor, and 11 is a first compressor.
Accumulator, 12 is a second accumulator, 51a,
51b and 51c are heat exchangers. 61 is the first compressor 1
Is a first high pressure gas pipe connected to the discharge side of the second compressor, 62 is a medium pressure gas pipe connected to the discharge side of the second compressor 2 via the first on-off valve 21, and 63 is a suction side of the first compressor 1. A low pressure gas pipe connected via the first accumulator 11 and a liquid pipe 64. A second opening / closing valve 22 and a first check valve 41 are provided in a pipe between the first compressor 1 and the first accumulator 11. Reference numeral 23 denotes a third opening / closing valve provided in a pipe connecting the high pressure gas pipe 61 with the pipe between the second compressor 2 and the first opening / closing valve 21, and 24 denotes the second compressor 2 and the third opening / closing valve 23. A fourth on-off valve provided in the pipe connecting the second pipe and the pipe between the second on-off valve 22 and the first check valve 41, and 25 is the medium pressure gas pipe 62.
And a fifth pipe provided between the second accumulator 12 and the pipe.
An on-off valve, 42 is the first compressor 1 and the second accumulator 12
It is the 2nd check valve provided in the piping between. In the heat exchangers 51a, 51b, 51c, the high-pressure gas pipe 61, the medium-pressure gas pipe 62, and the low-pressure gas pipe 63 are connected to the open / close valves 26a, 2
7a, 28a and 26b, 27b, 28b and 26, 2
The liquid pipe 64 is connected while branching through 7c and 28c.
Are electronic expansion valves 31a, 31b, which are refrigerant flow controllers.
31c are connected to each other. Further, a first bypass passage 68 extending from the medium pressure gas pipe 62 to the liquid pipe 64 via the opening / closing valve 30a and a second bypass passage extending from the liquid pipe 64 to the suction side of the first compressor 1 via the opening / closing valve 30b. It has a path 67.

【0117】この発明の多温度生成回路には、表1に示
すような6つの運転モードがあり、図26〜31を用い
て説明する。
The multi-temperature generation circuit of the present invention has six operation modes as shown in Table 1, which will be described with reference to FIGS.

【0118】まず、図26の実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房あるいは暖房
時などに適用される。
First, using the explanatory diagram showing the operating state of the multi-temperature generation circuit of the embodiment shown in FIG. 26, at the time of generating two temperatures for generating one condensation temperature and one evaporation temperature, the condensation temperature and the evaporation temperature The operation when the difference between is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0119】図26では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30a,30bを閉
止状態(図中塗りつぶし)としている。第1圧縮機1、
第2圧縮機2は並列運転される。矢印で冷媒の流れを示
す。
FIG. 26 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops and the heat exchanger 51c operates as an evaporator. The first on-off valve 21 and the fourth on-off valve 2 are shown.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c, 30a, 30b are in a closed state (filled in the figure). The first compressor 1,
The second compressor 2 is operated in parallel. The arrow indicates the flow of the refrigerant.

【0120】第2圧縮機2から吐出された高温高圧冷媒
ガスは、高圧ガス連通管65を経て第1高圧ガス管61
で第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 and the first high-pressure gas pipe 61.
At this time, the high-temperature high-pressure refrigerant gas discharged from the first compressor 1 merges, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and the first compressor 1 and the second compressor 1.
It is sucked into the compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0121】次に、図27を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、この凝縮温
度と蒸発温度の差が比較的大きい場合の動作について説
明する。この運転モードは、例えば高温給湯や給湯+氷
蓄熱時などに適用される。図27では、熱交換器51a
が凝縮器、熱交換器51bが停止、熱交換器51cが蒸
発器として動作する例を示しており、第2開閉弁22、
第3開閉弁23、第4開閉弁24、第5開閉弁25、開
閉弁27a,28a,26b,27b,28b,26
c,27c開閉弁を閉止状態としている。
Next, with reference to FIG. 27, an operation will be described in the case where the two temperatures are generated to generate one condensation temperature and one evaporation temperature and the difference between the condensation temperature and the evaporation temperature is relatively large. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage. In FIG. 27, the heat exchanger 51a
Is a condenser, the heat exchanger 51b is stopped, and the heat exchanger 51c operates as an evaporator.
Third opening / closing valve 23, fourth opening / closing valve 24, fifth opening / closing valve 25, opening / closing valves 27a, 28a, 26b, 27b, 28b, 26
The c and 27c open / close valves are closed.

【0122】第2圧縮機2から吐出された冷媒ガスは、
第1開閉弁、中圧ガス管62、第1のバイパス路68、
第7開閉弁30aを通って液管64に入り、液管64内
の液と混合することによって冷却され、第2のバイパス
路67、第8の開閉弁30bを通って第1圧縮機1に吸
入される。第1の圧縮機1によってさらに圧縮された高
温高圧のガスは高圧ガス管61、開閉弁26aを通って
熱交換器51aに流入し、凝縮液化される。この液冷媒
は、電気式膨張弁31aを通って高圧二相冷媒となり、
液管64に流入する。液管内の液冷媒は電子式膨張弁3
1cを通って低圧の二相状態となって熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、開閉弁2
8cを介して、低圧ガス管63を通り、第1アキュムレ
ータ11を経て、第2圧縮機2に吸入される。このよう
に、この運転モードでは、二段圧縮運転となり、低段側
圧縮機である第2圧縮機2の吐出ガスを冷却して高段側
圧縮運転となり、低段側圧縮機である第2圧縮機2の吐
出ガスを冷却して高段側圧縮機である第1圧縮機1に吸
入させるため、その吐出温度上昇が防止でき、広い運転
範囲において、熱交換器51aでの凝縮温度が、熱交換
器51cで蒸発温度が得られる。
The refrigerant gas discharged from the second compressor 2 is
A first on-off valve, a medium pressure gas pipe 62, a first bypass passage 68,
The liquid enters into the liquid pipe 64 through the seventh on-off valve 30a, is cooled by being mixed with the liquid in the liquid pipe 64, and passes through the second bypass passage 67 and the eighth on-off valve 30b to reach the first compressor 1. Inhaled. The high-temperature and high-pressure gas further compressed by the first compressor 1 flows into the heat exchanger 51a through the high-pressure gas pipe 61 and the opening / closing valve 26a, and is condensed and liquefied. This liquid refrigerant passes through the electric expansion valve 31a to become a high-pressure two-phase refrigerant,
It flows into the liquid pipe 64. The liquid refrigerant in the liquid pipe is the electronic expansion valve 3
A low-pressure two-phase state is passed through 1c, flows into the heat exchanger 51c, and is vaporized and gasified. This gas refrigerant is used for the on-off valve 2
8c, the low pressure gas pipe 63, the first accumulator 11, and the second compressor 2. As described above, in this operation mode, the two-stage compression operation is performed, the discharge gas of the second compressor 2 that is the low-stage compressor is cooled, and the high-stage compression operation is performed, and the second-stage compressor that is the second-stage compression operation is performed. Since the discharge gas of the compressor 2 is cooled and sucked into the first compressor 1 that is the high-stage compressor, the discharge temperature can be prevented from rising, and the condensation temperature in the heat exchanger 51a can be reduced in a wide operating range. The evaporation temperature is obtained in the heat exchanger 51c.

【0123】次に図28のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、2つの凝縮温度
と1つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的低
い給湯運転時などに適用される。
Next, referring to FIG. 28, which is an explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment, the condensation temperature and the evaporation temperature are generated at the time of generating three temperatures for generating two condensation temperatures and one evaporation temperature. The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation.

【0124】図28では、熱交換器51aが第1凝縮
器、熱交換器51bが第2凝縮器、熱交換器51cが蒸
発器として動作する例を示しており、第3開閉弁23、
第4開閉弁24、第5開閉弁25、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 28 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. The third on-off valve 23,
Fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is closed (filled in the figure). The arrow indicates the flow of the refrigerant.

【0125】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a as the first condenser, and is condensed and liquefied. To be done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 through the first opening / closing valve 21, passes through the opening / closing valve 27b, and is the second condenser heat exchanger 51b. And is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant is used as an electric expansion valve 31c.
Through it to a low-pressure two-phase state, which flows into the heat exchanger 51c and is vaporized and gasified. This gas refrigerant is a low pressure gas pipe 6
After passing through 3, the first accumulator 11 is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0126】次に、図29を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図29では、熱交換器
51aが第1凝縮器、熱交換器51bが第2凝縮器、熱
交換器51cが蒸発器として動作する例を示しており、
第2開閉弁22、第3開閉弁23、第4開閉弁24、第
5開閉弁25、開閉弁27a,28a,26b,28
b,26c,27c開閉弁を閉止状態としている。
Next, referring to FIG. 29, two condensing temperatures and 1
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. FIG. 29 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator.
Second on-off valve 22, third on-off valve 23, fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28a, 26b, 28
b, 26c, 27c open / close valves are closed.

【0127】第2圧縮機2から吐出された冷媒ガスの一
部は、第1開閉弁21、中圧ガス管62、第1のバイパ
ス路68、第7開閉弁30aを通って液管64に入り、
液管64内の液と混合することによって冷却され、第2
のバイパス路67、第8の開閉弁30bを通って第1圧
縮機1に吸入される。第1の圧縮機1によってさらに圧
縮された高温高圧のガスは高圧ガス管61、開閉弁26
aを通って熱交換器51aに流入し、凝縮液化される。
この液冷媒は、電子式膨張弁31aを通って二相冷媒と
なり液管64に流入する。一方、第2圧縮機2から吐出
された冷媒ガスの残りは第1開閉弁21、中圧ガス管6
2、開閉弁27bを通って、第2凝縮器である熱交換器
51bに流入し、凝縮液化される。この液冷媒は、電子
式膨張弁31bを通って液管64に流入し、第1凝縮器
である熱交換器51aからの二相冷媒と合流する。この
合流した冷媒のうち、ガス冷媒は第1圧縮機1の吸入側
へ流れ、液冷媒は電子式膨張弁31cを通って低圧の二
相状態となって熱交換器51cへ流入し、蒸発ガス化さ
れる。このガス冷媒は、開閉弁28cを介して、低圧ガ
ス管63を通り、第1アキュムレータ11を経て、第2
圧縮機2に吸入される。このように、この運転モードで
は、低段側圧縮機である第2圧縮機2の吐出ガスを冷却
して高段側圧縮機である第1圧縮機1に吸入させるた
め、その吐出温度上昇が防止でき、広い運転範囲におい
て、熱交換器51aで第1の凝縮温度が、熱交換器51
bで第2の凝縮温度が、熱交換器51cで蒸発温度が得
られる。
A part of the refrigerant gas discharged from the second compressor 2 passes through the first opening / closing valve 21, the medium pressure gas pipe 62, the first bypass passage 68, and the seventh opening / closing valve 30a to the liquid pipe 64. enter,
It is cooled by mixing with the liquid in the liquid pipe 64, and the second
It is sucked into the first compressor 1 through the bypass path 67 and the eighth opening / closing valve 30b. The high-temperature and high-pressure gas further compressed by the first compressor 1 is the high-pressure gas pipe 61, the on-off valve 26.
It flows into the heat exchanger 51a through a and is condensed and liquefied.
This liquid refrigerant becomes a two-phase refrigerant through the electronic expansion valve 31a and flows into the liquid pipe 64. On the other hand, the rest of the refrigerant gas discharged from the second compressor 2 is the first on-off valve 21 and the medium pressure gas pipe 6.
2. Through the on-off valve 27b, it flows into the heat exchanger 51b which is the second condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31b, and joins with the two-phase refrigerant from the heat exchanger 51a which is the first condenser. Of the combined refrigerant, the gas refrigerant flows to the suction side of the first compressor 1, and the liquid refrigerant flows through the electronic expansion valve 31c into a low-pressure two-phase state and then flows into the heat exchanger 51c to evaporate gas. Be converted. This gas refrigerant passes through the low-pressure gas pipe 63 through the opening / closing valve 28c, the first accumulator 11, and the second accumulator 11.
It is sucked into the compressor 2. As described above, in this operation mode, the discharge gas of the second compressor 2 that is the low-stage compressor is cooled and sucked into the first compressor 1 that is the high-stage compressor, so that the discharge temperature rises. In the wide operating range that can be prevented, the first condensing temperature in the heat exchanger 51a is
The second condensation temperature is obtained at b, and the evaporation temperature is obtained at the heat exchanger 51c.

【0128】次に図30のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と2つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱運転時な
どに適用される。
Next, with reference to the explanatory view showing the operating state of the multi-temperature generation circuit of this embodiment in FIG. 30, at the time of generating three temperatures for generating one condensation temperature and two evaporation temperatures, the condensation temperature and the evaporation The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during cooling + ice heat storage operation.

【0129】図30では、熱交換器51aが凝縮器、熱
交換器51bが第1蒸発器、熱交換器51cが第2蒸発
器として動作する例を示しており、第1開閉弁21、第
2開閉弁22、第4開閉弁24、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 30 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 2 on-off valve 22, 4th on-off valve 24, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is closed (filled in the figure). The arrow indicates the flow of the refrigerant.

【0130】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第2圧縮機2の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し、蒸発ガス化される。この
ガス冷媒は、第2高圧ガス管62を通って第5開閉弁2
5、第2アキュムレータ12、第2逆止弁を経て、第1
圧縮機1に吸入される。一方、液管64に流入した残り
の液冷媒は、電気式膨張弁31cを通って低圧の二相状
態となって第2蒸発器である熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、低圧ガス管63を
通って第1アキュムレータ11を経て、第2圧縮機2に
吸入される。このように、この運転モードでは、熱交換
器51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 passes through the third on-off valve 23, the high-pressure gas communication pipe 65, and the refrigerant discharged from the second compressor 2 and the first high-pressure gas pipe 6.
At 1, they merge, pass through the on-off valve 26a, flow into the heat exchanger 51a, and are condensed and liquefied. This liquid refrigerant is used for the electric expansion valve 3
It flows through the liquid pipe 64 through 1a, and a part of it flows through the electric expansion valve 31b into a low-pressure two-phase state and flows into the heat exchanger 51b which is the first evaporator, and is vaporized and gasified. . This gas refrigerant passes through the second high-pressure gas pipe 62 and the fifth on-off valve 2
5, the second accumulator 12, the second check valve, the first
It is sucked into the compressor 1. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state and flows into the heat exchanger 51c that is the second evaporator.
Evaporative gasification. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature, the heat exchanger 51b obtains the first evaporation temperature, and the heat exchanger 51c obtains the second evaporation temperature.

【0131】次に、図31を用いて1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱+高温給
湯運転時などに適用される。図31では、熱交換器51
aが凝縮器、熱交換器51bが第1蒸発器、熱交換器5
1cが第2蒸発器として動作する例を示しており、第3
開閉弁23、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27c、開閉弁30bを閉止
状態としている。
Next, referring to FIG. 31, one condensing temperature and 2
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 31, the heat exchanger 51
a is a condenser, heat exchanger 51b is a first evaporator, heat exchanger 5
1c shows an example in which it operates as a second evaporator,
Open / close valve 23, fifth open / close valve 25, open / close valves 27a, 28a,
26b, 28b, 26c, 27c and the on-off valve 30b are closed.

【0132】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って液管64に流入
し、その一部は電子式膨張弁31bを通って低圧の二相
状態となって第1蒸発器である熱交換器51bへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁27b
を通り、第7開閉弁30a、第1のバイパス路68を介
してバイパスされた液冷媒と合流した後、中圧ガス管6
2を通り、第1開閉弁21を経て、第2圧縮機の吐出ガ
スと合流し、第4開閉弁24、第2開閉弁22を経て、
第1圧縮機1に吸入される。一方、液管64に流入した
残りの液冷媒は、電子式膨張弁31cを通って低圧の二
相状態となって第2蒸発器である熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁28c
を経て、低圧ガス管63を通り、第1アキュムレータ1
1を経て、第2圧縮機2に吸入される。このように、こ
の運転モードでは、低段側圧縮機である第2圧縮機2の
吐出ガスを液管64からバイパスさせた液冷媒と混合し
て冷却するため、高段側圧縮機である第1圧縮機1の吐
出温度上昇を防止し、広い運転範囲において、熱交換器
51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant passes through the electronic expansion valve 31b to become a low-pressure two-phase state, which is the heat exchanger 51b which is the first evaporator. And is vaporized into gas. This gas refrigerant is used as an on-off valve 27b.
Through the seventh open / close valve 30a and the first bypass passage 68, and then merges with the liquid refrigerant bypassed, and then the intermediate pressure gas pipe 6
2 through the first on-off valve 21, merges with the discharge gas of the second compressor, passes through the fourth on-off valve 24, the second on-off valve 22,
It is sucked into the first compressor 1. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electronic expansion valve 31c to become a low-pressure two-phase state and then flows into the heat exchanger 51c that is the second evaporator, and is vaporized and gasified. This gas refrigerant is used as an on-off valve 28c.
After passing through the low pressure gas pipe 63, the first accumulator 1
After passing through 1, the air is sucked into the second compressor 2. As described above, in this operation mode, the discharge gas of the second compressor 2 which is the low-stage side compressor is mixed with the liquid refrigerant bypassed from the liquid pipe 64 to be cooled, and therefore the high-stage side compressor The discharge temperature of the compressor 1 is prevented from rising and the condensing temperature is obtained by the heat exchanger 51a, the first evaporating temperature is obtained by the heat exchanger 51b, and the second evaporating temperature is obtained by the heat exchanger 51c in a wide operating range.

【0133】実施例7.次に、図32はこの発明の実施
例7の蒸気圧縮式サイクルの冷媒系の構成図である。図
において、33は電子式膨張弁である。
Example 7. Next, FIG. 32 is a configuration diagram of a refrigerant system of a vapor compression cycle according to a seventh embodiment of the present invention. In the figure, 33 is an electronic expansion valve.

【0134】この実施例7の多温度生成回路について
も、実施例6と同様、表1に示すような6つの運転モー
ドがあり、図33〜38を用いて説明する。
Like the sixth embodiment, the multi-temperature generation circuit of the seventh embodiment also has six operation modes as shown in Table 1, which will be described with reference to FIGS.

【0135】まず、図33のこの実施例7の多温度生成
回路の運転動作状態を示す説明図を用いて、1つの凝縮
温度と1つの蒸発温度を生成する2温度生成時で、凝縮
温度と蒸発温度の差が比較的小さい場合の動作について
説明する。この運転モードは、例えば通常の冷房あるい
は暖房時などに適用される。
First, referring to FIG. 33, which is an explanatory diagram showing the operating state of the multi-temperature generation circuit of the seventh embodiment, when two temperatures are generated to generate one condensation temperature and one evaporation temperature, The operation when the difference in evaporation temperature is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0136】図33では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30bを閉止状態
(図中塗りつぶし)冷媒流量制御器33を全閉としてい
る。第1圧縮機1、第2圧縮機2は並列運転される。矢
印で冷媒の流れを示す。
FIG. 33 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops and the heat exchanger 51c operates as an evaporator. The first on-off valve 21 and the fourth on-off valve 2 are shown.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c and 30b are closed (filled in the figure), and the refrigerant flow rate controller 33 is fully closed. The first compressor 1 and the second compressor 2 are operated in parallel. The arrow indicates the flow of the refrigerant.

【0137】第2圧縮機2から吐出された高温高圧冷媒
ガスは、高圧ガス連通管65を経て第1高圧ガス管61
で第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 and the first high-pressure gas pipe 61.
At this time, the high-temperature high-pressure refrigerant gas discharged from the first compressor 1 merges, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and the first compressor 1 and the second compressor 1.
It is sucked into the compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0138】次に、図34のこの実施例の多温度生成回
路の運転動作状態を示す説明図を用いて、1つの凝縮温
度と1つの蒸発温度を生成する2温度生成時で、この凝
縮温度と蒸発温度の差が比較的大きい場合の動作につい
て説明する。この運転モードは、例えば高温給湯や給湯
+氷蓄熱時などに適用される。
Next, referring to FIG. 34, which is an explanatory view showing the operating state of the multi-temperature generation circuit of this embodiment, at the time of generating two temperatures, one condensation temperature and one evaporation temperature, The operation when the difference between the evaporation temperature and the evaporation temperature is relatively large will be described. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage.

【0139】図34では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第3開閉弁2
3、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30bを閉止状態
(図中塗りつぶし)冷媒流量制御器33を全閉としてい
る。第1圧縮機1、第2圧縮機2は直列運転される。矢
印で冷媒の流れを示す。
FIG. 34 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator. The first on-off valve 21 and the third on-off valve 2 are shown.
3, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c and 30b are closed (filled in the figure), and the refrigerant flow rate controller 33 is fully closed. The first compressor 1 and the second compressor 2 are operated in series. The arrow indicates the flow of the refrigerant.

【0140】第2圧縮機2から吐出された冷媒ガスは、
高圧ガス連通管65とこれから分岐した圧縮機連通管6
5に流入し、第4開閉弁24及び第2開閉弁22を通っ
て第1圧縮機1に吸入され、二段圧縮され高温高圧の冷
媒ガスとなって第1高圧ガス管61に流入する。この液
冷媒は、電気式膨張弁31aを通って液管64に流入
し、電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。このガ
ス冷媒は、低圧ガス管63を通って第1アキュムレータ
11を経て、第2圧縮機2に吸入される。このように、
この運転モードでは、二段圧縮運転となり、熱交換器5
1aで凝縮温度が、熱交換器51cで蒸発温度が得られ
る。
The refrigerant gas discharged from the second compressor 2 is
High-pressure gas communication pipe 65 and compressor communication pipe 6 branched from this
5, it is sucked into the first compressor 1 through the fourth opening / closing valve 24 and the second opening / closing valve 22, is compressed in two stages, and becomes high-temperature high-pressure refrigerant gas, which then flows into the first high-pressure gas pipe 61. The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. in this way,
In this operation mode, the two-stage compression operation is performed and the heat exchanger 5
The condensation temperature is obtained at 1a, and the evaporation temperature is obtained at the heat exchanger 51c.

【0141】次に、図35のこの実施例の多温度生成回
路の運転動作状態を示す説明図を用いて、2つの凝縮温
度と1つの蒸発温度を生成する3温度生成時で、凝縮温
度と蒸発温度の差が比較的小さい場合の動作について説
明する。この運転モードは、例えば通常の暖房+比較的
低い給湯運転時などに適用される。
Next, referring to FIG. 35, which is an explanatory view showing the operating state of the multi-temperature generation circuit of this embodiment, the condensation temperature and the condensation temperature are The operation when the difference in evaporation temperature is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation.

【0142】図35では、熱交換器51aが第1凝縮
器、熱交換器51bが第2凝縮器、熱交換器51cが蒸
発器として動作する例を示しており、第3開閉弁23、
第4開閉弁24、第5開閉弁25、開閉弁27a,28
a,26b,28b,26c,27c,30bを閉止状
態(図中塗りつぶし)冷媒流量制御器33を全閉として
いる。矢印で冷媒の流れを示す。
FIG. 35 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. The third on-off valve 23,
Fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30b are closed (filled in the figure), and the refrigerant flow rate controller 33 is fully closed. The arrow indicates the flow of the refrigerant.

【0143】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a as the first condenser, and is condensed and liquefied. To be done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 through the first opening / closing valve 21, passes through the opening / closing valve 27b, and is the second condenser heat exchanger 51b. And is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant is used as an electric expansion valve 31c.
Through it to a low-pressure two-phase state, which flows into the heat exchanger 51c and is vaporized and gasified. This gas refrigerant is a low pressure gas pipe 6
After passing through 3, the first accumulator 11 is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0144】まず、図36を用いて、2つの凝縮温度と
1つの蒸発温度を生成する3温度生成時で、この凝縮温
度と蒸発温度の差が比較的大きい場合の動作について説
明する。この運転モードは、例えば通常の暖房+比較的
高い給湯運転時などに適用される。図36では、熱交換
器51aが第1凝縮器、熱交換器51bが第2凝縮器、
熱交換器51cが蒸発器として動作する例を示してお
り、第2開閉弁22、第3開閉弁23、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
28b,26c,27cを閉止状態としている。
First, with reference to FIG. 36, an operation will be described in the case where the three temperatures are generated to generate two condensation temperatures and one evaporation temperature, and the difference between the condensation temperature and the evaporation temperature is relatively large. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. In FIG. 36, the heat exchanger 51a is the first condenser, the heat exchanger 51b is the second condenser,
The example in which the heat exchanger 51c operates as an evaporator is shown, and the second opening / closing valve 22, the third opening / closing valve 23, and the fourth opening / closing valve 2 are shown.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
28b, 26c and 27c are closed.

【0145】第2圧縮機2から吐出された冷媒ガスの一
部は、第1開閉弁21、中圧ガス管62、冷媒流量制御
器33を通って液管64に入り、液管64内の液と混合
することによって冷却され、第8開閉弁30bを通って
第1圧縮機1に吸入される。第1の圧縮機1によってさ
らに圧縮された高温高圧のガスは高圧ガス管61、開閉
弁26aを通って熱交換器51aに流入し、凝縮液化さ
れる。この液冷媒は、電子式膨張弁31aによって二相
冷媒となり、液管64に流入する。一方、第2圧縮機2
から吐出された冷媒ガスの残りは第1開閉弁21、中圧
ガス管62、開閉弁27bを通って、第2凝縮器である
熱交換器51bに流入し、凝縮液化される。この液冷媒
は、電子式膨張弁31bを通って液管64に流入し、第
1凝縮器である熱交換器51aからの二相冷媒と合流す
る。この合流した冷媒のうち、ガス冷媒は第1圧縮機1
の吸入側へ流れ、液冷媒は、電子式膨張弁31cを通っ
て低圧の二相状態となって熱交換器51cへ流入し、蒸
発ガス化される。このガス冷媒は、開閉弁28cを介し
て、低圧ガス管63を通り、第1アキュムレータ11を
経て、第2圧縮機2に吸入される。このように、この運
転モードでは、低段側圧縮機である第2圧縮機より高段
側圧縮機吸入側へバイパスする冷媒量を、冷媒流量制御
器33によって制御するため、熱交換器51a,51b
の両方の能力を確保すると同時に、吐出温度上昇を防止
し、熱交換器51aで第1の凝縮温度が、熱交換器51
bで第2の凝縮温度が、熱交換器51cで蒸発温度が得
られる。
A part of the refrigerant gas discharged from the second compressor 2 enters the liquid pipe 64 through the first opening / closing valve 21, the medium pressure gas pipe 62, and the refrigerant flow rate controller 33, and then enters the liquid pipe 64. It is cooled by being mixed with the liquid, and is sucked into the first compressor 1 through the eighth opening / closing valve 30b. The high-temperature and high-pressure gas further compressed by the first compressor 1 flows into the heat exchanger 51a through the high-pressure gas pipe 61 and the opening / closing valve 26a, and is condensed and liquefied. This liquid refrigerant becomes a two-phase refrigerant by the electronic expansion valve 31a and flows into the liquid pipe 64. On the other hand, the second compressor 2
The rest of the refrigerant gas discharged from the gas passes through the first opening / closing valve 21, the intermediate pressure gas pipe 62, and the opening / closing valve 27b, flows into the heat exchanger 51b as the second condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31b, and joins with the two-phase refrigerant from the heat exchanger 51a which is the first condenser. Of the combined refrigerant, the gas refrigerant is the first compressor 1
Of the liquid refrigerant passes through the electronic expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63 through the opening / closing valve 28c, passes through the first accumulator 11, and is sucked into the second compressor 2. As described above, in this operation mode, the refrigerant flow rate controller 33 controls the amount of the refrigerant bypassed from the second compressor, which is the low-stage compressor, to the intake side of the high-stage compressor, so that the heat exchangers 51a, 51b
Of the heat exchanger 51a, the discharge temperature rise is prevented, and the first condensing temperature of the heat exchanger 51a is
The second condensation temperature is obtained at b, and the evaporation temperature is obtained at the heat exchanger 51c.

【0146】次に図37のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と2つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。
Next, using the explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment in FIG. 37, at the time of generating three temperatures, one condensation temperature and two evaporation temperatures are generated, the condensation temperature and evaporation The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during normal cooling + ice heat storage operation.

【0147】図37では、熱交換器51aが凝縮器、熱
交換器51bが第1蒸発器、熱交換器51cが第2蒸発
器として動作する例を示しており、第1開閉弁21、第
2開閉弁22、第4開閉弁24、開閉弁27a,28
a,26b,28b,26c,27c,30bを閉止状
態(図中塗りつぶし)冷媒流量制御器33を全閉として
いる。矢印で冷媒の流れを示す。
FIG. 37 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 2 on-off valve 22, 4th on-off valve 24, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30b are closed (filled in the figure), and the refrigerant flow rate controller 33 is fully closed. The arrow indicates the flow of the refrigerant.

【0148】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第2圧縮機2の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し、蒸発ガス化される。この
ガス冷媒は、第2高圧ガス管62を通って第5開閉弁2
5、第2アキュムレータ12、第2逆止弁を経て、第1
圧縮機1に吸入される。一方、液管64に流入した残り
の液冷媒は、電気式膨張弁31cを通って低圧の二相状
態となって第2蒸発器である熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、低圧ガス管63を
通って第1アキュムレータ11を経て、第2圧縮機2に
吸入される。このように、この運転モードでは、熱交換
器51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 passes through the third on-off valve 23, the high-pressure gas communication pipe 65, and the refrigerant discharged from the second compressor 2 and the first high-pressure gas pipe 6.
At 1, they merge, pass through the on-off valve 26a, flow into the heat exchanger 51a, and are condensed and liquefied. This liquid refrigerant is used for the electric expansion valve 3
It flows through the liquid pipe 64 through 1a, and a part of it flows through the electric expansion valve 31b into a low-pressure two-phase state and flows into the heat exchanger 51b which is the first evaporator, and is vaporized and gasified. . This gas refrigerant passes through the second high-pressure gas pipe 62 and the fifth on-off valve 2
5, the second accumulator 12, the second check valve, the first
It is sucked into the compressor 1. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state and flows into the heat exchanger 51c that is the second evaporator.
Evaporative gasification. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature, the heat exchanger 51b obtains the first evaporation temperature, and the heat exchanger 51c obtains the second evaporation temperature.

【0149】次に、図38を用いて1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱+高温給
湯運転時などに適用される。図38では、熱交換器51
aが凝縮器、熱交換器51bが第1蒸発器、熱交換器5
1cが第2蒸発器として動作する例を示しており、第3
開閉弁23、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27c、開閉弁30bを閉止
状態としている。
Next, referring to FIG. 38, one condensation temperature and 2
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 38, the heat exchanger 51
a is a condenser, heat exchanger 51b is a first evaporator, heat exchanger 5
1c shows an example in which it operates as a second evaporator,
Open / close valve 23, fifth open / close valve 25, open / close valves 27a, 28a,
26b, 28b, 26c, 27c and the on-off valve 30b are closed.

【0150】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って液管64に流入
し、その一部は電子式膨張弁31bを通って低圧の二相
状態となって第1蒸発器である熱交換器51bへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁27b
を通り、冷媒流量制御器33を介してバイパスされた液
冷媒と合流した後、中圧ガス管62を通り、第1開閉弁
21を経て、第2圧縮機の吐出ガスと合流し、第4開閉
弁24、第2開閉弁22を経て、第1圧縮機1に吸入さ
れる。一方、液管64に流入した残りの液冷媒は、電子
式膨張弁31cを通って低圧の二相状態となって第2蒸
発器である熱交換器51cへ流入し、蒸発ガス化され
る。このガス冷媒は、開閉弁28cを経て、低圧ガス管
63を通り、第1アキュムレータ11を経て、第2圧縮
機2に吸入される。このように、この運転モードでは、
低段側圧縮機である第2圧縮機2の吐出ガスに冷媒流量
制御器33によって制御された液冷媒を適量混合させ、
高段側圧縮機である第1圧縮機1の吸入を飽和ガスとす
ることで、液圧縮させることなく吐出温度上昇を防止し
しながら効率よく2段圧縮運転を行い、熱交換器51a
で凝縮温度が、熱交換器51bで第1蒸発温度が、熱交
換器51cで第2蒸発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant passes through the electronic expansion valve 31b to become a low-pressure two-phase state, which is the heat exchanger 51b which is the first evaporator. And is vaporized into gas. This gas refrigerant is used as an on-off valve 27b.
Through the refrigerant flow rate controller 33 and then merges with the liquid refrigerant, then passes through the medium-pressure gas pipe 62, passes through the first on-off valve 21, and merges with the discharge gas of the second compressor, It is sucked into the first compressor 1 via the on-off valve 24 and the second on-off valve 22. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electronic expansion valve 31c to become a low-pressure two-phase state and then flows into the heat exchanger 51c that is the second evaporator, and is vaporized and gasified. The gas refrigerant passes through the on-off valve 28c, the low-pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operating mode,
An appropriate amount of the liquid refrigerant controlled by the refrigerant flow controller 33 is mixed with the discharge gas of the second compressor 2 that is the low-stage compressor,
By using saturated gas as the suction of the first compressor 1 which is the high-stage compressor, the two-stage compression operation is efficiently performed while preventing the discharge temperature from increasing without performing liquid compression.
At the heat exchanger 51b, the first evaporation temperature is obtained at the heat exchanger 51b, and the second evaporation temperature is obtained at the heat exchanger 51c.

【0151】実施例8.図39はこの発明の実施例8の
蒸気圧縮式サイクルの冷媒系の構成図である。図におい
て、69は液レシーバーである。この実施例8の多温度
生成回路においても、表1に示すような6つの運転モー
ドがあり、図40〜45を用いて説明する。
Example 8. FIG. 39 is a block diagram of the refrigerant system of the vapor compression cycle of the eighth embodiment of the present invention. In the figure, 69 is a liquid receiver. The multi-temperature generation circuit according to the eighth embodiment also has six operation modes as shown in Table 1, which will be described with reference to FIGS.

【0152】まず、図40のこの実施例8の多温度生成
回路の運転動作状態を示す説明図を用いて、1つの凝縮
温度と1つの蒸発温度を生成する2温度生成時で、凝縮
温度と蒸発温度の差が比較的小さい場合の動作について
説明する。この運転モードは、例えば通常の冷房あるい
は暖房時などに適用される。
First, referring to FIG. 40, which is an explanatory view showing the operating state of the multi-temperature generation circuit according to the eighth embodiment, the condensation temperature and the condensation temperature are The operation when the difference in evaporation temperature is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0153】図40では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30a,30bを閉
止状態(図中塗りつぶし)としている。第1圧縮機1、
第2圧縮機2は並列運転される。矢印で冷媒の流れを示
す。
FIG. 40 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops and the heat exchanger 51c operates as an evaporator. The first on-off valve 21 and the fourth on-off valve 2 are shown.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c, 30a, 30b are in a closed state (filled in the figure). The first compressor 1,
The second compressor 2 is operated in parallel. The arrow indicates the flow of the refrigerant.

【0154】第2圧縮機2から吐出された高温高圧冷媒
ガスは、高圧ガス連通管65を経て第1高圧ガス管61
で第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 and the first high-pressure gas pipe 61.
At this time, the high-temperature high-pressure refrigerant gas discharged from the first compressor 1 merges, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and the first compressor 1 and the second compressor 1.
It is sucked into the compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0155】次に、図41を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、この凝縮温
度と蒸発温度の差が比較的大きい場合の動作について説
明する。この運転モードは、例えば高温給湯や給湯+氷
蓄熱時などに適用される。図41では、熱交換器51a
が凝縮器、熱交換器51bが停止、熱交換器51cが蒸
発器として動作する例を示しており、第2開閉弁22、
第3開閉弁23、第4開閉弁24、第5開閉弁25、開
閉弁27a,28a,26b,27b,28b,26
c,27cを閉止状態としている。
Next, with reference to FIG. 41, an operation will be described in which two condensation temperatures, one condensation temperature and one evaporation temperature, are generated and the difference between the condensation temperature and the evaporation temperature is relatively large. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage. In FIG. 41, the heat exchanger 51a
Is a condenser, the heat exchanger 51b is stopped, and the heat exchanger 51c operates as an evaporator.
Third opening / closing valve 23, fourth opening / closing valve 24, fifth opening / closing valve 25, opening / closing valves 27a, 28a, 26b, 27b, 28b, 26
c and 27c are closed.

【0156】第2圧縮機2から吐出された冷媒ガスは、
第1開閉弁21、中圧ガス管62、バイパス路66、第
7開閉弁30aを通って液レシーバー68に入り、液レ
シーバー68内の液と混合することによって冷却され、
バイパス路67、第8開閉弁30bを通って第1圧縮機
1に吸入される。第1圧縮機1によってさらに圧縮され
た高温高圧のガスは高圧ガス管61、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って高圧二相冷媒とな
り、液レシーバー68に流入する。液レシーバー69内
の液冷媒は第7開閉弁30aを通って低圧の二相状態と
なって熱交換器51cへ流入し、蒸発ガス化される。ガ
ス冷媒は、開閉弁28cを介して、低圧ガス管63を通
り、第1アキュムレータ11を経て、第2圧縮機2に吸
入される。このように、この運転モードでは、2段圧縮
運転となり、液レシーバー69により、熱交換器51a
側より流入する二相冷媒を気液分離する性能が向上し、
完全な飽和ガスとして高段側圧縮機である第1圧縮機1
に吸入させることができると同時に、吐出温度上昇を防
止しながら、効率よく熱交換器51aで凝縮温度が、熱
交換器51cで蒸発温度が得られる。また、いろいろな
運転モードによる余剰冷媒量をためることが可能とな
る。
The refrigerant gas discharged from the second compressor 2 is
The liquid enters the liquid receiver 68 through the first opening / closing valve 21, the medium pressure gas pipe 62, the bypass passage 66, and the seventh opening / closing valve 30a, and is cooled by being mixed with the liquid in the liquid receiver 68,
It is sucked into the first compressor 1 through the bypass 67 and the eighth opening / closing valve 30b. The high-temperature and high-pressure gas further compressed by the first compressor 1 flows into the heat exchanger 51a through the high-pressure gas pipe 61 and the opening / closing valve 26a, and is condensed and liquefied. The liquid refrigerant becomes a high-pressure two-phase refrigerant through the electronic expansion valve 31a and flows into the liquid receiver 68. The liquid refrigerant in the liquid receiver 69 passes through the seventh on-off valve 30a to become a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. The gas refrigerant passes through the open / close valve 28c, passes through the low pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. As described above, in this operation mode, the two-stage compression operation is performed, and the liquid receiver 69 causes the heat exchanger 51a to operate.
The performance of gas-liquid separation of the two-phase refrigerant flowing from the side is improved,
First compressor 1 which is a high-stage compressor as a completely saturated gas
The heat exchanger 51a efficiently obtains the condensation temperature and the heat exchanger 51c efficiently obtains the evaporation temperature while preventing the discharge temperature from rising. Further, it becomes possible to accumulate the amount of surplus refrigerant in various operation modes.

【0157】次に図42のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、2つの凝縮温度
と1つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的低
い給湯運転時などに適用される。
Next, referring to FIG. 42, which is an explanatory view showing the operating state of the multi-temperature generation circuit of this embodiment, the condensation temperature and the evaporation temperature are generated at the time of generating three temperatures for generating two condensation temperatures and one evaporation temperature. The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation.

【0158】図42では、熱交換器51aが第1凝縮
器、熱交換器51bが第2凝縮器、熱交換器51cが蒸
発器として動作する例を示しており、第3開閉弁23、
第4開閉弁24、第5開閉弁25、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 42 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. The third on-off valve 23,
Fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is closed (filled in the figure). The arrow indicates the flow of the refrigerant.

【0159】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a as the first condenser, and is condensed and liquefied. To be done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 through the first opening / closing valve 21, passes through the opening / closing valve 27b, and is the second condenser heat exchanger 51b. And is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant is used as an electric expansion valve 31c.
Through it to a low-pressure two-phase state, which flows into the heat exchanger 51c and is vaporized and gasified. This gas refrigerant is a low pressure gas pipe 6
After passing through 3, the first accumulator 11 is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0160】次に、図43を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図43では、熱交換器
51aが第1凝縮器、熱交換器51bが第2凝縮器、熱
交換器51cが蒸発器として動作する例を示しており、
第2開閉弁22、第3開閉弁23、第4開閉弁24、第
5開閉弁25、開閉弁27a,28a,26b,28
b,26c,27c開閉弁を閉止状態としている。
Next, referring to FIG. 43, two condensing temperatures and 1
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. FIG. 43 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator.
Second on-off valve 22, third on-off valve 23, fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28a, 26b, 28
b, 26c, 27c open / close valves are closed.

【0161】第2圧縮機2から吐出された冷媒ガスの一
部は、第1開閉弁21、中圧ガス管62、バイパス路6
8、第7開閉弁30aを通って液レシーバー69に入
り、液レシーバー69内の液と混合することによって冷
却され、バイパス路67、第8開閉弁30bを通って第
1圧縮機1に吸入される。第1圧縮機1によってさらに
圧縮された高温高圧のガスは高圧ガス管61、開閉弁2
6aを通って熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電子式膨張弁31aによって二相冷
媒となり、液管64に流入する。一方、第2圧縮機2か
ら吐出された冷媒ガスの残りは第1開閉弁21、中圧ガ
ス管62、開閉弁27bを通って、第2凝縮器である熱
交換器51bに流入し、凝縮液化される。この液冷媒
は、電子式膨張弁31bを通って液レシーバー68に流
入し、第1凝縮器である熱交換器51aからの二相冷媒
と合流する。この合流した冷媒のうち、ガス冷媒は第1
圧縮機1の吸入側へ流れ、液冷媒は電子式膨張弁31を
通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁28c
を介して、低圧ガス管63を通り、第1アキュムレータ
11を経て、第2圧縮機2に吸入される。このように、
この運転モードでは、2段圧縮運転となり、液レシーバ
ー69により熱交換器51a側より流入する二相冷媒を
気液分離する性能が向上し、完全な飽和ガスとして高段
側圧縮機である第1圧縮機1に吸入させることができる
と同時に、吐出温度上昇を防止しながら、効率よく、熱
交換器51aで第1の凝縮温度が、熱交換器51bで第
2の凝縮温度が、熱交換器51cで蒸発温度が得られ
る。
A part of the refrigerant gas discharged from the second compressor 2 is part of the first opening / closing valve 21, the medium pressure gas pipe 62, and the bypass passage 6.
The liquid enters the liquid receiver 69 through the eighth and seventh open / close valves 30a, is cooled by being mixed with the liquid in the liquid receiver 69, and is sucked into the first compressor 1 through the bypass passage 67 and the eighth open / close valve 30b. It The high-temperature and high-pressure gas further compressed by the first compressor 1 is the high-pressure gas pipe 61, the on-off valve 2
It flows into the heat exchanger 51a through 6a and is condensed and liquefied. This liquid refrigerant becomes a two-phase refrigerant by the electronic expansion valve 31a and flows into the liquid pipe 64. On the other hand, the rest of the refrigerant gas discharged from the second compressor 2 passes through the first opening / closing valve 21, the intermediate pressure gas pipe 62, and the opening / closing valve 27b, flows into the heat exchanger 51b which is the second condenser, and is condensed. Liquefied. This liquid refrigerant flows into the liquid receiver 68 through the electronic expansion valve 31b, and joins with the two-phase refrigerant from the heat exchanger 51a which is the first condenser. Of the combined refrigerant, the gas refrigerant is the first
The liquid refrigerant flows to the suction side of the compressor 1, passes through the electronic expansion valve 31, becomes a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This gas refrigerant is used as an on-off valve 28c.
Through the low pressure gas pipe 63, the first accumulator 11 and the second compressor 2. in this way,
In this operation mode, the two-stage compression operation is performed, and the performance of gas-liquid separation of the two-phase refrigerant flowing in from the heat exchanger 51a side by the liquid receiver 69 is improved, and it is the high-stage side compressor that is completely saturated gas. The heat can be sucked into the compressor 1 and, at the same time, the discharge temperature can be prevented from increasing and the first condensing temperature in the heat exchanger 51a and the second condensing temperature in the heat exchanger 51b can be efficiently changed. The evaporation temperature is obtained at 51c.

【0162】次に図44のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と2つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱運転時な
どに適用される。
Next, with reference to the explanatory view showing the operating state of the multi-temperature generation circuit of this embodiment shown in FIG. 44, at the time of generating three temperatures, one condensation temperature and two evaporation temperatures are generated, the condensation temperature and the evaporation The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during cooling + ice heat storage operation.

【0163】図44では、熱交換器51aが凝縮器、熱
交換器51bが第1蒸発器、熱交換器51cが第2蒸発
器として動作する例を示しており、第1開閉弁21、第
2開閉弁22、第4開閉弁24、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 44 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 2 on-off valve 22, 4th on-off valve 24, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is closed (filled in the figure). The arrow indicates the flow of the refrigerant.

【0164】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第2圧縮機2の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液レシーバー69に流入し、その一部は電
気式膨張弁31bを通って低圧の二相状態となって第1
蒸発器である熱交換器51bへ流入し、蒸発ガス化され
る。このガス冷媒は、第2高圧ガス管62を通って第5
開閉弁25、第2アキュムレータ12、第2逆止弁を経
て、第1圧縮機1に吸入される。一方、液管64に流入
した残りの液冷媒は、電気式膨張弁31cを通って低圧
の二相状態となって第2蒸発器である熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、低圧ガス
管63を通って第1アキュムレータ11を経て、第2圧
縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51bで第
1蒸発温度が、熱交換器51cで第2蒸発温度が得られ
る。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 passes through the third on-off valve 23, the high-pressure gas communication pipe 65, and the refrigerant gas discharged from the second compressor 2 and the first high-pressure gas pipe 6.
At 1, they merge, pass through the on-off valve 26a, flow into the heat exchanger 51a, and are condensed and liquefied. This liquid refrigerant is used for the electric expansion valve 3
1a to flow into the liquid receiver 69, and a part of it flows through the electric expansion valve 31b into a low-pressure two-phase state.
It flows into the heat exchanger 51b, which is an evaporator, and is vaporized and gasified. This gas refrigerant passes through the second high-pressure gas pipe 62 to the fifth
It is sucked into the first compressor 1 through the on-off valve 25, the second accumulator 12, and the second check valve. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c that is the second evaporator, and is vaporized and gasified. The gas refrigerant passes through the low pressure gas pipe 63, the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature, the heat exchanger 51b obtains the first evaporation temperature, and the heat exchanger 51c obtains the second evaporation temperature.

【0165】次に、図45を用いて1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱+高温給
湯運転時などに適用される。図45では、熱交換器51
aが凝縮器、熱交換器51bが第1蒸発器、熱交換器5
1cが第2蒸発器として動作する例を示しており、第3
開閉弁23、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27c、開閉弁30bを閉止
状態としている。
Next, referring to FIG. 45, one condensation temperature and 2
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 45, the heat exchanger 51
a is a condenser, heat exchanger 51b is a first evaporator, heat exchanger 5
1c shows an example in which it operates as a second evaporator,
Open / close valve 23, fifth open / close valve 25, open / close valves 27a, 28a,
26b, 28b, 26c, 27c and the on-off valve 30b are closed.

【0166】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って液レシーバー69
に流入し、その一部は電子式膨張弁31bを通って低圧
の二相状態となって第1蒸発器である熱交換器51bへ
流入し、蒸発ガス化される。このガス冷媒は、開閉弁2
7bを通り、第7開閉弁30a、バイパス路68を介し
てバイパスされた液冷媒と合流した後、中圧ガス管62
を通り、第1開閉弁21を経て、第2圧縮機の吐出ガス
と合流し、第4開閉弁24、第2開閉弁22を経て、第
1圧縮機1に吸入される。一方、液レシーバー68に流
入した残りの液冷媒は、電子式膨張弁31cを通って低
圧二相状態となって第2蒸発器である熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、開閉弁2
8cを経て、低圧ガス管63を通り、第1アキュムレー
タ11を経て、第2圧縮機2に吸入される。このよう
に、この運転モードでは、低段側圧縮機である第2圧縮
機2の吐出ガスに液冷媒を混合させ、高段側圧縮機であ
る第1圧縮機1に吸入するガスとすることで、吐出温度
上昇を防止しながら効率よく2段圧縮運転を行い、熱交
換器51aで凝縮温度が、熱交換器51bで第1蒸発温
度が、熱交換器51cで第2蒸発温度が得られる。な
お、この構成では液レシーバーの気液分離効果により液
バックの防止を図った上、直接的に冷却するという冷却
効果の向上が図れる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a, and is condensed and liquefied. The liquid refrigerant passes through the electronic expansion valve 31a and receives the liquid receiver 69.
And a part thereof flows through the electronic expansion valve 31b into a low-pressure two-phase state and then flows into the heat exchanger 51b which is the first evaporator to be vaporized and gasified. This gas refrigerant is used for the on-off valve 2
After passing through 7b, the seventh on-off valve 30a, and the liquid refrigerant bypassed via the bypass passage 68, the medium pressure gas pipe 62 is joined.
Through the first opening / closing valve 21, merges with the discharge gas of the second compressor, passes through the fourth opening / closing valve 24, the second opening / closing valve 22, and is sucked into the first compressor 1. On the other hand, the remaining liquid refrigerant that has flowed into the liquid receiver 68 passes through the electronic expansion valve 31c, enters a low-pressure two-phase state, flows into the heat exchanger 51c that is the second evaporator, and is vaporized and gasified. This gas refrigerant is used for the on-off valve 2
8c, the low pressure gas pipe 63, the first accumulator 11, and the second compressor 2. As described above, in this operation mode, the liquid refrigerant is mixed with the discharge gas of the second compressor 2 that is the low-stage compressor to be the gas that is sucked into the first compressor 1 that is the high-stage compressor. Thus, the two-stage compression operation is efficiently performed while preventing the discharge temperature from rising, and the condensing temperature is obtained by the heat exchanger 51a, the first evaporating temperature is obtained by the heat exchanger 51b, and the second evaporating temperature is obtained by the heat exchanger 51c. . In addition, in this configuration, the liquid back is prevented by the gas-liquid separation effect of the liquid receiver, and the cooling effect of directly cooling can be improved.

【0167】実施例9.図46は実施例9の蒸気圧縮式
サイクルの冷媒回路の構成図である。図46において、
1は第1圧縮機、2は第2圧縮機、61は高圧ガス管、
63は低圧ガス管、62は中圧ガス管、64は液管、6
5a,65b,65cは熱交換器で、熱交換器は高圧ガ
ス管61、低圧ガス管63、中圧ガス管62に各々開閉
弁26a,27a,28a及び26b,27b,28b
及び26c,27c,28cを介して分岐接続するとと
もに、液管64とは流量制御弁である電子膨張弁31
a,31b,31cをそれぞれ介して接続している。7
2は第1圧縮機1の吐出側と高圧ガス管61とを第1開
閉弁121を介して接続する第1の吐出管、74は第2
圧縮機の吐出側と中圧ガス管62とを第2開閉弁123
を介して接続する第2の吐出管、76は第1圧縮機1の
吸入側と第3の開閉弁125を介して中圧ガス管62に
接続する第1の吸入管、78は第2圧縮機2の吸入側と
第4の開閉弁127を介して低圧ガス管63に接続する
第2の吸入管、80は中圧ガス管62と第2の吸入管7
8とを第5の開閉弁129を介して接続する第1のバイ
パス管、82は低圧ガス管63と第1の吸入管76とを
第6の開閉弁131を介して接続する第2のバイパス
管、83は第1の吐出管72と第2の吐出管74とを第
7、第8の開閉弁134,135を介して接続する吐出
側接続管、86は第1の吸入管76と第2の吸入管78
とを第9、第10の開閉弁137,138を介して接続
する吸入側接続管、89は吸入側接続管86の第7と第
8の開閉弁137,138との間と吐出側接続管83の
第9と第10の開閉弁134,135との間を第11の
開閉弁140を介して接続する第3のバイパス管、91
は第1の吐出管72と中圧ガス管62とを第12の開閉
弁142を介して接続する第4のバイパス管、93は第
2の吐出管74と高圧ガス管61とを第13の開閉弁1
44を介して接続する第5のバイパス管である。この実
施例9の多温度生成回路には、表1に示すように6つの
運転モードがある。以下、この6つの運転モードを図4
7〜図52を用いて説明する。
Example 9. 46: is a block diagram of the refrigerant circuit of the vapor compression type cycle of Example 9. FIG. In FIG. 46,
1 is a first compressor, 2 is a second compressor, 61 is a high pressure gas pipe,
63 is a low pressure gas pipe, 62 is a medium pressure gas pipe, 64 is a liquid pipe, 6
5a, 65b, 65c are heat exchangers, and the heat exchangers include high-pressure gas pipe 61, low-pressure gas pipe 63, and medium-pressure gas pipe 62, and open / close valves 26a, 27a, 28a and 26b, 27b, 28b, respectively.
And 26c, 27c, and 28c, and the liquid pipe 64 is connected to the electronic expansion valve 31 which is a flow control valve.
They are connected via a, 31b, and 31c, respectively. 7
2 is a first discharge pipe that connects the discharge side of the first compressor 1 and the high-pressure gas pipe 61 via the first on-off valve 121, and 74 is a second
The discharge side of the compressor and the medium pressure gas pipe 62 are connected to the second opening / closing valve 123.
A second discharge pipe connected via the first suction pipe of the first compressor 1 and a first suction pipe connected to the intermediate pressure gas pipe 62 via the third on-off valve 125, and a second compression pipe 78. The second suction pipe connected to the suction side of the machine 2 and the low pressure gas pipe 63 via the fourth on-off valve 127, and 80 is the medium pressure gas pipe 62 and the second suction pipe 7.
8 is a first bypass pipe that connects the first low pressure gas pipe 63 and the first suction pipe 76 with a sixth open / close valve 131. A pipe, 83 is a discharge side connecting pipe that connects the first discharge pipe 72 and the second discharge pipe 74 via the seventh and eighth opening / closing valves 134 and 135, and 86 is a first suction pipe 76 and the first suction pipe 76. 2 suction pipe 78
And a suction side connecting pipe for connecting the and 9 via the ninth and tenth on-off valves 137 and 138, and 89 between the seventh and eighth on-off valves 137 and 138 of the suction side connecting pipe 86 and a discharge side connecting pipe. A third bypass pipe 91 for connecting the ninth and tenth on-off valves 134 and 135 of 83 through the eleventh on-off valve 140.
Is a fourth bypass pipe connecting the first discharge pipe 72 and the medium pressure gas pipe 62 via the twelfth on-off valve 142, and 93 is the second discharge pipe 74 and the high pressure gas pipe 61. On-off valve 1
It is a fifth bypass pipe connected via 44. The multi-temperature generation circuit according to the ninth embodiment has six operation modes as shown in Table 1. The six operating modes are shown in FIG.
It demonstrates using 7-FIG.

【0168】まず、図47を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、この凝縮温
度と蒸発温度の差が比較的小さい場合の動作について説
明する。この運転モードは、例えば通常の冷房あるいは
暖房時などに適用される。図47では、熱交換器51a
が凝縮器、熱交換器51bが停止、熱交換器51cが蒸
発器として動作する例を示しており、第1の開閉弁12
1、第4の開閉弁127、第7の開閉弁134、第8の
開閉弁135、第9の開閉弁137、第10の開閉弁1
38と、開閉弁26a,28cを閉状態としている。第
1圧縮機1及び第2圧縮機2から吐出された高温高圧冷
媒ガスは、高圧ガス管61で合流し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電気式膨張弁31aを通って液管64に流入
し、電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。このよ
うに、この運転モードでは、熱交換器51aで凝縮温度
が、熱交換器51cで蒸発温度が得られる。
First, with reference to FIG. 47, an operation will be described in which two condensation temperatures, one condensation temperature and one evaporation temperature, are generated and the difference between the condensation temperature and the evaporation temperature is relatively small. This operation mode is applied, for example, during normal cooling or heating. In FIG. 47, the heat exchanger 51a
Is a condenser, the heat exchanger 51b is stopped, and the heat exchanger 51c operates as an evaporator.
1, 4th on-off valve 127, 7th on-off valve 134, 8th on-off valve 135, 9th on-off valve 137, 10th on-off valve 1
38 and the on-off valves 26a and 28c are closed. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 and the second compressor 2 joins in the high-pressure gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0169】次に、図48を用いて1つの凝縮温度と1
つの蒸発温度を生成する2温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば高温給湯や給湯+氷蓄
熱時などに適用される。図48では、例えば熱交換器5
1aが凝縮器、熱交換器51bが停止、熱交換器51c
が蒸発器として動作する例を示しており、第1の開閉弁
121、第4の開閉弁127、第8の開閉弁135、第
9の開閉弁137、第11の開閉弁140と、開閉弁2
6a,28cを開状態としている。
Next, referring to FIG. 48, one condensing temperature and 1
An operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when two temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage. In FIG. 48, for example, the heat exchanger 5
1a is a condenser, heat exchanger 51b is stopped, heat exchanger 51c
Shows an example of operating as an evaporator. Two
6a and 28c are open.

【0170】第2圧縮機2から吐出された冷媒ガスは、
第8開閉弁135、第11の開閉弁140、第9の開閉
弁137を通って第1圧縮機1に吸入され高温高圧冷媒
ガスとなって高圧ガス管61に流入する。開閉弁26a
を通って熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31aを通って液管64に流
入し、電気式膨張弁31cを通って低圧の二相状態とな
って熱交換器51cへ流入し、蒸発ガス化される。この
冷媒ガスは、低圧ガス管63を通って第4の開閉弁12
7、第2の吸入管78を経て第2圧縮機2に吸入され
る。
The refrigerant gas discharged from the second compressor 2 is
After passing through the eighth opening / closing valve 135, the eleventh opening / closing valve 140, and the ninth opening / closing valve 137, the high temperature high pressure refrigerant gas is sucked into the first compressor 1 and flows into the high pressure gas pipe 61. On-off valve 26a
Through which it flows into the heat exchanger 51a and is condensed and liquefied. The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. This refrigerant gas passes through the low-pressure gas pipe 63 and the fourth on-off valve 12
7 and the second suction pipe 78 to be sucked into the second compressor 2.

【0171】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、第6の開閉弁131、第7の開閉弁134、第1
0の開閉弁138、第11の開閉弁140、第12の開
閉弁142、第13の開閉弁144と、開閉弁27a,
28cを開状態として、熱交換器51cに流入し蒸発ガ
ス化した冷媒ガスを、低圧ガス管63から第6の開閉弁
131、第1の吸入管76を経て第1圧縮機1に吸入さ
せ、その吐出ガスと第12の開閉弁142からの中圧ガ
ス管62の冷媒の一部とを第2圧縮機2に吸入させ、そ
の吐出ガスを第13の開閉弁144から高圧ガス管61
に流入するようにしてもよい。このように、この運転モ
ードでは、2段圧縮運転となり、熱交換器51aで凝縮
温度が、熱交換器51cで蒸発温度が得られる。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described, but the sixth opening / closing valve 131, the seventh opening / closing valve 134, and the first opening / closing valve 134
0 opening / closing valve 138, 11th opening / closing valve 140, 12th opening / closing valve 142, 13th opening / closing valve 144, and opening / closing valve 27a,
With 28c open, the refrigerant gas that has flowed into the heat exchanger 51c and has been vaporized and gasified is sucked into the first compressor 1 from the low-pressure gas pipe 63 through the sixth opening / closing valve 131 and the first suction pipe 76, The discharge gas and a part of the refrigerant in the medium-pressure gas pipe 62 from the twelfth on-off valve 142 are sucked into the second compressor 2, and the discharge gas is discharged from the thirteenth on-off valve 144 to the high-pressure gas pipe 61.
You may make it flow into. As described above, in this operation mode, the two-stage compression operation is performed, and the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0172】次に図49を用いて、2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的低
い給湯運転時などに適用される。図49では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2の開閉弁123、第4
の開閉弁127、第10の開閉弁138と開閉弁26
a,27b,28cを閉状態としている。第1圧縮機1
から吐出された高温高圧冷媒ガスは、高圧ガス管61に
流入し、開閉弁26aを通って第1凝縮器である熱交換
器51aに流入し、凝縮液化される。この液冷媒は、電
気式膨張弁31aを通って液管64に流入する。一方、
第2圧縮機2から吐出された高温高圧冷媒ガスは、第2
の開閉弁123を経て中圧ガス管62に流入し、開閉弁
27bを通って第2凝縮器である熱交換器51bに流入
し凝縮液化される。この液冷媒は、電気式膨張弁31b
を通って液管64に流入し、第1凝縮器である熱交換器
65aからの液冷媒と合流する。この合流した液冷媒
は、電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。このガ
ス冷媒は、低圧ガス管63を通って第4の開閉弁12
7、第2の吸入管78を経て第1圧縮機1及び第2圧縮
機2に吸入される。
Next, referring to FIG. 49, two condensing temperatures and 1
An operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively small when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation. In FIG. 49, for example, the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. On-off valve 123, fourth
On-off valve 127, tenth on-off valve 138 and on-off valve 26
The a, 27b and 28c are closed. First compressor 1
The high-temperature high-pressure refrigerant gas discharged from the above flows into the high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a which is the first condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. on the other hand,
The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 is
Through the on-off valve 123, into the medium-pressure gas pipe 62, and through the on-off valve 27b into the heat exchanger 51b which is the second condenser to be condensed and liquefied. This liquid refrigerant is the electric expansion valve 31b.
To flow into the liquid pipe 64 and merge with the liquid refrigerant from the heat exchanger 65a which is the first condenser. The combined liquid refrigerant flows through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This gas refrigerant passes through the low-pressure gas pipe 63 and the fourth on-off valve 12
7 and the second suction pipe 78, and is sucked into the first compressor 1 and the second compressor 2.

【0173】上記の説明では、第1圧縮機1の吐出冷媒
を開閉弁26aから第1凝縮器である熱交換器51aに
流入させ、第2圧縮機2の吐出冷媒を開閉弁27bから
第2凝縮器である熱交換器51bに流入させているが、
開閉弁26a,27bを閉じて開閉弁27a,26bを
開状態として第1圧縮機1の吐出冷媒を第2凝縮器であ
る熱交換器51b、第2圧縮機2の吐出冷媒を第1凝縮
器である熱交換器51aに流入させてもよい。従って、
熱交換器51aと熱交換器51bの負荷状態により第1
圧縮機1と第2圧縮機2からの冷媒を開閉弁を切り替え
ることにより熱交換器に導入することができる。このよ
うに、この運転モードでは、熱交換器51aで第1の凝
縮温度、熱交換器51bで第2の凝縮温度、熱交換器5
1cで蒸発温度が得られる。
In the above description, the refrigerant discharged from the first compressor 1 is made to flow from the opening / closing valve 26a into the heat exchanger 51a which is the first condenser, and the refrigerant discharged from the second compressor 2 is made to flow to the second opening / closing valve 27b. Although it is flowing into the heat exchanger 51b which is a condenser,
The on-off valves 26a and 27b are closed and the on-off valves 27a and 26b are opened, so that the refrigerant discharged from the first compressor 1 is the heat exchanger 51b which is the second condenser, and the refrigerant discharged from the second compressor 2 is the first condenser. May be made to flow into the heat exchanger 51a. Therefore,
The first depending on the load states of the heat exchanger 51a and the heat exchanger 51b.
The refrigerant from the compressor 1 and the second compressor 2 can be introduced into the heat exchanger by switching the open / close valve. Thus, in this operation mode, the heat exchanger 51a has the first condensing temperature, the heat exchanger 51b has the second condensing temperature, and the heat exchanger 5 has the second condensing temperature.
The evaporation temperature is obtained in 1c.

【0174】次に、図50を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図50では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2開閉弁123、第4の
開閉弁127、第8の開閉弁135、第9の開閉弁13
7、第11の開閉弁140と開閉弁26a,27b,2
8cを開状態としている。第2圧縮機2から吐出された
冷媒ガスの一部は、第8の開閉弁135及び第11の開
閉弁140、第9の開閉弁137を通って第1圧縮機1
に吸入され、高温高圧の冷媒ガスとなって高圧ガス管6
1に流入する。このガス冷媒は開閉弁26aを通って第
1凝縮器である熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電気式膨張弁31bを通って液管6
4に流入する。一方、第2圧縮機2から吐出された冷媒
ガスの残りは、第2の開閉弁123を通って中圧ガス管
62に流入し、開閉弁27bを通って第2凝縮器である
熱交換器51bに流入し凝縮液化される。この液冷媒は
電気式膨張弁31を通って液管64に流入し、第1凝縮
器である熱交換器51aからの液冷媒と合流する。この
合流した液冷媒は電気式膨張弁31cを通って低圧の二
相状態となって熱交換器51cへ流入し、蒸発ガス化さ
れる。この冷媒ガスは低圧ガス管63を通って第4の開
閉弁127、第2の吸入管78を経て第2圧縮機2に吸
入される。
Next, referring to FIG. 50, two condensing temperatures and 1
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. In FIG. 50, for example, the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. Open / close valve 123, fourth open / close valve 127, eighth open / close valve 135, ninth open / close valve 13
7, 11th on-off valve 140 and on-off valves 26a, 27b, 2
8c is open. A part of the refrigerant gas discharged from the second compressor 2 passes through the eighth opening / closing valve 135, the eleventh opening / closing valve 140, and the ninth opening / closing valve 137, and the first compressor 1
Is sucked into the high-temperature high-pressure refrigerant gas and becomes a high-pressure gas pipe 6
Flow into 1. This gas refrigerant flows through the opening / closing valve 26a into the heat exchanger 51a, which is the first condenser, and is condensed and liquefied. The liquid refrigerant passes through the electric expansion valve 31b and the liquid pipe 6
Inflow to 4. On the other hand, the rest of the refrigerant gas discharged from the second compressor 2 flows into the medium-pressure gas pipe 62 through the second opening / closing valve 123, passes through the opening / closing valve 27b, and is the heat exchanger that is the second condenser. It flows into 51b and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31 and joins with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant flows through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This refrigerant gas is sucked into the second compressor 2 through the low pressure gas pipe 63, the fourth on-off valve 127 and the second suction pipe 78.

【0175】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、第1の開閉弁121、第6の開閉弁131、第7
の開閉弁134、第10の開閉弁138、第11の開閉
弁140と開閉弁27a,28cを開状態として、熱交
換器51cに流入し蒸発ガス化した冷媒ガスを、低圧ガ
ス管63から第6の開閉弁131、第1の吸入管76を
経て第1圧縮機1に吸入させ、その吐出ガスを第2の圧
縮機2に吸入させるようにしてもよい。このように、こ
の運転モードでは、熱交換器51aで第1の凝縮温度、
熱交換器51bで第2の凝縮温度、熱交換器51cで蒸
発温度が得られる。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described, but the first on-off valve 121, the sixth on-off valve 131, and the seventh
The open / close valve 134, the tenth open / close valve 138, the eleventh open / close valve 140, and the open / close valves 27a, 28c are opened, and the refrigerant gas that has flowed into the heat exchanger 51c and is vaporized and gasified is supplied from the low pressure gas pipe 63 to the first open / close valve. The first compressor 1 may be sucked through the on-off valve 131 of No. 6 and the first suction pipe 76, and the discharge gas may be sucked into the second compressor 2. Thus, in this operation mode, the first condensing temperature in the heat exchanger 51a,
The second condensing temperature is obtained by the heat exchanger 51b, and the evaporation temperature is obtained by the heat exchanger 51c.

【0176】次に図51を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。図51では、熱交換器51aが
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器として動作する例を示しており、第1の開
閉弁121、第3の開閉弁125、第4の開閉弁12
7、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態としている。第1圧縮
機1から吐出された高温高圧冷媒ガスは、第1の開閉弁
121を経た第2圧縮機2の吐出冷媒ガスと高圧ガス管
61で合流し、開閉弁26aを通って熱交換器51aに
流入し凝縮器液化される。この液冷媒は電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し蒸発ガス化される。この冷
媒ガスは中圧ガス管62を通って第3の開閉弁125、
第1の吸入管76を経て第1の圧縮機1に吸入される。
一方、液管64に流入した残りの液冷媒は、電気式膨張
弁31cを通って低圧の二相状態となって第2蒸発器で
ある熱交換器51cへ流入し蒸発ガス化される。このガ
ス冷媒は、低圧ガス管63を通って第4の開閉弁12
7、第2の吸入管78を経て第2圧縮機2に吸入され
る。
Next, referring to FIG. 51, one condensing temperature and 2
An operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively small when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal cooling + ice heat storage operation. In FIG. 51, the heat exchanger 51a is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example of operating as a second evaporator, and the first opening / closing valve 121, the third opening / closing valve 125, and the fourth opening / closing valve 12 are shown.
The seventh, seventh on-off valve 134, the eighth on-off valve 135 and the on-off valves 26a, 27b, 28c are open. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 merges with the refrigerant discharged from the second compressor 2 that has passed through the first on-off valve 121 at the high-pressure gas pipe 61, passes through the on-off valve 26a, and then enters the heat exchanger. It flows into 51a and is liquefied by a condenser. This liquid refrigerant is an electric expansion valve 3
It flows through the liquid pipe 64 through 1a, and a part of it flows through the electric expansion valve 31b into a low-pressure two-phase state and flows into the heat exchanger 51b which is the first evaporator to be vaporized and gasified. This refrigerant gas passes through the medium-pressure gas pipe 62 and the third on-off valve 125,
It is sucked into the first compressor 1 via the first suction pipe 76.
On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c that is the second evaporator, and is evaporated and gasified. This gas refrigerant passes through the low-pressure gas pipe 63 and the fourth on-off valve 12
7 and the second suction pipe 78 to be sucked into the second compressor 2.

【0177】上記の説明では、中圧ガス管62の冷媒ガ
スを第1圧縮機1、低圧ガス管63の冷媒ガスを第2圧
縮機2に吸入させているが、図52に示すように第1の
開閉弁121、第5の開閉弁129、第6の開閉弁13
1、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態として中圧ガス管62
の冷媒ガスを第2圧縮機2、低圧ガス管63の冷媒ガス
を第1圧縮機1に吸入させてもよい。従って、熱交換器
51cと熱交換器51bの熱負荷に合わせて開閉弁を切
り替えることにより圧縮機からの冷媒の導入することが
できる。このように、この運転モードでは、熱交換器5
1aで凝縮温度、熱交換器51bで第1の蒸発温度、熱
交換器51cで第2の蒸発温度が得られる。
In the above description, the refrigerant gas in the medium pressure gas pipe 62 is sucked into the first compressor 1 and the refrigerant gas in the low pressure gas pipe 63 is sucked into the second compressor 2. However, as shown in FIG. 1 open / close valve 121, 5th open / close valve 129, 6th open / close valve 13
1, the seventh on-off valve 134, the eighth on-off valve 135 and the on-off valves 26a, 27b, 28c are opened, and the medium pressure gas pipe 62 is opened.
The refrigerant gas may be sucked into the second compressor 2, and the refrigerant gas in the low pressure gas pipe 63 may be sucked into the first compressor 1. Therefore, the refrigerant can be introduced from the compressor by switching the opening / closing valve according to the heat load of the heat exchanger 51c and the heat exchanger 51b. Thus, in this operating mode, the heat exchanger 5
The condensation temperature is obtained at 1a, the first evaporation temperature is obtained at the heat exchanger 51b, and the second evaporation temperature is obtained at the heat exchanger 51c.

【0178】次に図53を用いて1つの凝縮温度と2つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱+高
温給湯運転時などに適用される。図53では、熱交換器
51aが凝縮器、熱交換器51bが第1蒸発器、熱交換
器51cが第2蒸発器として動作する例を示しており、
第1の開閉弁121、第2の開閉弁123、第4の開閉
弁127、第8の開閉弁135、第11の開閉弁140
と開閉弁26a,27b,28cを開状態としている。
第1圧縮機1から吐出された高温高圧冷媒ガスは、高圧
ガス管61に流入し、開閉弁26aを通って熱交換器5
1aに流入し凝縮液化される。この液冷媒は、電気式膨
張弁31aを通って液管64に流入し、その一部は電気
式膨張弁31bを通って低圧の二相状態となって第1蒸
発器である熱交換器51bへ流入し蒸発ガス化される。
この冷媒ガスは、中圧ガス管62を通って第2の開閉弁
123を経て第2圧縮機2の吐出ガスと合流し、第8の
開閉弁135、第11の開閉弁140、第9の開閉弁1
37を経て第1圧縮機1に吸入される。一方、液管64
に流入した残りの液冷媒は電気式膨張弁31cを通って
低圧の二相状態となって第2蒸発である熱交換器51c
へ流入し蒸発ガス化される。このガス冷媒は、低圧ガス
管63を通って第4の開閉弁127、第2の吸入管78
を経て第2圧縮機2に吸入される。
Next, with reference to FIG. 53, an operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large at the time of generating three temperatures for generating one condensation temperature and two evaporation temperatures. This operation mode is applied, for example, during normal cooling + ice heat storage + high-temperature hot water supply operation. FIG. 53 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator.
First on-off valve 121, second on-off valve 123, fourth on-off valve 127, eighth on-off valve 135, eleventh on-off valve 140
The open / close valves 26a, 27b, 28c are opened.
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, passes through the opening / closing valve 26a, and the heat exchanger 5
It flows into 1a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant flows through the electric expansion valve 31b into a low-pressure two-phase state, which is the heat exchanger 51b as the first evaporator. And is vaporized into gas.
This refrigerant gas merges with the discharge gas of the second compressor 2 through the intermediate pressure gas pipe 62 and the second on-off valve 123, and then the eighth on-off valve 135, the eleventh on-off valve 140, and the ninth on-off valve. On-off valve 1
It is sucked into the first compressor 1 via 37. On the other hand, the liquid pipe 64
The remaining liquid refrigerant that has flowed into the heat exchanger 51c, which is the second evaporation, is in a low-pressure two-phase state through the electric expansion valve 31c.
And is vaporized into gas. The gas refrigerant passes through the low pressure gas pipe 63 and the fourth on-off valve 127 and the second suction pipe 78.
And is sucked into the second compressor 2.

【0179】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図54に示すように第6の開閉弁131、第7の
開閉弁134、第10の開閉弁138、第11の開閉弁
140、第12の開閉弁142、第13の開閉弁144
と、開閉弁27a,28cを開状態として、熱交換器5
1cに流入し蒸発ガス化した冷媒ガスを、低圧ガス管6
3から第6の開閉弁131、第1の吸入管76を経て第
1圧縮機1に吸入させ、その吐出ガスと第12の開閉弁
142からの中圧ガス管62の冷媒の一部とを第2圧縮
機2に吸入させその吐出ガスを第13の開閉弁144か
ら高圧ガス管61に流入するようにしてもよい。このよ
うに、この運転モードでは、熱交換器51aで第1の凝
縮温度、熱交換器51bで第1の蒸発温度、熱交換器5
1cで第2の蒸発温度が得られる。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described. However, as shown in FIG. 54, a sixth opening / closing valve 131, a seventh opening / closing valve 134, a tenth opening / closing valve 138, and an eleventh opening / closing valve. Valve 140, twelfth on-off valve 142, thirteenth on-off valve 144
And the open / close valves 27a and 28c are opened, and the heat exchanger 5
Refrigerant gas that has flowed into 1c and has been vaporized and gasified is supplied to the low-pressure gas pipe 6
3 to the sixth on-off valve 131, the first suction pipe 76 to suck into the first compressor 1, the discharge gas and a part of the refrigerant of the medium-pressure gas pipe 62 from the twelfth on-off valve 142. The second compressor 2 may be sucked and its discharge gas may flow into the high pressure gas pipe 61 from the thirteenth on-off valve 144. Thus, in this operation mode, the heat exchanger 51a has the first condensation temperature, the heat exchanger 51b has the first evaporation temperature, and the heat exchanger 5 has the first evaporation temperature.
A second evaporation temperature is obtained at 1c.

【0180】実施例10.図55は実施例10の蒸気圧
縮式サイクルの冷媒回路の構成図である。図55におい
て、1は第1圧縮機、2は第2圧縮機、61は高圧ガス
管、63は低圧ガス管、62は中圧ガス管、64は液
管、51a,51b,51cは熱交換器で、熱交換器は
高圧ガス管61、低圧ガス管63、中圧ガス管62に各
々開閉弁26a,27a,28a及び26b,27b,
28b及び26c,27c,28cを介して分岐接続す
るとともに、液管64とは流量制御弁である電子式膨張
弁31a,31b,31cをそれぞれ介して接続してい
る。72は第1圧縮機1の吐出側と高圧ガス管61とを
第1の開閉弁121を介して接続する第1の吐出管、7
4は第2圧縮機の吐出側と中圧ガス管62とを第2の開
閉弁123を介して接続する第2の吐出管、76は第1
圧縮機1の吸入側と第3の開閉弁125を介して四方弁
150に接続する第1の吸入管、78は第2圧縮機2の
吸入側と第4の開閉弁127を介して四方弁150に接
続する第2の吸入管、83は第1の吐出管72と第2の
吐出管74とを第7、第8の開閉弁134,135を介
して接続する吐出側接続管、86は第1の吸入管76と
第2の吸入管78とを第9、第10の開閉弁137,1
38を介して接続する吸入側接続管、89は吸入側接続
管86の第7と第8の開閉弁137,138との間と吐
出側接続管83の第9と第10の開閉弁134,135
との間を第11の開閉弁140を介して接続する第3の
バイパス管、91は第1の吐出管72と中圧ガス管62
とを第12の開閉弁142を介して接続する第4のバイ
パス管93は第2の吐出管74と高圧ガス管61とを第
13の開閉弁144を介して接続する第5のバイパス管
である。四方弁150は中圧ガス管62、低圧ガス管6
3、第1の吸入管76、第2の吸入管78が接続され、
中圧ガス管62と第1の吸入管76、低圧ガス管63と
第2の吸入管78、または中圧ガス管62と第2の吸入
管78、低圧ガス管63と第1の吸入管76とを切り替
えて接続する。この実施例の多温度生成回路には、実施
例9と同様に表1に示すように6つの運転モードがあ
り、以下、この6つの運転モードを図56〜図66を用
いて説明する。
Example 10. FIG. 55 is a configuration diagram of the refrigerant circuit of the vapor compression cycle of the tenth embodiment. In FIG. 55, 1 is a first compressor, 2 is a second compressor, 61 is a high pressure gas pipe, 63 is a low pressure gas pipe, 62 is a medium pressure gas pipe, 64 is a liquid pipe, 51a, 51b, 51c are heat exchanges. The heat exchanger includes a high-pressure gas pipe 61, a low-pressure gas pipe 63, and an intermediate-pressure gas pipe 62, and open / close valves 26a, 27a, 28a and 26b, 27b, respectively.
28b and 26c, 27c, 28c are branched and connected to the liquid pipe 64 via electronic expansion valves 31a, 31b, 31c which are flow control valves. Reference numeral 72 denotes a first discharge pipe that connects the discharge side of the first compressor 1 and the high-pressure gas pipe 61 via the first opening / closing valve 121.
Reference numeral 4 is a second discharge pipe that connects the discharge side of the second compressor and the medium pressure gas pipe 62 via the second opening / closing valve 123, and 76 is a first discharge pipe.
The first suction pipe connected to the four-way valve 150 via the suction side of the compressor 1 and the third on-off valve 125, 78 is a four-way valve via the suction side of the second compressor 2 and the fourth on-off valve 127. A second suction pipe connected to 150, 83 is a discharge side connection pipe connecting the first discharge pipe 72 and the second discharge pipe 74 through the seventh and eighth on-off valves 134 and 135, and 86 is The first suction pipe 76 and the second suction pipe 78 are connected to the ninth and tenth open / close valves 137, 1
The suction side connection pipe connected via 38, 89 is between the seventh and eighth on-off valves 137, 138 of the suction side connection pipe 86, and the ninth and tenth on-off valves 134, 138 of the discharge side connection pipe 83. 135
And a third bypass pipe connecting between and via the eleventh on-off valve 140, and 91 is a first discharge pipe 72 and an intermediate pressure gas pipe 62.
The fourth bypass pipe 93 that connects the second discharge pipe 74 and the high-pressure gas pipe 61 via the thirteenth on-off valve 144 is a fourth bypass pipe 93 that connects is there. The four-way valve 150 includes the medium pressure gas pipe 62 and the low pressure gas pipe 6.
3, the first suction pipe 76, the second suction pipe 78 is connected,
Medium pressure gas pipe 62 and first suction pipe 76, low pressure gas pipe 63 and second suction pipe 78, or medium pressure gas pipe 62 and second suction pipe 78, low pressure gas pipe 63 and first suction pipe 76. Switch and connect. The multi-temperature generation circuit of this embodiment has six operation modes as shown in Table 1 similarly to the ninth embodiment, and these six operation modes will be described below with reference to FIGS. 56 to 66.

【0181】まず図56を用いて1つの凝縮温度と1つ
の蒸発温度を生成する2温度生成時で、この凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房あるいは暖房
時などに適用される。図56では、熱交換器51aが凝
縮器、熱交換器51bが停止、熱交換器51cが蒸発器
として動作する例を示しており、第1の開閉弁121、
第4の開閉弁127、第7の開閉弁134、第8の開閉
弁135、第9の開閉弁137、第10の開閉弁138
と、開閉弁26a,28cを開状態とし、四方弁150
は低圧ガス管63と第2の吸入管78とを連通するよう
に切り替えられている。第1圧縮機1及び第2圧縮機2
から吐出された高温高圧冷媒ガスは、高圧ガス管61で
合流し、開閉弁26aを通って熱交換器51aに流入
し、凝縮液化される。この液冷媒は、電気式膨張弁31
aを通って液管64に流入し、電気式膨張弁31cを通
って低圧の二相状態となって熱交換器51cへ流入し、
蒸発ガス化される。そしたこの冷媒ガスは低圧ガス管6
3に流入し四方弁150から第2の吸入管78、吸入側
接続管86を通り第1圧縮機1と第2圧縮機に吸入され
る。このように、この運転モードでは、熱交換器51a
で凝縮温度が、熱交換器51cで蒸発温度が得られる。
First, with reference to FIG. 56, an operation will be described in which two condensation temperatures, one condensation temperature and one evaporation temperature, are generated and the difference between the condensation temperature and the evaporation temperature is relatively small. This operation mode is applied, for example, during normal cooling or heating. FIG. 56 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator. The first on-off valve 121,
Fourth opening / closing valve 127, seventh opening / closing valve 134, eighth opening / closing valve 135, ninth opening / closing valve 137, tenth opening / closing valve 138
And the on-off valves 26a and 28c are opened, and the four-way valve 150
Is switched so that the low-pressure gas pipe 63 and the second suction pipe 78 communicate with each other. First compressor 1 and second compressor 2
The high-temperature high-pressure refrigerant gas discharged from the high-pressure gas pipe 61 merges in the high-pressure gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. This liquid refrigerant is used in the electric expansion valve 31.
flowing into the liquid pipe 64 through a, flowing into the heat exchanger 51c through the electric expansion valve 31c in a low-pressure two-phase state,
Evaporative gasification. This refrigerant gas is used as a low pressure gas pipe 6
3 and flows from the four-way valve 150 into the first compressor 1 and the second compressor through the second suction pipe 78 and the suction side connecting pipe 86. Thus, in this operation mode, the heat exchanger 51a
To obtain the condensation temperature, and the heat exchanger 51c to obtain the evaporation temperature.

【0182】次に、図57を用いて1つの凝縮温度と1
つの蒸発温度を生成する2温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば高温給湯や給湯+氷蓄
熱時などに適用される。図57では、例えば熱交換器5
1aが凝縮器、熱交換器51bが停止、熱交換器51c
が蒸発器として動作する例を示しており、第1の開閉弁
121、第4の開閉弁127、第8の開閉弁135、第
9の開閉弁137、第11の開閉弁140と、開閉弁2
6a,28c開状態とし、四方弁150は低圧ガス管6
3と第2の吸入管78とを連通するよう切り替えられて
いる。第2圧縮機2から吐出された冷媒ガスは、第8の
開閉弁135、第11の開閉弁140、第9の開閉弁1
37を通って第1圧縮機1に吸入され高温高圧冷媒ガス
となって高圧ガス管61に流入する。開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電気式膨張弁31aを通って液管64に流入し
電気式膨張弁31cを通って低圧の二相状態となって熱
交換器51cへ流入し、蒸発ガス化される。この冷媒ガ
スは、低圧ガス管63を通って四方弁150から第4の
開閉弁127、第2の吸入管78を経て第2圧縮機2に
吸入される。
Next, referring to FIG. 57, one condensing temperature and 1
An operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when two temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage. In FIG. 57, for example, the heat exchanger 5
1a is a condenser, heat exchanger 51b is stopped, heat exchanger 51c
Shows an example of operating as an evaporator. Two
6a and 28c are opened, and the four-way valve 150 is the low pressure gas pipe 6
3 and the second suction pipe 78 are switched to communicate with each other. The refrigerant gas discharged from the second compressor 2 has an eighth opening / closing valve 135, an eleventh opening / closing valve 140, and a ninth opening / closing valve 1.
The high-temperature high-pressure refrigerant gas is drawn into the first compressor 1 through 37 and flows into the high-pressure gas pipe 61. It flows into the heat exchanger 51a through the on-off valve 26a and is condensed and liquefied. This liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, passes through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This refrigerant gas is sucked into the second compressor 2 through the low-pressure gas pipe 63, the four-way valve 150, the fourth opening / closing valve 127, and the second suction pipe 78.

【0183】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図58に示すように第3の開閉弁125、第7の
開閉弁134、第10の開閉弁138、第11の開閉弁
140、第13の開閉弁144と開閉弁27a,28c
を開状態、四方弁150を低圧ガス管63と第1の吸入
管76を連通するように切り替えることにより、熱交換
器51cに流入し蒸発ガス化した冷媒ガスを、低圧ガス
管63から第6の開閉弁131、第1の吸入管76を経
て第1圧縮機1に吸入させ、その吐出ガスを第2圧縮機
2に吸入させその吐出ガスを第13の開閉弁144から
高圧ガス管61に流入するようにしてもよい。このよう
に、この運転モードでは、2段圧縮運転となり、熱交換
器51aで凝縮温度が、熱交換器51cで蒸発温度が得
られる。
In the above description, the second compressor 2 is on the low stage side,
Although the operation when the first compressor 1 is set to the high stage side has been described, as shown in FIG. 58, the third on-off valve 125, the seventh on-off valve 134, the tenth on-off valve 138, and the eleventh on-off valve. Valve 140, thirteenth on-off valve 144 and on-off valves 27a, 28c
Is opened, and the four-way valve 150 is switched so that the low pressure gas pipe 63 and the first suction pipe 76 are communicated with each other, whereby the refrigerant gas flowing into the heat exchanger 51c and vaporized into a sixth gas is supplied from the low pressure gas pipe 63 to the sixth gas. Through the opening / closing valve 131 and the first suction pipe 76 of the first compressor 1, and the discharge gas of the second compressor 2 is sucked into the high pressure gas pipe 61 of the thirteenth opening / closing valve 144. You may make it flow in. As described above, in this operation mode, the two-stage compression operation is performed, and the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0184】次に図59を用いて、2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的低
い給湯運転時などに適用される。図59では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2の開閉弁123、第4
の開閉弁127、第10の開閉弁138と開閉弁26
a,27b,28cを開状態とし、四方弁150は低圧
ガス管63と第2の吸入管78とを連通するよう切り替
えられている。第1圧縮機1から吐出された高温高圧冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って第1凝縮器である熱交換器51aに流入し、凝縮液
化される。この液冷媒は、電気式膨張弁31aを通って
液管64に流入する。一方、第2圧縮機2から吐出され
た高温高圧冷媒ガスは、第2の開閉弁123を経て中圧
ガス管62に流入し、開閉弁27bを通って第2凝縮器
である熱交換器51cに流入し凝縮液化される。この液
冷媒は、電気式膨張弁31bを通って液管64に流入
し、第1凝縮器である熱交換器51aからの液冷媒と合
流する。この合流した液冷媒は、電気式膨張弁31cを
通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。この冷媒ガスは、低圧ガス管6
3を通って四方弁150から第4の開閉弁127、第2
の吸入管78を経て第1圧縮機1及び第2圧縮機2に吸
入される。
Next, referring to FIG. 59, two condensing temperatures and 1
An operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively small when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation. FIG. 59 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. On-off valve 123, fourth
On-off valve 127, tenth on-off valve 138 and on-off valve 26
The a, 27b, and 28c are opened, and the four-way valve 150 is switched to connect the low pressure gas pipe 63 and the second suction pipe 78. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a that is the first condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 flows into the medium-pressure gas pipe 62 through the second opening / closing valve 123, passes through the opening / closing valve 27b, and is the second condenser heat exchanger 51c. And is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant flows through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This refrigerant gas is a low pressure gas pipe 6
Through the four-way valve 150 to the fourth on-off valve 127, the second
It is sucked into the first compressor 1 and the second compressor 2 via the suction pipe 78.

【0185】上記の説明では、第1圧縮機1の吐出冷媒
を開閉弁26aから第1凝縮器である熱交換器51aに
流入させ、第2圧縮機2の吐出冷媒を開閉弁27bから
第2凝縮器である熱交換器51bに流入させているが、
図60に示すように第4の開閉弁127、第9の開閉弁
137、第10の開閉弁138、第12の開閉弁142
と第13の開閉弁144とを開状態として第1圧縮機1
の吐出冷媒を第2凝縮器である熱交換器51b、第2圧
縮機2の吐出冷媒を第1凝縮器である熱交換器51aに
流入させてもよい。従って、熱交換器51aと熱交換器
51bの負荷状態に合わせて第1圧縮機1と第2圧縮機
2からの冷媒を開閉弁を切り替えることにより熱交換器
に導入することができる。このように、この運転モード
では、熱交換器51aで第1の凝縮温度、熱交換器51
bで第2の凝縮温度、熱交換器51cで蒸発温度が得ら
れる。
In the above description, the refrigerant discharged from the first compressor 1 is made to flow from the opening / closing valve 26a into the heat exchanger 51a which is the first condenser, and the refrigerant discharged from the second compressor 2 is made to flow from the opening / closing valve 27b to the second opening / closing valve 27b. Although it is flowing into the heat exchanger 51b which is a condenser,
As shown in FIG. 60, a fourth on-off valve 127, a ninth on-off valve 137, a tenth on-off valve 138, and a twelfth on-off valve 142.
And the thirteenth on-off valve 144 are opened so that the first compressor 1
The discharge refrigerant may be caused to flow into the heat exchanger 51b that is the second condenser, and the discharge refrigerant from the second compressor 2 may be caused to flow into the heat exchanger 51a that is the first condenser. Therefore, the refrigerant from the first compressor 1 and the second compressor 2 can be introduced into the heat exchanger by switching the open / close valves according to the load states of the heat exchanger 51a and the heat exchanger 51b. As described above, in this operation mode, the first heat exchanger 51a has the first condensing temperature and the heat exchanger 51a.
The second condensation temperature is obtained at b, and the evaporation temperature is obtained at the heat exchanger 51c.

【0186】次に、図61を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図61では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2開閉弁123、第4の
開閉弁127、第8の開閉弁135、第9の開閉弁13
7、第11の開閉弁140と開閉弁26a,27b,2
8cを開状態とし四方弁150は低圧ガス管63と第1
の吸入管76とを連通するよう切り替えられている。第
2圧縮機2から吐出された冷媒ガスの一部は、第8の開
閉弁135及び第11の開閉弁140、第9の開閉弁1
37を通って第1圧縮機1に吸入され、高温高圧の冷媒
ガスとなって高圧ガス管61に流入する。このガス冷媒
は開閉弁26aを通って第1凝縮器である熱交換器51
aに流入し凝縮液化される。この液冷媒は、電気式膨張
弁31bを通って液管64に流入する。一方、第2圧縮
機2から吐出された冷媒ガスの残りは、第2の開閉弁1
23を通って中圧ガス管62に流入し、開閉弁27bを
通って第2凝縮器である熱交換器51bに流入し凝縮液
化される。この液冷媒は電気式膨張弁31bを通って液
管64に流入し、第1凝縮器である熱交換器51aから
液冷媒と合流する。この合流した液冷媒は電気式膨張弁
31cを通って低圧の二相状態となって熱交換器51c
へ流入し、蒸発ガス化される。この冷媒ガスは低圧ガス
管63を通って四方弁150、第4の開閉弁127、第
2の吸入管78を経て第2圧縮機2に吸入される。
Next, referring to FIG. 61, two condensing temperatures and 1
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. In FIG. 61, for example, the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. Open / close valve 123, fourth open / close valve 127, eighth open / close valve 135, ninth open / close valve 13
7, 11th on-off valve 140 and on-off valves 26a, 27b, 2
8c is opened and the four-way valve 150 is connected to the low pressure gas pipe 63 and the first
It is switched so as to communicate with the suction pipe 76 of. A part of the refrigerant gas discharged from the second compressor 2 is part of the eighth opening / closing valve 135, the eleventh opening / closing valve 140, and the ninth opening / closing valve 1.
After passing through 37, it is sucked into the first compressor 1, becomes high-temperature high-pressure refrigerant gas, and flows into the high-pressure gas pipe 61. This gas refrigerant passes through the on-off valve 26a and the heat exchanger 51, which is the first condenser.
It flows into a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b. On the other hand, the rest of the refrigerant gas discharged from the second compressor 2 is the second on-off valve 1
After passing through 23, it flows into the medium pressure gas pipe 62, passes through the on-off valve 27b, flows into the heat exchanger 51b which is the second condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant passes through the electric expansion valve 31c to become a low-pressure two-phase state and the heat exchanger 51c.
And is vaporized into gas. This refrigerant gas is sucked into the second compressor 2 through the low-pressure gas pipe 63, the four-way valve 150, the fourth opening / closing valve 127, and the second suction pipe 78.

【0187】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図62に示すように第1の開閉弁121、第7の
開閉弁134、第10の開閉弁138、第11の開閉弁
140、第12の開閉弁142と第13の開閉弁144
を開状態とするとともに四方弁150を低圧ガス管63
と第2の吸入管78とを連通するように切り替えて、熱
交換器51cに流入し蒸発ガス化した冷媒ガスを、低圧
ガス管63から四方弁150、第1の吸入管76を経て
第1圧縮機1に吸入させ、その吐出ガスを第2圧縮機2
に吸入させるようにしてもよい。このように、この運転
モードでは、熱交換器51aで第1の凝縮温度、熱交換
器51bで第2の凝縮温度、熱交換器51cで蒸発温度
が得られる。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described. However, as shown in FIG. Valve 140, twelfth on-off valve 142 and thirteenth on-off valve 144
Is opened and the four-way valve 150 is connected to the low pressure gas pipe 63.
And the second suction pipe 78 are communicated with each other, and the refrigerant gas that has flowed into the heat exchanger 51c and has been vaporized and gasified is passed from the low pressure gas pipe 63 through the four-way valve 150 and the first suction pipe 76 to the first suction pipe 76. The gas is sucked into the compressor 1, and its discharge gas is supplied to the second compressor 2
May be inhaled. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0188】次に図63を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。図63では、熱交換器51aが
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器として動作する例を示しており、第1の開
閉弁121、第3の開閉弁125、第4の開閉弁12
7、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態とし、四方弁150を
低圧ガス管63と第2の吸入管78、中圧ガス管62と
第1の吸入管76を連通するように切り替えられてい
る。第1圧縮機1から吐出された高温高圧冷媒ガスは、
第7,8の開閉弁135,134を経た第2圧縮機2の
吐出冷媒ガスと高圧ガス管61で合流し、開閉弁26a
を通って熱交換器51aに流入し凝縮液化される。この
液冷媒は、電気式膨張弁31aを通って液管64に流入
し、その一部は電気式膨張弁31bを通って低圧の二相
状態となって第1蒸発器である熱交換器51bへ流入し
蒸発ガス化される。この冷媒ガスは、中圧ガス管62を
通って四方弁150から第3の開閉弁125、第1の吸
入管76を経て第1の圧縮機1に吸入される。一方、液
管64に流入した残りの液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって第2蒸発器である熱交
換器51cへ流入し蒸発ガス化される。このガス冷媒
は、低圧ガス管63を通って四方弁150から第4の開
閉弁127、第2の吸入管78を経て第2圧縮機2に吸
入される。
Next, referring to FIG. 63, one condensing temperature and 2
An operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively small when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal cooling + ice heat storage operation. In FIG. 63, the heat exchanger 51a is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example of operating as a second evaporator, and the first opening / closing valve 121, the third opening / closing valve 125, and the fourth opening / closing valve 12 are shown.
7, the seventh opening / closing valve 134, the eighth opening / closing valve 135, and the opening / closing valves 26a, 27b, 28c are opened, and the four-way valve 150 is connected to the low pressure gas pipe 63, the second suction pipe 78, and the intermediate pressure gas pipe 62. It is switched so that the first suction pipe 76 communicates. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 is
The high pressure gas pipe 61 joins the refrigerant gas discharged from the second compressor 2 through the seventh and eighth on-off valves 135 and 134 to open and close the on-off valve 26a.
Through which it flows into the heat exchanger 51a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant flows through the electric expansion valve 31b into a low-pressure two-phase state, which is the heat exchanger 51b as the first evaporator. And is vaporized into gas. This refrigerant gas is sucked into the first compressor 1 from the four-way valve 150 through the medium pressure gas pipe 62, the third opening / closing valve 125, and the first suction pipe 76. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 is the electric expansion valve 31c.
Through it, it becomes a low-pressure two-phase state, flows into the heat exchanger 51c which is the second evaporator, and is evaporated and gasified. This gas refrigerant is sucked into the second compressor 2 through the low pressure gas pipe 63, the four-way valve 150, the fourth opening / closing valve 127, and the second suction pipe 78.

【0189】上記の説明では、中圧ガス管62の冷媒ガ
スを第1圧縮機1、低圧ガス管63の冷媒ガスを第2圧
縮機2に吸入させているが、図64に示すように第1の
開閉弁121、第3の開閉弁125、第4の開閉弁12
7、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態とし、四方弁150を
低圧ガス管63と第1の吸入管76、中圧ガス管62と
第2の吸入管78を連通するよう切り替えることによ
り、中圧ガス管62の冷媒ガスを第2圧縮機2、低圧ガ
ス管63の冷媒ガスを第1圧縮機1に吸入させてもよ
い。従って、熱交換器51cと熱交換器51bの熱負荷
に合わせて開閉弁を切り替えることにより圧縮機からの
冷媒の導入することができる。このように、この運転モ
ードでは、熱交換器51aで凝縮温度、熱交換器51b
で第1の蒸発温度、熱交換器51cで第2の蒸発温度が
得られる。
In the above description, the refrigerant gas in the medium pressure gas pipe 62 is sucked into the first compressor 1 and the refrigerant gas in the low pressure gas pipe 63 is sucked into the second compressor 2. However, as shown in FIG. 1 opening / closing valve 121, 3rd opening / closing valve 125, 4th opening / closing valve 12
7, the seventh on-off valve 134, the eighth on-off valve 135 and the on-off valves 26a, 27b, 28c are opened, and the four-way valve 150 is connected to the low-pressure gas pipe 63, the first suction pipe 76, and the medium-pressure gas pipe 62. The refrigerant gas in the medium-pressure gas pipe 62 may be sucked into the second compressor 2 and the refrigerant gas in the low-pressure gas pipe 63 may be sucked into the first compressor 1 by switching the second suction pipe 78 to communicate with each other. Therefore, the refrigerant can be introduced from the compressor by switching the opening / closing valve according to the heat load of the heat exchanger 51c and the heat exchanger 51b. As described above, in this operation mode, the heat exchanger 51a is operated at the condensing temperature and the heat exchanger 51b.
Then, the first evaporation temperature is obtained, and the second evaporation temperature is obtained by the heat exchanger 51c.

【0190】次に図65を用いて1つの凝縮温度と2つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱+高
温給湯運転時などに適用される。図65では、熱交換器
51aが凝縮器、熱交換器51bが第1蒸発器、熱交換
器51cが第2蒸発器として動作する例を示しており、
第1の開閉弁121、第2の開閉弁123、第4の開閉
弁127、第8の開閉弁135、第11の開閉弁140
と開閉弁26a,27b,28cを開状態とし、四方弁
150は低圧ガス管63と第2の吸入管78を連通する
ように切り替えられている。第1圧縮機1から吐出され
た高温高圧冷媒ガスは、高温ガス管61に流入し、開閉
弁26aを通って熱交換器51aに流入し凝縮液化され
る。この液冷媒は、電気式膨張弁31aを通って液管6
4に流入し、その一部は電気式膨張弁31bを通って低
圧の二相状態となって第1蒸発器である熱交換器51b
へ流入し蒸発ガス化される。この冷媒ガスは、中圧ガス
管62を通って第2の開閉弁123を経て第2圧縮機2
の吐出ガスと合流し、第8の開閉弁135、第11の開
閉弁140、第9の開閉弁137を経て第1圧縮機1に
吸入される。一方、液管64に流入した残りの液冷媒は
電気式膨張弁31cを通って低圧の二相状態となって第
2蒸発器である熱交換器51cへ流入し蒸発ガス化され
る。このガス冷媒は、低圧ガス管63を通って四方弁1
50から第4の開閉弁127、第2の吸入管128を経
て第2圧縮機2に吸入される。
Next, with reference to FIG. 65, an operation will be described in the case of generating three temperatures for generating one condensation temperature and two evaporation temperatures and when the difference between the condensation temperature and the evaporation temperature is relatively large. This operation mode is applied, for example, during normal cooling + ice heat storage + high-temperature hot water supply operation. FIG. 65 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator.
First on-off valve 121, second on-off valve 123, fourth on-off valve 127, eighth on-off valve 135, eleventh on-off valve 140
The open / close valves 26a, 27b, 28c are opened, and the four-way valve 150 is switched so as to connect the low pressure gas pipe 63 and the second suction pipe 78. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-temperature gas pipe 61, passes through the on-off valve 26a, flows into the heat exchanger 51a, and is condensed and liquefied. This liquid refrigerant passes through the electric expansion valve 31a and the liquid pipe 6
4 and a part of it flows through the electric expansion valve 31b into a low-pressure two-phase state and the heat exchanger 51b which is the first evaporator.
And is vaporized into gas. The refrigerant gas passes through the intermediate pressure gas pipe 62, the second opening / closing valve 123, and the second compressor 2
Is discharged to the first compressor 1 through the eighth opening / closing valve 135, the eleventh opening / closing valve 140, and the ninth opening / closing valve 137. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state and flows into the heat exchanger 51c, which is the second evaporator, to be vaporized and gasified. This gas refrigerant passes through the low-pressure gas pipe 63 and the four-way valve 1
50 is sucked into the second compressor 2 through the fourth opening / closing valve 127 and the second suction pipe 128.

【0191】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図66に示すように、第7の開閉弁134、第1
0の開閉弁138、第11の開閉弁140、第12の開
閉弁142、第13の開閉弁144と、四方弁150を
低圧ガス管63と第1の吸入管76を連通するよう切り
替えることにより、熱交換器51cに流入し蒸発ガス化
した冷媒ガスを、低圧ガス管63から四方弁150、第
3の開閉弁125、第1の吸入管76を経て第1圧縮機
1に吸入させ、その吐出ガスと第12の開閉弁142か
らの中圧ガス管62の冷媒の一部とを第2圧縮機2に吸
入させその吐出ガスを第13の開閉弁143から高圧ガ
ス管61に流入するようにしてもよい。このように、こ
の運転モードでは、熱交換器51aで凝縮温度、熱交換
器51bで第1の蒸発温度、熱交換器51cで第2の蒸
発温度が得られる。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described, but as shown in FIG. 66, the seventh on-off valve 134, the first
By switching the zero open / close valve 138, the eleventh open / close valve 140, the twelfth open / close valve 142, the thirteenth open / close valve 144, and the four-way valve 150 so that the low pressure gas pipe 63 and the first suction pipe 76 communicate with each other. The refrigerant gas that has flowed into the heat exchanger 51c and has been vaporized and gasified is sucked into the first compressor 1 from the low-pressure gas pipe 63 through the four-way valve 150, the third opening / closing valve 125, and the first suction pipe 76, and The discharge gas and a part of the refrigerant in the medium pressure gas pipe 62 from the twelfth on-off valve 142 are sucked into the second compressor 2 so that the discharge gas flows into the high pressure gas pipe 61 from the thirteenth on-off valve 143. You may Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature, the heat exchanger 51b obtains the first evaporation temperature, and the heat exchanger 51c obtains the second evaporation temperature.

【0192】実施例11.図67は実施例11の蒸気圧
縮式サイクルの冷媒回路の構成図である。図67におい
て、1は第1圧縮機、2は第2圧縮機、61は高圧ガス
管、63は低圧ガス管、62は中圧ガス管、64は液
管、51a,51b,51cは熱交換器で、熱交換器は
高圧ガス管61、低圧ガス管63、中圧ガス管62に各
々開閉弁26a,27a,28a及び26b,27b,
28b及び26c,27c,28cを介して分岐接続す
るとともに、液管64とは流量制御弁である電子式膨張
弁31a,31b,31cをそれぞれ介して接続してい
る。180は第2圧縮機2の吐出側と高圧ガス管61と
を第1の開閉弁181を介して接続する第2の吐出管、
182は第1圧縮機1の吐出側と高圧ガス管61とを第
1の四方弁183を介して接続する第1の吐出管、18
4は第2圧縮機2の吸入側と低圧ガス管63とを第2の
開閉弁185を介して接続する第2の吸入管、186は
第2圧縮機2の吐出側と第1の開閉弁181との間と第
1の四方弁183を接続する第1の接続管、188は第
2圧縮機2の吸入側と第2の開閉弁185との管と第2
の四方弁187とを接続する第2の接続管、190は第
1の四方弁183と第2の四方弁187とを第3の開閉
弁189を介して接続する第3の接続管、193と19
5は第3の接続管190の第3の開閉弁189の両側よ
り分岐しそれぞれに第4の開閉弁191と第5の開閉弁
192を介し中圧ガス管62に接続する第4の接続管と
第5の接続管である。この実施例の多温度生成回路に
は、実施例9と同様に表1に示すように6つの運転モー
ドがあり、以下、この6つの運転モードを図68〜図7
8を用いて説明する。
Example 11. 67 is a block diagram of the refrigerant circuit of the vapor compression cycle of the eleventh embodiment. 67, 1 is a first compressor, 2 is a second compressor, 61 is a high pressure gas pipe, 63 is a low pressure gas pipe, 62 is a medium pressure gas pipe, 64 is a liquid pipe, 51a, 51b, 51c are heat exchanges. The heat exchanger includes a high-pressure gas pipe 61, a low-pressure gas pipe 63, and an intermediate-pressure gas pipe 62, and open / close valves 26a, 27a, 28a and 26b, 27b, respectively.
28b and 26c, 27c, 28c are branched and connected to the liquid pipe 64 via electronic expansion valves 31a, 31b, 31c which are flow control valves. Reference numeral 180 denotes a second discharge pipe that connects the discharge side of the second compressor 2 and the high pressure gas pipe 61 via the first opening / closing valve 181.
A first discharge pipe 182 connects the discharge side of the first compressor 1 and the high-pressure gas pipe 61 via a first four-way valve 183.
Reference numeral 4 denotes a second suction pipe connecting the suction side of the second compressor 2 and the low-pressure gas pipe 63 via the second opening / closing valve 185, and 186 denotes a discharge side of the second compressor 2 and the first opening / closing valve. 181 is a first connecting pipe connecting the first four-way valve 183 and 188 is a pipe between the suction side of the second compressor 2 and the second on-off valve 185, and a second connecting pipe 188.
And a third connecting pipe 193 for connecting the first four-way valve 183 and the second four-way valve 187 via the third opening / closing valve 189. 19
5 is a fourth connecting pipe that branches from both sides of the third opening / closing valve 189 of the third connecting pipe 190 and is connected to the intermediate pressure gas pipe 62 via the fourth opening / closing valve 191 and the fifth opening / closing valve 192, respectively. And the fifth connecting pipe. The multi-temperature generation circuit of this embodiment has six operation modes as shown in Table 1 as in the ninth embodiment. Hereinafter, these six operation modes will be described with reference to FIGS. 68 to 7.
This will be described using 8.

【0193】まず図68を用いて1つの凝縮温度と1つ
の蒸発温度を生成する2温度生成時で、この凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房あるいは暖房
時などに適用される。図68では、熱交換器51aが凝
縮器、熱交換器51bが停止、熱交換器51cが蒸発器
として動作する例を示しており、第1の開閉弁181、
第2の開閉弁185と、開閉弁26a、28cを開状態
とし、第1の四方弁183は第1の吐出管182と高圧
ガス管61、第2の四方弁187は低圧ガス管63と第
1の吸入管194とを連通するよう切り替えられてい
る。第1圧縮機1及び第2圧縮機2から吐出された高温
高圧冷媒ガスは、高圧ガス管61で合流し、開閉弁26
aを通って熱交換器51aに流入し、凝縮液化される。
この液冷媒は、電気式膨張弁31aを通って液管64に
流入し、電気式膨張弁31cを通って低圧の二相状態と
なって熱交換器51cへ流入し、蒸発ガス化される。そ
してこの冷媒ガスは低圧ガス管63に流入し、その一部
は第2の四方弁187、第1の吸入管194を通り第1
圧縮機1に吸入される。そして残りの冷媒は第2の吸入
管184を通り第2圧縮機に吸入される。このように、
この運転モードでは、熱交換器51aで凝縮温度が、熱
交換器51cで蒸発温度が得られる。
First, with reference to FIG. 68, an operation will be described in which two condensation temperatures, one condensation temperature and one evaporation temperature, are generated and the difference between the condensation temperature and the evaporation temperature is relatively small. This operation mode is applied, for example, during normal cooling or heating. 68 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator. The first on-off valve 181,
The second on-off valve 185 and the on-off valves 26a and 28c are opened, the first four-way valve 183 is the first discharge pipe 182 and the high pressure gas pipe 61, and the second four-way valve 187 is the low pressure gas pipe 63 and the first four-way valve 187. It is switched so as to communicate with one suction pipe 194. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 and the second compressor 2 merges in the high-pressure gas pipe 61, and the on-off valve 26
It flows into the heat exchanger 51a through a and is condensed and liquefied.
The liquid refrigerant flows through the electric expansion valve 31a into the liquid pipe 64, and then flows through the electric expansion valve 31c into a low-pressure two-phase state into the heat exchanger 51c to be vaporized and gasified. Then, this refrigerant gas flows into the low pressure gas pipe 63, and a part of the refrigerant gas passes through the second four-way valve 187 and the first suction pipe 194 to form the first gas.
It is sucked into the compressor 1. Then, the remaining refrigerant passes through the second suction pipe 184 and is sucked into the second compressor. in this way,
In this operation mode, the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0194】次に図69を用いて1つの凝縮温度と1つ
の蒸発温度を生成する2温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば高温給湯や給湯+氷蓄熱
時などに適用される。図69では、例えば熱交換器51
aが凝縮器、熱交換器51bが停止、熱交換器51cが
蒸発器として動作する例を示しており、第2の開閉弁1
85、第3の開閉弁189と、開閉弁26a,28cを
開状態とし、第1の四方弁183は第1の吐出管182
と高圧ガス管61、第1接続管186と第3の接続管1
89とを連通、第2の四方弁187は第1の吸入管19
4と第3の接続管189とを連通するよう切り替えられ
ている。第2圧縮機2から吐出された冷媒ガスは、第1
接続管186、第3の接続管189、第2の四方弁18
7を通って第1圧縮機1に吸入され高温高圧冷媒ガスと
なって第1の四方弁183から高圧ガス管61に流入す
る。この冷媒ガスは開閉弁26aを通って熱交換器51
aに流入し、凝縮液化される。この液冷媒は、電気式膨
張弁31aを通って液管64に流入し電気式膨張弁31
cを通って低圧の二相状態となって熱交換器51cへ流
入し、蒸発ガス化される。この冷媒ガスは、低圧ガス管
63を通って第2の開閉弁185、第2の吸入管184
を経て第2圧縮機2に吸入される。
Next, with reference to FIG. 69, an operation will be described in which two condensation temperatures, one condensation temperature and one evaporation temperature, are generated, and the difference between the condensation temperature and the evaporation temperature is relatively large. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage. In FIG. 69, for example, the heat exchanger 51
In the example, a is a condenser, the heat exchanger 51b is stopped, and the heat exchanger 51c operates as an evaporator.
85, the third on-off valve 189 and the on-off valves 26a and 28c are opened, and the first four-way valve 183 is connected to the first discharge pipe 182.
And the high-pressure gas pipe 61, the first connecting pipe 186 and the third connecting pipe 1
89 and the second four-way valve 187 is connected to the first suction pipe 19
4 and the third connecting pipe 189 are switched to communicate with each other. The refrigerant gas discharged from the second compressor 2 is
Connection pipe 186, third connection pipe 189, second four-way valve 18
The high-temperature high-pressure refrigerant gas is sucked into the first compressor 1 through 7 and flows into the high-pressure gas pipe 61 from the first four-way valve 183. This refrigerant gas passes through the on-off valve 26a and the heat exchanger 51.
It flows into a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a and flows into the electric expansion valve 31.
It becomes a low pressure two-phase state through c, flows into the heat exchanger 51c, and is vaporized and gasified. The refrigerant gas passes through the low-pressure gas pipe 63, the second opening / closing valve 185, the second suction pipe 184.
And is sucked into the second compressor 2.

【0195】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図70に示すように、第3の開閉弁189と、第
1の四方弁183は第1の吐出管182と第3の接続管
189、第1の接続管186と高圧ガス管61とを連
通、第2の四方弁187は低圧ガス管63と第1の吸入
管194、第3の接続管189と第2の接続管188を
連通するよう切り替えることにより、熱交換器51cに
流入し蒸発ガス化した冷媒ガスを、低圧ガス管63から
第2の四方弁187を経て第1圧縮機1に吸入させ、そ
の吐出ガスを第1の四方弁183、第3の接続管19
6、第2の接続管188を経て第2圧縮機2に吸入さ
せ、その吐出ガスを第1の開閉弁181から高圧ガス管
61に流入するようにしてもよい。このように、この運
転モードでは2段圧縮運転となり、熱交換器51aで凝
縮温度が、熱交換器51cで蒸発温度が得られる。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described, but as shown in FIG. 70, the third opening / closing valve 189 and the first four-way valve 183 are connected to the first discharge pipe 182 and the third discharge pipe 182. Connection pipe 189, the first connection pipe 186 and the high pressure gas pipe 61 are communicated with each other, and the second four-way valve 187 connects the low pressure gas pipe 63 and the first suction pipe 194 and the third connection pipe 189 and the second connection pipe 189. By switching the pipes 188 so as to communicate with each other, the refrigerant gas that has flowed into the heat exchanger 51c and has been vaporized and gasified is sucked into the first compressor 1 from the low-pressure gas pipe 63 through the second four-way valve 187, and the discharged gas thereof. The first four-way valve 183 and the third connecting pipe 19
6. The gas may be sucked into the second compressor 2 via the second connecting pipe 188 and the discharge gas thereof may flow into the high pressure gas pipe 61 from the first opening / closing valve 181. As described above, in this operation mode, the two-stage compression operation is performed, and the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51c obtains the evaporation temperature.

【0196】次に図71を用いて2つの凝縮温度と1つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の暖房+比較的低い
給湯運転時などに適用される。図71では、例えば熱交
換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第2の開閉弁185、第4の開閉弁191と開閉
弁26a,27b,28cを開状態とし、第1の四方弁
183は第1の吐出管182と高圧ガス管61とを連
通、第2の四方弁187は低圧ガス管63と第1の吸入
管194を連通するよう切り替えられている。第1圧縮
機1から吐出された高温高圧冷媒ガスは、第1の吐出管
182、第1の四方弁183を経て高圧ガス管61に流
入し、開閉弁26aを通って第1凝縮器である熱交換器
51aに流入し、凝縮液化される。この液冷媒は、電気
式膨張弁31aを通って液管64に流入する。一方、第
2圧縮機2から吐出された高温高圧冷媒ガスは、第1の
四方弁183、第4開閉弁191を経て中圧ガス管62
に流入し、開閉弁27bを通って第2凝縮器である熱交
換器51bに流入し凝縮液化される。この液冷媒は、電
気式膨張弁31bを通って液管64に流入し、第1凝縮
器である熱交換器51aからの液冷媒と合流する。この
合流した液冷媒は、電気式膨張弁31cを通って低圧の
二相状態となって熱交換器51cへ流入し、蒸発ガス化
される。この冷媒ガスは、低圧ガス管63を通って、そ
の一部は第2四方弁187、第1の吸入管194を経て
第1圧縮機1に、残りは第2の開閉弁、第2の吸入管1
84を経て第2圧縮機2にそれぞれ吸入される。
Next, with reference to FIG. 71, an operation will be described in the case where the three condensing temperatures and the one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively small. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation. In FIG. 71, for example, the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. The open / close valve 191 and the open / close valves 26a, 27b, 28c are opened, the first four-way valve 183 communicates the first discharge pipe 182 and the high pressure gas pipe 61, and the second four-way valve 187 the low pressure gas pipe 63. And the first suction pipe 194 are communicated with each other. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61 via the first discharge pipe 182 and the first four-way valve 183, passes through the open / close valve 26a, and is the first condenser. It flows into the heat exchanger 51a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature high-pressure refrigerant gas discharged from the second compressor 2 passes through the first four-way valve 183 and the fourth on-off valve 191 and then the intermediate-pressure gas pipe 62.
To the heat exchanger 51b, which is the second condenser, through the on-off valve 27b, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant flows through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This refrigerant gas passes through the low-pressure gas pipe 63, a part of which passes through the second four-way valve 187 and the first suction pipe 194 to the first compressor 1, and the rest of which is the second on-off valve and the second suction pipe. Tube 1
It is sucked into the second compressor 2 via 84.

【0197】上記の説明では、第1圧縮機1の吐出冷媒
を開閉弁26aから第1凝縮器である熱交換器51aに
流入させ、第2圧縮機2の吐出冷媒を開閉弁27bから
第2凝縮器である熱交換器51bに流入させているが、
図72に示すように第1の開閉弁181を開とし、第1
の四方弁183を第1の吐出管182と第3の接続管1
90とを連通するよう切り替えることにより、第1圧縮
機1の吐出冷媒を第2凝縮器である熱交換器51b、第
2圧縮機2の吐出冷媒を第1凝縮器である熱交換器51
aに流入させてもよい。従って、熱交換器51aと熱交
換器51bの負荷状態に合わせて第1圧縮機1と第2圧
縮機2からの冷媒を開閉弁を切り替えることにより熱交
換器に導入することができる。このように、この運転モ
ードでは、熱交換器51aで第1の凝縮温度、熱交換器
51bで第2の凝縮温度、熱交換器51cで蒸発温度が
得られる。
In the above description, the refrigerant discharged from the first compressor 1 is made to flow from the opening / closing valve 26a into the heat exchanger 51a which is the first condenser, and the refrigerant discharged from the second compressor 2 is made to flow from the opening / closing valve 27b to the second opening / closing valve 27b. Although it is flowing into the heat exchanger 51b which is a condenser,
As shown in FIG. 72, the first opening / closing valve 181 is opened to
The four-way valve 183 of the first discharge pipe 182 and the third connecting pipe 1
90 so that the refrigerant discharged from the first compressor 1 is the heat exchanger 51b that is the second condenser, and the refrigerant discharged from the second compressor 2 is the heat exchanger 51 that is the first condenser.
It may be allowed to flow into a. Therefore, the refrigerant from the first compressor 1 and the second compressor 2 can be introduced into the heat exchanger by switching the open / close valves according to the load states of the heat exchanger 51a and the heat exchanger 51b. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0198】次に、図73を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図73では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第2開閉弁185、第3の開閉弁184、第4の
開閉弁191と開閉弁26a,26b,28cを開状態
とし、第1の四方弁183は第1の吐出管182と高圧
ガス管61、第1の接続管186と第3の接続管190
とを連通、第2の四方弁187は第1の吸入管194と
第3の接続管190とを連通するよう切り替えられてい
る。
Next, referring to FIG. 73, two condensing temperatures and 1
The operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. FIG. 73 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. The open / close valve 184, the fourth open / close valve 191 and the open / close valves 26a, 26b, 28c are opened, and the first four-way valve 183 is connected to the first discharge pipe 182 and the high pressure gas pipe 61, and the first connecting pipe 186 and the first connection pipe 186. Three connecting tubes 190
And the second four-way valve 187 is switched so as to connect the first suction pipe 194 and the third connection pipe 190.

【0199】第2圧縮機2から吐出された冷媒ガスの一
部は、第3の開閉弁189、第2の四方弁187、第1
の吸入管194を通って第1の圧縮機1に吸入され、高
温高圧の冷媒ガスとなって高圧ガス管61に流入する。
このガス冷媒は開閉弁26aを通って第1凝縮器である
熱交換器51aに流入し凝縮液化される。この液冷媒
は、電気式膨張弁31bを通って液管64に流入する。
一方、第2圧縮機2から吐出された冷媒ガスの残りは、
第4の開閉弁191を通って中圧ガス管62に流入し、
開閉弁27bを通って第2凝縮器である熱交換器51b
に流入し凝縮液化される。この液冷媒は電気式膨張弁3
1bを通って液管64に流入し、第1凝縮器である熱交
換器51aからの液冷媒と合流する。この合流した液冷
媒は電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。この冷
媒ガスは低圧ガス管63を通って第2の開閉弁185、
第2の吸入管184を経て第2圧縮機2に吸入される。
A part of the refrigerant gas discharged from the second compressor 2 is partly supplied to the third on-off valve 189, the second four-way valve 187 and the first
Is sucked into the first compressor 1 through the suction pipe 194, becomes high-temperature high-pressure refrigerant gas, and flows into the high-pressure gas pipe 61.
This gas refrigerant flows through the opening / closing valve 26a into the heat exchanger 51a, which is the first condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b.
On the other hand, the rest of the refrigerant gas discharged from the second compressor 2 is
Through the fourth on-off valve 191 and flowing into the medium pressure gas pipe 62,
The heat exchanger 51b which is the second condenser through the opening / closing valve 27b.
And is condensed and liquefied. This liquid refrigerant is an electric expansion valve 3
It flows into the liquid pipe 64 through 1b and merges with the liquid refrigerant from the heat exchanger 51a which is the first condenser. The combined liquid refrigerant flows through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This refrigerant gas passes through the low-pressure gas pipe 63 and the second opening / closing valve 185,
It is sucked into the second compressor 2 via the second suction pipe 184.

【0200】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図74に示すように第3の開閉弁189、第1の
四方弁183は第1の吐出管182と第2の接続管19
0、第1の接続管186と高圧ガス管61とを連通、第
2の四方弁187は低圧ガス管63と第1の吸入管19
4、第3の接続管190と第2の接続管188とを連通
するように切り替えて、熱交換器51cに流入し蒸発ガ
ス化した冷媒ガスを、低圧ガス管63から第2の四方弁
187、第1の吸入管194を経て第1圧縮機1に吸入
させ、その吐出ガスの一部を第2圧縮機2に吸入させ、
残りのガスを第5の開閉弁192から中圧ガス管62に
流入させるようにしてもよい。このように、この運転モ
ードでは、熱交換器51aで第1の凝縮温度、熱交換器
51bで第2の凝縮温度、熱交換器51cで蒸発温度が
得られる。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described, but as shown in FIG. 74, the third opening / closing valve 189 and the first four-way valve 183 connect the first discharge pipe 182 and the second connection pipe 182. Tube 19
0, the first connecting pipe 186 and the high-pressure gas pipe 61 are communicated with each other, and the second four-way valve 187 includes the low-pressure gas pipe 63 and the first suction pipe 19.
4, the third connecting pipe 190 and the second connecting pipe 188 are switched so as to communicate with each other, and the refrigerant gas that has flowed into the heat exchanger 51c and has been vaporized and gasified is supplied from the low pressure gas pipe 63 to the second four-way valve 187. , The first compressor 1 through the first suction pipe 194, and a part of the discharge gas is sucked into the second compressor 2,
The remaining gas may be caused to flow into the medium pressure gas pipe 62 from the fifth opening / closing valve 192. Thus, in this operation mode, the heat exchanger 51a obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51c obtains the evaporation temperature.

【0201】次に図75を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。図75では、熱交換器51aが
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器として動作する例を示しており、第1の開
閉弁181、第2の開閉弁185、第5の開閉弁192
と開閉弁26a,27b,28cを開状態とし、第1の
四方弁183は第1の吐出管182と高圧ガス管61と
を連通、第2の四方弁187は第3の接続管190と第
1の吸入管194を連通するように切り替えられてい
る。
Next, referring to FIG. 75, one condensation temperature and 2
An operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively small when three temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, during normal cooling + ice heat storage operation. In FIG. 75, the heat exchanger 51a is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example of operating as a second evaporator, and includes a first opening / closing valve 181, a second opening / closing valve 185, and a fifth opening / closing valve 192.
And the on-off valves 26a, 27b, 28c are opened, the first four-way valve 183 connects the first discharge pipe 182 and the high-pressure gas pipe 61, and the second four-way valve 187 connects the third connection pipe 190 and the third connection pipe 190. It is switched so that the first suction pipe 194 is communicated.

【0202】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1の四方弁を通り、第1の開閉弁181を経
た第2圧縮機2の吐出冷媒ガスと高圧ガス管61で合流
し、開閉弁26aを通って熱交換器51aに流入し凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入し、その一部は電気式膨張弁31bを
通って低圧の二相状態となって第1蒸発器である熱交換
器51bへ流入し蒸発ガス化される。この冷媒ガスは、
中圧ガス管62を通って第5の開閉弁192、第2の四
方弁187、第1の吸入管76を経て第1の圧縮機1に
吸入される。一方、液管64に流入した残りの液冷媒
は、電気式膨張弁31cを通って低圧の二相状態となっ
て第2蒸発器である熱交換器51cへ流入し蒸発ガス化
される。このガス冷媒は、低圧ガス管63を通って第2
の開閉弁185、第2の吸入管184を経て第2圧縮機
2に吸入される。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 passes through the first four-way valve, merges with the refrigerant discharged from the second compressor 2 via the first on-off valve 181 in the high-pressure gas pipe 61. Then, it flows into the heat exchanger 51a through the opening / closing valve 26a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant flows through the electric expansion valve 31b into a low-pressure two-phase state, which is the heat exchanger 51b as the first evaporator. And is vaporized into gas. This refrigerant gas is
It is sucked into the first compressor 1 through the intermediate pressure gas pipe 62, the fifth opening / closing valve 192, the second four-way valve 187, and the first suction pipe 76. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 passes through the electric expansion valve 31c into a low-pressure two-phase state, flows into the heat exchanger 51c that is the second evaporator, and is evaporated and gasified. This gas refrigerant passes through the low pressure gas pipe 63 to the second
It is sucked into the second compressor 2 through the open / close valve 185 and the second suction pipe 184.

【0203】上記の説明では、中圧ガス管62の冷媒ガ
スを第1圧縮機1、低圧ガス管63の冷媒ガスを第2圧
縮機2に吸入させているが、図76に示すように第1の
開閉弁181、第5の開閉弁192と開閉弁26a,2
7b,28cを開状態とし、第1の四方弁183は第1
の吐出管182と高圧ガス管61とを連通、第2の四方
弁187は第3の接続管190と第2の接続管188、
低圧ガス管63と第1の吸入管194を連通するよう切
り替えることにより、中圧ガス管62の冷媒ガスを第2
圧縮機2、低圧ガス管63の冷媒ガスを第1圧縮機1に
吸入させてもよい。従って、熱交換器51cと熱交換器
51bの熱負荷に合わせて開閉弁を切り替えることによ
り圧縮機からの冷媒の導入することができる。このよう
に、この運転モードでは、熱交換器51aで凝縮温度、
熱交換器51bで第1の蒸発温度、熱交換器51cで第
2の蒸発温度が得られる。
In the above description, the refrigerant gas in the medium pressure gas pipe 62 is sucked into the first compressor 1 and the refrigerant gas in the low pressure gas pipe 63 is sucked into the second compressor 2. However, as shown in FIG. 1 open / close valve 181, 5th open / close valve 192 and open / close valves 26a, 2
7b and 28c are opened, and the first four-way valve 183 is set to the first
The discharge pipe 182 and the high pressure gas pipe 61 are communicated with each other, and the second four-way valve 187 includes a third connecting pipe 190 and a second connecting pipe 188.
By switching the low pressure gas pipe 63 and the first suction pipe 194 so as to communicate with each other, the refrigerant gas in the medium pressure gas pipe 62 is changed to the second refrigerant gas.
The refrigerant gas in the compressor 2 and the low-pressure gas pipe 63 may be sucked into the first compressor 1. Therefore, the refrigerant can be introduced from the compressor by switching the opening / closing valve according to the heat load of the heat exchanger 51c and the heat exchanger 51b. As described above, in this operation mode, the condensation temperature in the heat exchanger 51a is
The heat exchanger 51b obtains a first evaporation temperature and the heat exchanger 51c obtains a second evaporation temperature.

【0204】次に図77を用いて1つの凝縮温度と2つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱+高
温給湯運転時などに適用される。図77では、熱交換器
51aが凝縮器、熱交換器51bが第1蒸発器、熱交換
器51cが第2蒸発器として動作する例を示しており、
第2の開閉弁185、第3の開閉弁189、第5の開閉
弁192と開閉弁26a,27b,28cを開状態と
し、第1の四方弁183は第1の吐出管182と高圧ガ
ス管61、第1の接続管186と第3の接続管190と
を連通、第2の四方弁187は第3の接続管190と第
1の吸入管194とを連通するように切り替えられてい
る。
Next, with reference to FIG. 77, an operation will be described in the case where the difference between the condensation temperature and the evaporation temperature is relatively large at the time of generating three temperatures for generating one condensation temperature and two evaporation temperatures. This operation mode is applied, for example, during normal cooling + ice heat storage + high-temperature hot water supply operation. 77 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator.
The second on-off valve 185, the third on-off valve 189, the fifth on-off valve 192 and the on-off valves 26a, 27b, 28c are opened, and the first four-way valve 183 is connected to the first discharge pipe 182 and the high pressure gas pipe. 61, the first connecting pipe 186 and the third connecting pipe 190 are communicated with each other, and the second four-way valve 187 is switched so as to communicate the third connecting pipe 190 and the first suction pipe 194.

【0205】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1の四方弁183から高圧ガス管61に流入
し、開閉弁26aを通って熱交換器51aに流入し凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入し、その一部は電気式膨張弁31bを
通って低圧の二相状態となって第1蒸発器である熱交換
器51bへ流入し蒸発ガス化される。この冷媒ガスは、
中圧ガス管62を通って第5の開閉弁192を経て第2
圧縮機2の吐出ガスと合流し、第2の四方弁187、第
1の吸入管194を経て第1圧縮機1に吸入される。一
方、液管64に流入した残りの液冷媒は電気式膨張弁3
1cを通って低圧の二相状態となって第2蒸発器である
熱交換器51cへ流入し蒸発ガス化される。このガス冷
媒は、低圧ガス管63を通って第2の開閉弁185、第
2の吸入管184を経て第2圧縮機2に吸入される。
The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61 from the first four-way valve 183, passes through the on-off valve 26a and flows into the heat exchanger 51a, and is condensed and liquefied. . The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant flows through the electric expansion valve 31b into a low-pressure two-phase state, which is the heat exchanger 51b as the first evaporator. And is vaporized into gas. This refrigerant gas is
The second through the fifth on-off valve 192 through the medium pressure gas pipe 62
It joins the discharge gas of the compressor 2 and is sucked into the first compressor 1 via the second four-way valve 187 and the first suction pipe 194. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 is the electric expansion valve 3
After passing through 1c, it becomes a low-pressure two-phase state and flows into the heat exchanger 51c which is the second evaporator, and is vaporized and gasified. The gas refrigerant is sucked into the second compressor 2 through the low pressure gas pipe 63, the second opening / closing valve 185 and the second suction pipe 184.

【0206】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図78に示すように、第1の開閉弁181、第3
の開閉弁189、第5の開閉弁192を開状態とし、第
1の四方弁183は第1の吐出管182と第3の接続管
190、第1の接続管186と高圧ガス管61とを連
通、第2の四方弁187は低圧ガス管63と第1の吸入
管194、第3の接続管190と第2の接続管188と
を連通するよう切り替えることにより、熱交換器51c
に流入し蒸発ガス化した冷媒ガスを、低圧ガス管63か
ら第2の四方弁187、第1の吸入管194を経て第1
圧縮機1に吸入させ、その吐出ガスと第5の開閉弁19
2からの中圧ガス管62の冷媒の一部とを第2圧縮機2
に吸入させその吐出ガスを第1の開閉弁181から高圧
ガス管61に流入するようにしてもよい。このように、
この運転モードでは、熱交換器51aで凝縮温度、熱交
換器51bで第1の蒸発温度、熱交換器51cで第2の
蒸発温度が得られる。なお実施例9〜11では負荷に応
じて低段圧縮機と高段圧縮機の選択が可能であるため高
範囲な運転に十分の性能が発揮できる回路となってい
る。
In the above description, the second compressor 2 is on the low stage side,
The operation when the first compressor 1 is on the high stage side has been described, but as shown in FIG. 78, the first on-off valve 181 and the third on-off valve 181 are provided.
The open / close valve 189 and the fifth open / close valve 192 of FIG. The communication, the second four-way valve 187 is switched so that the low-pressure gas pipe 63 and the first suction pipe 194 and the third connection pipe 190 and the second connection pipe 188 communicate with each other, so that the heat exchanger 51c
The refrigerant gas that has flowed into the chamber and has been vaporized and gasified is passed through the low pressure gas pipe 63, the second four-way valve 187, and the first suction pipe 194, and
The gas is sucked into the compressor 1, and its discharge gas and the fifth on-off valve 19
2 and a part of the refrigerant in the medium pressure gas pipe 62 from the second compressor 2
Alternatively, the discharge gas may be sucked into the high pressure gas pipe 61 through the first opening / closing valve 181. in this way,
In this operation mode, the heat exchanger 51a obtains the condensation temperature, the heat exchanger 51b obtains the first evaporation temperature, and the heat exchanger 51c obtains the second evaporation temperature. In Examples 9 to 11, the low-stage compressor and the high-stage compressor can be selected according to the load, so that the circuit has sufficient performance for a wide range of operation.

【0207】実施例12.実施例12を図79について
説明する。図において、1は第1圧縮機、2は第2圧縮
機、11は第1アキュムレータ、12は第2アキュムレ
ータ、51a,51b,51cは熱交換器、57は給湯
用熱交換器である。61は第1圧縮機1の吐出側に接続
された高圧ガス管である第1配管、62は第2圧縮機2
の吐出側に第1の開閉器である第1開閉弁21を介して
接続された中圧ガス管である第2配管、63は第1圧縮
機1に吸入側に第1アキュムレータ11を介して接続さ
れた低圧ガス管である第3配管、64は液管である。第
1圧縮機1と第1アキュムレータ11の間の第3配管6
3には第3開閉器を構成する第2開閉弁と第1逆止弁4
1が設けられている。23は第2圧縮機2と第1開閉弁
21の間の第2配管62と第1配管61とを接続する高
圧ガス連通管65に設けられた第5開閉弁の第3開閉
弁、24は第2圧縮機2と第3開閉弁23の間の高圧ガ
ス連通管65と第2開閉弁22と第1逆止弁41の間の
第3の配管63とを接続する圧縮機連通管66に設けら
れた第4開閉弁で、この場合は第4開閉器は第2開閉
弁、第4開閉弁及び第1逆止弁で構成されている。25
は分岐して第1圧縮機1の吸入側に接続する第2配管6
2の分岐点と第2アキュムレータ12間の第2配管62
に設けられた第5開閉弁、42は第1圧縮機1と第2ア
キュムレータ12の間の第2配管62に設けられた第2
逆止弁で、第2開閉器は第5開閉弁25と第2逆止弁4
2で構成されている。また熱交換器51aには第1配管
が第1切換四方弁271、第3切換四方弁273を介し
て、熱交換器51bには第3配管が第1切換四方弁27
1、第2切換四方弁272を介して、熱交換器51cに
は第2配管が第2切換四方弁272、第3切換四方弁2
73を介して接続するとともに、液管64が冷媒流量制
御器である電子式膨張弁31a,31b,31cをそれ
ぞれ介して接続している。また給湯用熱交換器57には
第1配管より分岐接続するとともに、液管64が冷媒流
量制御器である電子式膨張弁31dを介して接続してい
る。
Example 12. Example 12 will be described with reference to FIG. 79. In the figure, 1 is a first compressor, 2 is a second compressor, 11 is a first accumulator, 12 is a second accumulator, 51a, 51b and 51c are heat exchangers, and 57 is a hot water heat exchanger. 61 is a first pipe which is a high pressure gas pipe connected to the discharge side of the first compressor 1, and 62 is a second compressor 2
The second pipe, which is a medium-pressure gas pipe connected to the discharge side of the first via the first opening / closing valve 21 that is the first switch, 63 is connected to the first compressor 1 via the first accumulator 11 on the suction side. A third pipe, which is a low-pressure gas pipe connected, 64 is a liquid pipe. Third pipe 6 between the first compressor 1 and the first accumulator 11
A second on-off valve and a first check valve 4 which constitute a third switch are provided at 3.
1 is provided. Reference numeral 23 is a third opening / closing valve of the fifth opening / closing valve provided in the high-pressure gas communication pipe 65 connecting the second pipe 62 and the first pipe 61 between the second compressor 2 and the first opening / closing valve 21, and 24 is A high pressure gas communication pipe 65 between the second compressor 2 and the third on-off valve 23 and a compressor communication pipe 66 connecting the third pipe 63 between the second on-off valve 22 and the first check valve 41. The fourth on-off valve provided, and in this case, the fourth on-off valve is composed of the second on-off valve, the fourth on-off valve and the first check valve. 25
Second pipe 6 that branches to connect to the suction side of the first compressor 1.
Second pipe 62 between the second branch point and the second accumulator 12
Is a fifth opening / closing valve, and 42 is a second opening / closing valve provided in the second pipe 62 between the first compressor 1 and the second accumulator 12.
It is a check valve, and the second switch is the fifth switch valve 25 and the second check valve 4.
It is composed of two. The first pipe is connected to the heat exchanger 51a via the first switching four-way valve 271 and the third switching four-way valve 273, and the third pipe is connected to the heat exchanger 51b by the first switching four-way valve 27.
The second pipe has a second switching four-way valve 272 and a third switching four-way valve 2 in the heat exchanger 51c via the first and second switching four-way valves 272.
The liquid pipe 64 is connected via the electronic expansion valves 31a, 31b, 31c which are refrigerant flow rate controllers. The hot water supply heat exchanger 57 is branched from the first pipe, and the liquid pipe 64 is connected to the hot water heat exchanger 57 via an electronic expansion valve 31d which is a refrigerant flow rate controller.

【0208】この実施例の冷暖房蓄熱給湯システムに
は、表1に示すように6つの運転モードがある。以下に
この6つの運転モードを図80〜85を用いて説明す
る。
The cooling and heating heat storage hot water supply system of this embodiment has six operation modes as shown in Table 1. The six operation modes will be described below with reference to FIGS.

【0209】まず、図80の冷暖房蓄熱給湯システムの
運転動作状態を示す説明図を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房時あるいは暖
房時に適用される。図80では、熱交換器51aが凝縮
器、熱交換器51bが蒸発器、熱交換器51c,57が
停止として動作する例を示しており、第1開閉弁21、
第4開閉弁24、第5開閉弁25を閉止状態(図中塗り
つぶし)としている。第1切換四方弁271、第2切換
四方弁272、第3切換四方弁273はいずれも無通電
状態である。第1圧縮機1、第2圧縮機2は並列運転さ
れる。矢印で冷媒の流れを示す。第2圧縮機2から吐出
された高温高圧冷媒ガスは高圧ガス連通管65を経て第
1配管61で第1圧縮機1から吐出された高温高圧冷媒
ガスと合流し、第1切換四方弁271、第3切換四方弁
273を通って熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電気式膨張弁31aを通って液管6
4に流入し、電子式膨張弁31bを通って低圧の二相状
態となって熱交換器51bへ流入し、蒸発ガス化され
る。このガス冷媒は、第3配管63を通って第1アキュ
ムレータ11を経て第1圧縮機1及び第2圧縮機2に吸
入される。このように、この運転モードでは、熱交換器
51aで凝縮温度が、熱交換器51bで蒸発温度が得ら
れる。
First, using the explanatory diagram showing the operating state of the cooling and heating heat storage and hot water supply system of FIG. 80, the difference between the condensation temperature and the evaporation temperature at the time of generating two temperatures for generating one condensation temperature and one evaporation temperature The operation when the size is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating. 80 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as an evaporator, and the heat exchangers 51c and 57 stop. The first on-off valve 21,
The fourth opening / closing valve 24 and the fifth opening / closing valve 25 are closed (filled in the figure). The first switching four-way valve 271, the second switching four-way valve 272, and the third switching four-way valve 273 are all in the non-energized state. The first compressor 1 and the second compressor 2 are operated in parallel. The arrow indicates the flow of the refrigerant. The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 merges with the high-temperature high-pressure refrigerant gas discharged from the first compressor 1 in the first pipe 61 via the high-pressure gas communication pipe 65, and the first switching four-way valve 271, It flows into the heat exchanger 51a through the third switching four-way valve 273 and is condensed and liquefied. This liquid refrigerant passes through the electric expansion valve 31a and the liquid pipe 6
4 into the heat exchanger 51b in the low pressure two-phase state through the electronic expansion valve 31b, and is vaporized into gas. This gas refrigerant is drawn into the first compressor 1 and the second compressor 2 through the third pipe 63 and the first accumulator 11. Thus, in this operation mode, the heat exchanger 51a obtains the condensation temperature and the heat exchanger 51b obtains the evaporation temperature.

【0210】次に図81の冷暖房蓄熱給湯システムの運
転動作状態を示す説明図を用いて、1つの凝縮温度と1
つの蒸発温度を生成する2温度生成時で、凝縮温度と蒸
発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば高温給湯や給湯+氷蓄熱
時などに適用される。図81では、熱交換器57dが凝
縮器、熱交換器51bが蒸発器、熱交換器51a,51
cが停止として動作する例を示しており、第1開閉弁2
1、第3開閉弁23、第5開閉弁25を閉止状態(図中
塗りつぶし)としている。第1切換四方弁71、第2切
換四方弁272、第3切換四方弁273はいずれも無通
電状態である。第1圧縮機1、第2圧縮機2は直列運転
される。矢印で冷媒の流れを示す。
[0210] Next, one condensing temperature and 1
An operation will be described in the case where a difference between the condensation temperature and the evaporation temperature is relatively large when two temperatures are generated to generate one evaporation temperature. This operation mode is applied, for example, to hot water supply or hot water supply + ice heat storage. In FIG. 81, the heat exchanger 57d is a condenser, the heat exchanger 51b is an evaporator, and the heat exchangers 51a and 51b.
The example in which c operates as a stop is shown, and the first on-off valve 2
The first, third on-off valve 23, and fifth on-off valve 25 are closed (filled in the figure). The first switching four-way valve 71, the second switching four-way valve 272, and the third switching four-way valve 273 are all in the non-energized state. The first compressor 1 and the second compressor 2 are operated in series. The arrow indicates the flow of the refrigerant.

【0211】第2圧縮機から吐出された高温高圧冷媒ガ
スは、高圧ガス連通管65とこれから分岐した圧縮機連
通管66に流入し、第4開閉弁24及び第2開閉弁22
を通って第1圧縮機1に吸入され、二段圧縮され高温高
圧の冷媒ガスとなって第1配管61に流入する。このガ
ス冷媒は、第1配管61を通って熱交換器51aに流入
し、凝縮液化される。この液冷媒は、電子式膨張弁31
aを通って液管64に流入し、電子式膨張弁31bを通
って低圧の二相状態となって熱交換器51bへ流入し、
蒸発ガス化される。このガス冷媒は、第3配管63を通
って第1アキュムレータ11を経て第2圧縮機2に吸入
される。このように、この運転モードでは、二段圧縮運
転になり、熱交換器51aで凝縮温度が、熱交換器51
bで蒸発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the second compressor flows into the high-pressure gas communication pipe 65 and the compressor communication pipe 66 branched from the high-pressure gas communication pipe 65, and the fourth on-off valve 24 and the second on-off valve 22.
The refrigerant gas is sucked into the first compressor 1 through the passage, is compressed in two stages, and becomes a high-temperature and high-pressure refrigerant gas, and flows into the first pipe 61. This gas refrigerant flows into the heat exchanger 51a through the first pipe 61 and is condensed and liquefied. This liquid refrigerant is used in the electronic expansion valve 31.
through a, into the liquid pipe 64, and through the electronic expansion valve 31b into a low-pressure two-phase state and into the heat exchanger 51b,
Evaporative gasification. This gas refrigerant is drawn into the second compressor 2 through the third pipe 63, the first accumulator 11, and the second compressor 2. As described above, in this operation mode, the two-stage compression operation is performed, and the condensation temperature in the heat exchanger 51a is
The evaporation temperature is obtained in b.

【0212】次に図82のこの実施例の冷暖房蓄熱給湯
システムの運転動作状態を示す説明図を用いて、2つの
凝縮温度と1つの蒸発温度を生成する3温度生成時で、
凝縮温度と蒸発温度の差が比較的小さい場合の動作につ
いて説明する。この運転モードは、例えば通常の暖房+
比較的低い給湯運転時などに適用される。図82では、
熱交換器57が第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51aが蒸発器、熱交換器51cが停止と
して動作する例を示しており、第3開閉弁23、第4開
閉弁24、第5開閉弁25を閉止状態(図中塗りつぶ
し)としている。第1切換四方弁271、第2切換四方
弁272、は通電状態(回路切換状態)、第3切換四方
弁273は無通電状態である。第1圧縮機1、第2圧縮
機2は並列運転される。矢印で冷媒の流れを示す。
Next, referring to FIG. 82, which is an explanatory view showing the operating state of the cooling and heating heat storage and hot water supply system of this embodiment, at the time of generating three temperatures for generating two condensation temperatures and one evaporation temperature,
The operation when the difference between the condensation temperature and the evaporation temperature is relatively small will be described. This operation mode is, for example, normal heating +
It is applied when operating a relatively low hot water supply. In FIG. 82,
In the example, the heat exchanger 57 operates as a first condenser, the heat exchanger 51b operates as a second condenser, the heat exchanger 51a operates as an evaporator, and the heat exchanger 51c stops. The 4th on-off valve 24 and the 5th on-off valve 25 are in a closed state (filled in the figure). The first switching four-way valve 271 and the second switching four-way valve 272 are in the energized state (circuit switching state), and the third switching four-way valve 273 is in the non-energized state. The first compressor 1 and the second compressor 2 are operated in parallel. The arrow indicates the flow of the refrigerant.

【0213】第1圧縮機から吐出された高温高圧冷媒ガ
スは、第1配管61に流入し、第1凝縮器である熱交換
器51dに流入し、凝縮液化される。この液冷媒は、電
子式膨張弁31dを通って液管64に流入する。一方、
第2圧縮機2から吐出された高温高圧冷媒ガスは、第1
開閉弁21を経て第2配管62に流入し、第2切換四方
弁272を通って第2凝縮器である熱交換器51bに流
入し、凝縮液化される。この液冷媒は、電子式膨張弁3
1bを通って液管64へ流入し、第1凝縮器である熱交
換器57からの液冷媒と合流する。この合流した液冷媒
は、電子式膨張弁31aを通って低圧の二相状態となっ
て熱交換器51aへ流入し、蒸発ガス化される。このガ
ス冷媒は、第3配管63を通って第1アキュムレータ1
1を経て、第1圧縮機1及び第2圧縮機2に吸入され
る。このように、この運転モードでは、熱交換器57で
第1の凝縮温度が、熱交換器51bで第2の凝縮温度
が、熱交換器51aで蒸発温度が得られる。
The high-temperature high-pressure refrigerant gas discharged from the first compressor flows into the first pipe 61 and the heat exchanger 51d, which is the first condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31d. on the other hand,
The high-temperature high-pressure refrigerant gas discharged from the second compressor 2 is
It flows into the second pipe 62 through the on-off valve 21, passes through the second switching four-way valve 272, flows into the heat exchanger 51b that is the second condenser, and is condensed and liquefied. This liquid refrigerant is used in the electronic expansion valve 3
It flows into the liquid pipe 64 through 1b, and joins with the liquid refrigerant from the heat exchanger 57 which is the first condenser. The combined liquid refrigerant flows through the electronic expansion valve 31a into a low-pressure two-phase state, flows into the heat exchanger 51a, and is vaporized and gasified. This gas refrigerant passes through the third pipe 63 and the first accumulator 1
1 and is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the heat exchanger 57 obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51a obtains the evaporation temperature.

【0214】次に、図83のこの実施例の冷暖房蓄熱給
湯システムの運転動作状態を示す説明図を用いて、2つ
の凝縮温度と1つの蒸発温度を生成する3温度生成時
で、凝縮温度と蒸発温度の差が比較的大きい場合の動作
について説明する。この運転モードは例えば通常の暖房
+比較的高い給湯運転時などに適用される。図83で
は、熱交換器57が第1凝縮器、熱交換器51bが第2
凝縮器、熱交換器51aが蒸発器、熱交換器51cが停
止として動作する例を示しており、第3開閉弁23、第
5開閉弁25を閉止状態(図中塗りつぶし)としてい
る。第1切換四方弁271、第2切換四方弁272、は
通電状態(回路切換状態)、第3切換四方弁273は無
通電状態である。第1圧縮機1、第2圧縮機2は直列運
転される。矢印で冷媒の流れを示す。
Next, referring to the explanatory view showing the operation state of the cooling and heating heat storage and hot water supply system of this embodiment in FIG. 83, when three temperatures are generated to generate two condensation temperatures and one evaporation temperature, The operation when the difference in evaporation temperature is relatively large will be described. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. In FIG. 83, the heat exchanger 57 is the first condenser and the heat exchanger 51b is the second condenser.
An example in which the condenser and the heat exchanger 51a operate with the evaporator and the heat exchanger 51c stopped is shown, and the third opening / closing valve 23 and the fifth opening / closing valve 25 are closed (filled in the figure). The first switching four-way valve 271 and the second switching four-way valve 272 are in the energized state (circuit switching state), and the third switching four-way valve 273 is in the non-energized state. The first compressor 1 and the second compressor 2 are operated in series. The arrow indicates the flow of the refrigerant.

【0215】第2圧縮機2から吐出された冷媒ガスの一
部は、圧縮機連通管66に流入し、第4開閉弁24及び
第2開閉弁22を通って第1圧縮機1に吸入され、二段
圧縮され、高温高圧の冷媒ガスとなって第1配管61に
流入する。このガス冷媒は、第1凝縮器である熱交換器
51dに流入し、凝縮液化される。この液冷媒は、電子
式膨張弁31dを通って液管64に流入する。一方、第
2圧縮機2から吐出された冷媒ガスの残りは第1開閉弁
21を通って第2配管62に流入し、第2切換四方弁2
72を通って第2凝縮器である熱交換器51bに流入
し、凝縮液化される。この液冷媒は電子式膨張弁31b
を通って液管64へ流入し、第1凝縮器である熱交換器
57からの液冷媒と合流する。この合流した液冷媒は、
電子式膨張弁31aを通って低圧の二相状態となって熱
交換器51aへ流入し、蒸発ガス化される。このガス冷
媒は、第3配管63を通って第1アキュムレータ11を
経て、第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器57で第1の凝縮温度が、熱交
換器51bで第2の凝縮温度が、熱交換器51aで蒸発
温度が得られる。
A part of the refrigerant gas discharged from the second compressor 2 flows into the compressor communication pipe 66, and is sucked into the first compressor 1 through the fourth opening / closing valve 24 and the second opening / closing valve 22. , Is compressed in two stages, becomes high-temperature high-pressure refrigerant gas, and flows into the first pipe 61. This gas refrigerant flows into the heat exchanger 51d, which is the first condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31d. On the other hand, the rest of the refrigerant gas discharged from the second compressor 2 flows into the second pipe 62 through the first opening / closing valve 21, and the second switching four-way valve 2
After passing through 72, it flows into the heat exchanger 51b which is the second condenser, and is condensed and liquefied. This liquid refrigerant is an electronic expansion valve 31b.
To flow into the liquid pipe 64 and join the liquid refrigerant from the heat exchanger 57, which is the first condenser. This combined liquid refrigerant is
It passes through the electronic expansion valve 31a, becomes a low-pressure two-phase state, flows into the heat exchanger 51a, and is vaporized and gasified. The gas refrigerant passes through the third pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the heat exchanger 57 obtains the first condensation temperature, the heat exchanger 51b obtains the second condensation temperature, and the heat exchanger 51a obtains the evaporation temperature.

【0216】次に図84の冷暖房蓄熱給湯システムの運
転動作状態を示す説明図を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、凝縮温度と蒸
発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱運転
時などに適用される。図84では、熱交換器51aが凝
縮器、熱交換器51bが第1蒸発器、熱交換器51cが
第2蒸発器、熱交換器57が停止として動作する例を示
しており、第1開閉弁21、第2開閉弁22、第4開閉
弁24を閉止状態(図中塗りつぶし)としている。第1
切換四方弁271、第2切換四方弁272、第3切換四
方弁273は無通電状態である。第1圧縮機1、第2圧
縮機2は並列運転される。矢印で冷媒の流れを示す。
[0216] Next, using the explanatory diagram showing the operating state of the cooling / heating heat storage / hot water supply system in Fig. 84, one condensing temperature and 2
The operation when the difference between the condensation temperature and the evaporation temperature is relatively small when the three evaporation temperatures are generated will be described. This operation mode is applied, for example, during normal cooling + ice heat storage operation. FIG. 84 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, the heat exchanger 51c operates as a second evaporator, and the heat exchanger 57 stops. The valve 21, the second opening / closing valve 22, and the fourth opening / closing valve 24 are closed (filled in the figure). First
The switching four-way valve 271, the second switching four-way valve 272, and the third switching four-way valve 273 are not energized. The first compressor 1 and the second compressor 2 are operated in parallel. The arrow indicates the flow of the refrigerant.

【0217】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管265
を通って第2圧縮機2の吐出冷媒ガスと第1配管61で
合流し、第1切換四方弁271、第3切換四方弁273
を通って熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は、電子式膨張弁31aを通って液管64に流
入し、その一部は電子式膨張弁31bを通って低圧の二
相状態となって第1蒸発器である熱交換器51bへ流入
し蒸発ガス化する。このガス冷媒は、第2配管62を通
って第5開閉弁25、第2アキュムレータ12、第2逆
止弁を経て、第1圧縮機1に吸入される。一方、液管6
4に流入した残りの液冷媒は、電子式膨張弁31cを通
って低圧の二相状態となって第2蒸発器である。熱交換
器51cへ流入し、蒸発ガス化される。このガス冷媒
は、第3配管63を通って第1アキュムレータ11を経
て、第2圧縮機2に吸入される。このように、この運転
モードでは、熱交換器51aで凝縮温度が、熱交換器5
1bで第1蒸発温度が、熱交換器51cで第2蒸発温度
が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 passes through the third on-off valve 23 and the high-pressure gas communication pipe 265.
Through which the discharge refrigerant gas of the second compressor 2 merges in the first pipe 61, and the first switching four-way valve 271 and the third switching four-way valve 273.
Through which it flows into the heat exchanger 51a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant flows through the electronic expansion valve 31b into a low-pressure two-phase state, which is the first evaporator heat exchanger 51b. And is vaporized into gas. This gas refrigerant is drawn into the first compressor 1 through the second pipe 62, the fifth opening / closing valve 25, the second accumulator 12, and the second check valve. On the other hand, the liquid pipe 6
The remaining liquid refrigerant flowing into No. 4 passes through the electronic expansion valve 31c to become a low-pressure two-phase state and is the second evaporator. It flows into the heat exchanger 51c and is vaporized and gasified. The gas refrigerant passes through the third pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensation temperature in the heat exchanger 51a is
The first evaporation temperature is obtained at 1b, and the second evaporation temperature is obtained at the heat exchanger 51c.

【0218】次に、図85の冷暖房蓄熱給湯システムの
運転動作状態を示す説明図を用いて、1つの凝縮温度と
2つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば冷房+氷蓄熱+高温給湯
運転時などに適用される。図85では、熱交換器57が
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器、熱交換器51aが停止として動作する例
を示しており、第3開閉弁23、第5開閉弁25を閉止
状態(図中塗りつぶし)としている。第2切換四方弁2
72は通電状態(切換状態)、第1切換四方弁271、
第3切換四方弁273は無通電状態である。第1圧縮機
1、第2圧縮機2は直列運転される。矢印で冷媒の流れ
を示す。
Next, using the explanatory diagram showing the operating state of the cooling and heating heat storage hot water supply system of FIG. 85, the difference between the condensation temperature and the evaporation temperature is generated at the time of generating three temperatures for generating one condensation temperature and two evaporation temperatures. The operation when is relatively large will be described. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 85, the heat exchanger 57 is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example in which the second evaporator and the heat exchanger 51a operate as stopped, and the third opening / closing valve 23 and the fifth opening / closing valve 25 are in a closed state (filled in the figure). Second switching four-way valve 2
72 is an energized state (switching state), a first switching four-way valve 271,
The third switching four-way valve 273 is in a non-energized state. The first compressor 1 and the second compressor 2 are operated in series. The arrow indicates the flow of the refrigerant.

【0219】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第1配管61を経て熱交換器57に流入し、
凝縮液化される。この液冷媒は、電子式膨張弁31aを
通って液管64に流入し、その一部は電子式膨張弁31
bを通って低圧の二相状態となって第1蒸発器である熱
交換器51bへ流入し蒸発ガス化する。このガス冷媒
は、第2配管62を通って第1開閉弁21を経て第2圧
縮機2の吐出ガスと合流し、第4開閉弁24、第2開閉
弁22を経て、第1圧縮機1に吸入される。一方、液管
64に流入した残りの液冷媒は、電子式膨張弁31cを
通って低圧の二相状態となって第2蒸発器である。熱交
換器51cへ流入し、蒸発ガス化される。このガス冷媒
は、第3配管63を通って第1アキュムレータ11を経
て、第2圧縮機2に吸入される。このように、この運転
モードでは、熱交換器51aで凝縮温度が、熱交換器5
1bで第1蒸発温度が、熱交換器51cで第2蒸発温度
が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the heat exchanger 57 via the first pipe 61,
Condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant flows into the electronic expansion valve 31a.
After passing through b, a low-pressure two-phase state is established, which flows into the heat exchanger 51b, which is the first evaporator, and evaporates and gasifies. This gas refrigerant merges with the discharge gas of the second compressor 2 through the first opening / closing valve 21 through the second pipe 62, passes through the fourth opening / closing valve 24 and the second opening / closing valve 22, and then passes through the first compressor 1 Inhaled into. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electronic expansion valve 31c and becomes a low-pressure two-phase state, which is the second evaporator. It flows into the heat exchanger 51c and is vaporized and gasified. The gas refrigerant passes through the third pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensation temperature in the heat exchanger 51a is
The first evaporation temperature is obtained at 1b, and the second evaporation temperature is obtained at the heat exchanger 51c.

【0220】上記のように、この実施例では上記した6
つの運転モード、冷暖房や給湯、氷蓄熱などの各熱交換
器に要求される機能に応じて、各熱交換器毎に3つの飽
和温度が設定可能となる。また凝縮温度と蒸発温度の差
が小さい時や大きい時で、第1、第2圧縮機の運転を単
独あるいは並列運転、または直列運転(二段圧縮運転)
に使い分けることができ、高効率なサイクルが実現でき
る。さらに冷房や氷蓄熱と暖房や給湯が同時に運転され
る時には、冷房や氷蓄熱の廃熱が暖房や給湯に利用する
ことができるので、さらに効率の高いサイクルを実現す
ることができる。又高圧ガス連通管を設けているので第
2圧縮機の吐出ガスを第1圧縮機の吐出ガスに足せ、凝
縮又は蒸発能力を向上できる。第1、第2の圧縮機の吸
入側にアキュムレータを設けているので、起動時や運転
モード切換時の圧縮機への液戻りが防止でき圧縮機が保
護でき、冷媒量の調整が行える。又、四方弁を用いるこ
とにより大巾に弁数を削減でき、ユニットのコンパクト
化が実現できる。
As described above, in this embodiment, the above 6
Three saturation temperatures can be set for each heat exchanger according to one operation mode and functions required for each heat exchanger such as cooling and heating, hot water supply, and ice heat storage. Further, when the difference between the condensation temperature and the evaporation temperature is small or large, the first and second compressors are operated individually or in parallel, or in series (two-stage compression operation).
It can be used properly and a highly efficient cycle can be realized. Furthermore, when cooling and ice heat storage and heating and hot water supply are operated at the same time, the waste heat of cooling and ice storage can be used for heating and hot water supply, so that a more efficient cycle can be realized. Further, since the high pressure gas communication pipe is provided, the discharge gas of the second compressor can be added to the discharge gas of the first compressor to improve the condensation or evaporation ability. Since the accumulators are provided on the suction sides of the first and second compressors, it is possible to prevent the liquid from returning to the compressor at the time of starting or switching the operation modes, protect the compressor, and adjust the amount of refrigerant. Also, by using a four-way valve, the number of valves can be greatly reduced and the unit can be made compact.

【0221】この発明の実施例6〜12の蒸気式圧縮式
冷凍サイクルによる多温度生成回路は以下のような効果
を奏する。この発明の蒸気圧縮式冷凍サイクルによる多
温度生成回路は、第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が前記第1圧縮機の吐出側に、他端
が開閉弁を介して前記複数台の熱交換器に接続する高圧
ガス管と、一端が第1開閉弁を介して前記第2圧縮機の
吐出側に、他端が開閉弁を介して前記複数台の熱交換器
に接続するとともに、前記第1開閉弁と開閉弁の間から
分岐して第5開閉弁及び第2逆止弁を介して前記第1圧
縮機の吸入側に接続する中圧ガス管と、一端が前記第2
圧縮機の吸入側に接続するとともに第1逆止弁及び第2
開閉弁をこの順に介して前記第1圧縮機の吸入側に接続
し、他端が開閉弁を介して前記複数台の熱交換器に接続
する低圧ガス管と、前記複数台の熱交換器に冷媒流量制
御器を介して接続する液管と、前記第1圧縮機の吐出側
と前記第2の圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から第7開閉弁を
介して前記液管に至る第1のバイパス路と、前記液管か
ら第8開閉弁を介して前記第1圧縮機の吸入側へ至る第
2のバイパス路と、を備えた構成にしたので、凝縮温度
と蒸発温度の差が比較的大きく、圧縮比が比較的大きい
高温給湯・暖房同時運転や氷蓄熱・給湯同時運転の場
合、低段側圧縮機の吐出ガスを開閉弁を介して液管に通
して冷却した後、高段側圧縮機に吸入させる2段圧縮運
転を行うことで、吐出温度上昇を防止し、かつ2つの凝
縮温度と1つの蒸発温度を効率よく得られる。凝縮温度
と蒸発温度の差が比較的大きく、圧縮比が比較的大きい
氷蓄冷・冷房・給湯同時運転のような場合には、低段側
圧縮機の吐出ガスを液管から開閉弁を介してバイパスさ
せた液で合流させて冷却した後、高段側圧縮機に吸入さ
せる多段圧縮運転を行うことで、吐出温度上昇を防止
し、かつ1つの凝縮温度と2つの蒸発温度を効率よく得
られる。
The multi-temperature generation circuits by the vapor compression refrigeration cycle of the sixth to twelfth embodiments of the present invention have the following effects. The multi-temperature generation circuit by the vapor compression refrigeration cycle of the present invention has a first compressor, a second compressor, a plurality of heat exchangers, one end on the discharge side of the first compressor, and the other end. A high-pressure gas pipe connected to the plurality of heat exchangers via an on-off valve, one end to the discharge side of the second compressor via the first on-off valve, and the other end to the multiple units via an on-off valve Medium pressure gas that is connected to the heat exchanger of the first compressor and branches from between the first on-off valve and the on-off valve to connect to the suction side of the first compressor via the fifth on-off valve and the second check valve. A tube and one end is the second
The first check valve and the second check valve are connected to the suction side of the compressor.
A low-pressure gas pipe connected to the suction side of the first compressor through an on-off valve in this order, and the other end connected to the plurality of heat exchangers through an on-off valve, and the plurality of heat exchangers. A liquid pipe connected via a refrigerant flow controller, a high pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, and the second A compressor communication pipe that connects the discharge side of the compressor to the first check valve and the second open / close valve via a fourth open / close valve, and the liquid from the intermediate pressure gas pipe via a seventh open / close valve. Since the first bypass passage leading to the pipe and the second bypass passage leading from the liquid pipe to the suction side of the first compressor via the eighth opening / closing valve are provided, the condensation temperature and the evaporation are reduced. In case of high temperature hot water supply / heating simultaneous operation or ice heat storage / hot water simultaneous operation with relatively large temperature difference and relatively large compression ratio, After cooling the discharged gas through the liquid pipe through the on-off valve, and then performing the two-stage compression operation in which it is sucked into the high-stage compressor, the discharge temperature rise is prevented and two condensation temperatures and one evaporation The temperature can be obtained efficiently. In the case of simultaneous ice cold storage / cooling / hot water supply operation where the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor is passed from the liquid pipe through the on-off valve. By performing multi-stage compression operation in which the bypassed liquid is combined and cooled, and then sucked into the high-stage compressor, discharge temperature rise is prevented and one condensation temperature and two evaporation temperatures can be obtained efficiently. .

【0222】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮記
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器の冷媒流量
制御器を介して接続する液管と、前記第1圧縮機の吐出
側と前記第2圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から冷媒流量制御
器を介して前記液管に至る第1のバイパス路と、前記液
管から第8開閉弁を介して前記第1圧縮機の吸入側へ至
る第2のバイパス路と、を備えた構成にしたので、凝縮
温度と蒸発温度の差が比較的大きく、圧縮比が比較的大
きい高温給湯・暖房同時運転の場合、低段側圧縮機の吐
出ガスを膨張弁を介して液管に通して冷却した後、高段
側圧縮機に吸入させる多段圧縮運転を行うことで、吐出
温度上昇を防止すると同時に、高段側へのバイパス量を
最適制御することで、より高い給湯圧力を得ることが可
能で、また暖房能力も同時に確保し、かつ2つの凝縮温
度と1つの蒸発温度を効率よく得られる。また、凝縮温
度と蒸発温度の差が比較的大きく、圧縮比が比較的大き
い氷蓄冷・冷房・給湯同時運転のような場合には、低段
側圧縮機の吐出ガスを液管から膨張弁を介してバイパス
させた液と合流させて冷却した後、高段側圧縮機に吸入
させる多段圧縮運転を行うことで、吐出温度上昇を防止
すると同時に液バイパス量を最適制御することで、高段
側圧縮機の液圧縮を防止しながら、より高い凝縮温度を
得ることが可能で、かつ1つの凝縮温度と2つの蒸発温
度を効率よく得られる。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention has a first compressor, a second compressor, a plurality of heat exchangers, and one end on the discharge side of the first compressor. A high pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compression via the first on-off valve, and the other end via the on-off valve. It is connected to the plurality of heat exchangers and branches from between the first on-off valve and the on-off valve to branch through the fifth on-off valve and the second check valve to the first
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second opening / closing valve in this order to suction the first compressor. A low-pressure gas pipe connected to the side, the other end is connected to the plurality of heat exchangers via an on-off valve, and a liquid pipe connected via a refrigerant flow rate controller of the plurality of heat exchangers, A high-pressure gas communication pipe that connects the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve, the discharge side of the second compressor, the first check valve, and the second A compressor communication pipe that connects between the on-off valves via a fourth on-off valve, a first bypass path from the medium-pressure gas pipe to the liquid pipe via a refrigerant flow controller, and a liquid pipe from the liquid pipe The second bypass passage leading to the suction side of the first compressor via the eight opening / closing valve is provided. Is relatively large, and the compression ratio is relatively large, in the case of high-temperature hot water supply / heating simultaneous operation, the gas discharged from the low-stage compressor is cooled by passing it through the liquid pipe through the expansion valve and then sucked into the high-stage compressor. By performing the multi-stage compression operation, it is possible to prevent the discharge temperature from rising and at the same time obtain a higher hot water supply pressure by optimally controlling the bypass amount to the higher stage side, and at the same time secure the heating capacity, Moreover, two condensation temperatures and one evaporation temperature can be efficiently obtained. In addition, in the case of simultaneous ice cold storage / cooling / hot water supply operation where the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor is fed from the liquid pipe to the expansion valve. After cooling by combining with the liquid that has been bypassed via the high-stage compressor, the multi-stage compression operation is performed to suck it into the high-stage compressor to prevent the discharge temperature from rising and at the same time optimally control the liquid bypass amount It is possible to obtain a higher condensation temperature while preventing liquid compression of the compressor, and to efficiently obtain one condensation temperature and two evaporation temperatures.

【0223】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液レシーバーと、前記第1圧縮
機の吐出側と前記第2圧縮機の吐出側を第3開閉弁を介
して連結する高圧ガス連通管と、前記第2圧縮機の吐出
側と前記第1逆止弁と第2開閉弁の間を第4開閉弁を介
して連結する圧縮機連通管と、前記中圧ガス管から第7
開閉弁を介して前記液レシーバーに至る第1のバイパス
路と、前記液レシーバーから第8開閉弁を介して前記第
1圧縮機の吸入側へ至る第2のバイパス路と、を備えた
構成にしたので、凝縮温度と蒸発温度の差が比較的大き
く、圧縮比が比較的大きい高温給湯・暖房同時運転や氷
蓄熱・給湯同時運転の場合、低段側圧縮機の吐出ガスを
開閉弁を介して液レシーバーに通して、冷却と気液分離
を同時に行った後、高段側圧縮機に吸入させる多段圧縮
運転を行うことで、吐出温度上昇及び高段側圧縮機の液
圧縮を防止しながら、より高い凝縮温度を得ることが可
能で、かつ2つの凝縮温度と1つの蒸発温度を効率よく
得られる。また、凝縮温度と蒸発温度の差が比較的大き
く、圧縮比が比較的大きい氷蓄冷・冷房・給湯同時運転
のような場合には、低段側圧縮機の吐出ガスを液レシー
バーから開閉弁を介してバイパスさせた液と合流させて
冷却した後、高段側圧縮機に吸入させる多段圧縮運転を
行うことで、吐出温度上昇を防止し、より高い凝縮温度
を得ることが可能で、かつ1つの凝縮温度と2つの蒸発
温度を効率よく得られる。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention has a first compressor, a second compressor, a plurality of heat exchangers, and one end on the discharge side of the first compressor. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via the first on-off valve, and the other end via the on-off valve. It is connected to the plurality of heat exchangers and branches from between the first on-off valve and the on-off valve to branch through the fifth on-off valve and the second check valve to the first
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second opening / closing valve in this order to suck the first compressor. A low pressure gas pipe connected to the side, the other end is connected to the plurality of heat exchangers via an on-off valve, a liquid receiver connected to the plurality of heat exchangers via a refrigerant flow controller, A high-pressure gas communication pipe that connects the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, the discharge side of the second compressor, the first check valve, and the second check valve. The compressor communication pipe that connects the on-off valves via the fourth on-off valve and the medium-pressure gas pipe to the seventh pipe.
In a configuration including a first bypass passage leading to the liquid receiver via an on-off valve, and a second bypass passage extending from the liquid receiver to the suction side of the first compressor via an eighth on-off valve. Therefore, in the case of high temperature hot water supply / heating simultaneous operation or ice heat storage / hot water simultaneous operation where the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor is passed through the on-off valve. While performing cooling and gas-liquid separation at the same time through the liquid receiver and performing a multi-stage compression operation in which the high-stage compressor sucks, discharge temperature rise and liquid compression of the high-stage compressor are prevented. It is possible to obtain a higher condensation temperature, and efficiently obtain two condensation temperatures and one evaporation temperature. Also, in the case of simultaneous ice cold storage / cooling / hot water supply operation where the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor should be opened / closed from the liquid receiver. It is possible to prevent the discharge temperature from rising and to obtain a higher condensing temperature by performing a multi-stage compression operation in which the liquid bypassed via the cooling is combined and cooled and then sucked into the high-stage compressor. One condensation temperature and two evaporation temperatures can be efficiently obtained.

【0224】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が第1の開閉弁を有する第1の吐
出管を介して前記第1圧縮機の吐出側に、他端が開閉弁
を介して前記複数台の熱交換器に接続する高圧ガス管
と、一端が第2の開閉弁を有する第2の吐出管を介して
前記第2圧縮機の吐出側に、他端が開閉弁を介して前記
複数台の熱交換器に接続する中圧ガス管と、一端が第4
の開閉弁を有する第2の吸入管を介して前記第2圧縮機
の吸入側に、他端が開閉弁を介して前記複数台の熱交換
器に接続する低圧ガス管と、前記複数台の熱交換器に冷
媒流量制御器を介して接続する液管と、前記中圧ガス管
と前記第1圧縮機の吸入側とを第3の開閉弁を介して接
続する第1の吸入管と、前記第1の吐出管と前記第2の
吐出管を第7の開閉弁及び第8の開閉弁を介して接続す
る吐出側接続管と、前記第1の吸入管と前記第2の吸入
管を第9の開閉弁及び第10の開閉弁を介して接続する
吸入側接続管と、前記中圧ガス管と前記第2の吸入管と
を第5の開閉弁を介して接続する第1のバイパス管と、
前記低圧管と前記第1の吸入管を第6開閉弁を介して接
続する第2のバイパス管と、前記第7の開閉弁、第8の
開閉弁の間と前記第9の開閉弁、第10の開閉弁の間を
第11の開閉弁を介して接続する第3のバイパス管と、
前記第2の吐出管と前記高圧ガス管とを第13の開閉弁
を介して接続する第4のバイパス管と、前記第1の吐出
管と前記中圧ガス管とを第12の開閉弁を介して接続す
る第5のバイパス管と、を備えた構成にしたので、冷暖
房や給湯、氷蓄熱などの各熱交換器に要求される機能に
応じて、各熱交換器毎に3つ以下の飽和温度が設定でき
る。また、凝縮温度と蒸発温度の差が小さい時や大きい
時及び負荷の大小により容量の異なる複数台の圧縮機の
運転を使い分けることによって、負荷にあった能力の確
保と多段圧縮運転を行うことによって高効率な冷媒回路
が実現できる。またさらに、冷房や氷蓄熱と暖房や給湯
が同時に運転される時には、冷房や氷蓄熱の廃熱が暖房
や給湯に利用することができるので、エネルギーの有効
利用ができるなど、多大な効果を有するものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention has a first compressor, a second compressor, a plurality of heat exchangers, and a first open / close valve at one end. On the discharge side of the first compressor via a discharge pipe, the other end has a high pressure gas pipe connected to the plurality of heat exchangers via an open / close valve, and the second end has a second open / close valve. On the discharge side of the second compressor via a discharge pipe, the other end is a medium pressure gas pipe connected to the plurality of heat exchangers via an on-off valve, and one end is a fourth
A low-pressure gas pipe connected to the plurality of heat exchangers via the on-off valve on the suction side of the second compressor via a second suction pipe having the on-off valve, and A liquid pipe connected to the heat exchanger via a refrigerant flow controller; a first suction pipe connecting the medium-pressure gas pipe to the suction side of the first compressor via a third opening / closing valve; A discharge-side connecting pipe that connects the first discharge pipe and the second discharge pipe via a seventh opening / closing valve and an eighth opening / closing valve, and the first suction pipe and the second suction pipe. A suction side connecting pipe connected via a ninth opening / closing valve and a tenth opening / closing valve, and a first bypass connecting the intermediate pressure gas pipe and the second suction pipe via a fifth opening / closing valve. With a tube,
A second bypass pipe connecting the low-pressure pipe and the first suction pipe via a sixth opening / closing valve, between the seventh opening / closing valve, the eighth opening / closing valve, and the ninth opening / closing valve, A third bypass pipe connecting between the 10 open / close valves via an 11th open / close valve;
A fourth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth on-off valve, a first discharge pipe and the medium-pressure gas pipe and a twelfth on-off valve. Since the fifth bypass pipe connected via the heat exchanger is provided, the number of the heat exchangers is 3 or less depending on the function required for each heat exchanger such as cooling and heating, hot water supply, and ice heat storage. Saturation temperature can be set. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, and when the operation of multiple compressors with different capacities depending on the size of the load is used properly, it is possible to secure the capacity suitable for the load and perform multi-stage compression operation. A highly efficient refrigerant circuit can be realized. Furthermore, when cooling or ice heat storage and heating or hot water supply are operated at the same time, the waste heat of the cooling or ice heat storage can be used for heating or hot water supply, so that effective use of energy can be achieved. It is a thing.

【0225】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、四方弁と、一端が第1の開閉弁を有す
る第1の吐出管を介して前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第2の開閉弁を有する第2の吐出管
を介して前記第2圧縮機の吐出側に、他端が開閉弁を介
して前記複数台の熱交換器に接続するとともに、途中か
ら分岐して前記四方弁に接続する中圧ガス管と、一端が
前記四方弁に、他端が開閉弁を介して前記複数台の熱交
換器に接続する低圧ガス管と、前記複数台の熱交換器に
冷媒流量制御器を介して接続する液管と、前記四方弁と
前記第1圧縮機の吸入側とを第3の開閉弁を介して接続
する第1の吸入管と、前記四方弁と前記第2圧縮機の吸
入側とを第4の開閉弁を介して接続する第2の吸入管
と、前記第1の吐出管と前記第2の吐出管を第7の開閉
弁及び第8の開閉弁を介して接続する吐出側接続管と、
前記第1の吸入管と前記第2の吸入管を第9の開閉弁及
び第10の開閉弁を介して接続する吸入側接続管と、前
記第7の開閉弁、第8の開閉弁の間と前記第9の開閉
弁、第10の開閉弁の間を第11の開閉弁を介して接続
する第3のバイパス管と、前記第2の吐出管と前記高圧
ガス管とを第13の開閉弁を介して接続する第4のバイ
パス管と、前記第1の吐出管と前記中圧ガス管とを第1
2の開閉弁を介して接続する第5のバイパス管と、を備
えた構成にしたので、冷暖房や給湯、氷蓄熱などの各熱
交換器に要求される機能に応じて、各熱交換器毎に3つ
以下の飽和温度が設定できる。また、凝縮温度と蒸発温
度の差が小さい時や大きい時及び負荷の大小により容量
の異なる複数台の圧縮機の運転を使い分けることによっ
て、負荷にあった能力の確保と多段圧縮運転を行うこと
によって高効率な冷媒回路が実現できる。またさらに、
冷房や氷蓄熱と暖房や給湯が同時に運転される時には、
冷房や氷蓄熱の廃熱が暖房や給湯に利用することができ
るので、エネルギーの有効利用ができるなど、多大な効
果を有するものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, a four-way valve, and a first opening / closing valve at one end. A high pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve and a second on-off valve at one end are provided on the discharge side of the first compressor via the first discharge pipe. The other end is connected to the plurality of heat exchangers via an on-off valve on the discharge side of the second compressor via the second discharge pipe, and is branched from the middle to be connected to the four-way valve. A medium-pressure gas pipe, one end to the four-way valve, the other end to a low-pressure gas pipe connected to the plurality of heat exchangers via an on-off valve, and the plurality of heat exchangers via a refrigerant flow controller First suction pipe for connecting the four-way valve and the suction side of the first compressor via a third on-off valve A second suction pipe connecting the four-way valve and a suction side of the second compressor via a fourth opening / closing valve, and a seventh opening / closing of the first discharge pipe and the second discharge pipe. A discharge side connecting pipe connected through the valve and the eighth opening / closing valve,
Between the suction side connecting pipe that connects the first suction pipe and the second suction pipe via the ninth opening / closing valve and the tenth opening / closing valve, and the seventh opening / closing valve and the eighth opening / closing valve. And a third bypass pipe connecting between the ninth on-off valve and the tenth on-off valve via an eleventh on-off valve, and the second discharge pipe and the high-pressure gas pipe on a thirteenth open / close A fourth bypass pipe connected via a valve, the first discharge pipe and the medium pressure gas pipe to the first
Since the fifth bypass pipe connected through the on-off valve 2 is provided, each heat exchanger is provided with a function of each heat exchanger such as cooling / heating, hot water supply, and ice storage. Up to 3 saturation temperatures can be set. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, and when the operation of multiple compressors with different capacities depending on the size of the load is used properly, it is possible to secure the capacity suitable for the load and perform multi-stage compression operation. A highly efficient refrigerant circuit can be realized. Furthermore,
When cooling and ice heat storage and heating and hot water supply are operated at the same time,
Since the waste heat of cooling and ice storage can be used for heating and hot water supply, it has a great effect such as effective use of energy.

【0226】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、第1の四方弁と、第2の四方弁と、一
端が前記第1の四方弁が接続された第1の吐出管を介し
て前記第1圧縮機の吐出側に、他端が開閉弁を介して前
記複数台の熱交換器に接続する高圧ガス管と、他端が開
閉弁を介して前記複数台の熱交換器に接続すると中圧ガ
ス管と、一端が前記第2圧縮機の吸入側に第2の開閉弁
を介して接続する第2の吸入管に、他端が開閉弁を介し
て前記複数台の熱交換器に接続する低圧ガス管と、前記
複数台の熱交換器に冷媒流量制御器を介して接続する液
管と、前記低圧ガス管と前記第1圧縮機とを前記第2の
四方弁を介して接続する第1の吸入管と、前記第2の圧
縮機の吐出側と前記第1の開閉弁の間と前記第1の四方
弁とを接続する第1の接続管と、前記第2の圧縮機の吸
入側と前記第2の開閉弁との間と前記第2の四方弁とを
接続する第2の接続管と、前記第1の四方弁と第2の四
方弁を第3の開閉弁を介して接続する第3の接続管と、
前記第3の開閉弁の両側から分岐し、第4の開閉弁、第
5の開閉弁を介してそれぞれ前記中圧ガス管の一端に接
続する第4の接続管及び第5の接続管と、を備えた構成
にしたので、冷暖房や給湯、氷蓄熱などの各熱交換器に
要求される機能に応じて、各熱交換器毎に3つ以下の飽
和温度が設定できる。また、凝縮温度と蒸発温度の差が
小さい時や大きい時及び負荷の大小により容量の異なる
複数台の圧縮機の運転を使い分けることによって、負荷
にあった能力の確保と多段圧縮運転を行うことによって
高効率な冷媒回路が実現できる。またさらに、冷房や氷
蓄熱と暖房や給湯が同時に運転される時には、冷房や氷
蓄熱の廃熱が暖房や給湯に利用することができるので、
エネルギーの有効利用ができるなど、多大な効果を有す
るものである。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention comprises a first compressor, a second compressor, a plurality of heat exchangers, a first four-way valve, and a second four-way valve. And one end is connected to the discharge side of the first compressor via a first discharge pipe to which the first four-way valve is connected, and the other end is connected to the plurality of heat exchangers via an on-off valve. When the high-pressure gas pipe and the other end are connected to the plurality of heat exchangers via the on-off valve, the medium-pressure gas pipe and one end is connected to the suction side of the second compressor via the second on-off valve. A low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, and a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller to the second suction pipe. A first suction pipe connecting the low-pressure gas pipe and the first compressor via the second four-way valve, and a discharge side and a front of the second compressor. A first connecting pipe connecting between the first on-off valve and the first four-way valve, between the suction side of the second compressor and the second on-off valve, and the second four-way A second connecting pipe connecting the valve and a third connecting pipe connecting the first four-way valve and the second four-way valve via a third opening / closing valve;
A fourth connecting pipe and a fifth connecting pipe branching from both sides of the third on-off valve and connected to one end of the medium-pressure gas pipe through a fourth on-off valve and a fifth on-off valve, respectively. Since the configuration is provided, three or less saturation temperatures can be set for each heat exchanger according to the functions required for each heat exchanger such as cooling and heating, hot water supply, and ice heat storage. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, and when the operation of multiple compressors with different capacities depending on the size of the load is used properly, it is possible to secure the capacity suitable for the load and perform multi-stage compression operation. A highly efficient refrigerant circuit can be realized. Furthermore, when cooling and ice heat storage and heating and hot water supply are operated at the same time, the waste heat of cooling and ice storage can be used for heating and hot water supply.
It has a great effect such as effective use of energy.

【0227】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、給湯
用熱交換器及び複数台の熱交換器と、第1の四方弁と、
第2の四方弁と、第3の四方弁と、一端が前記第1圧縮
機の吐出側に、他端が前記給湯用熱交換器及び前記第1
の四方弁、第3の四方弁を介して前記複数台の熱交換器
に接続する高圧ガス管と、一端が第1開閉弁を介して前
記第2圧縮機の吐出側に、他端が第2の四方弁、第3の
四方弁を介して前記複数台の熱交換器に接続するととも
に、途中で分岐して第5開閉弁を介して前記第1圧縮機
の吸入側に接続する中圧ガス管と、一端が前記第2圧縮
機の吸入側に接続するとともに第1逆止弁と第2開閉弁
をこの順に介して前記第1圧縮機の吸入側に接続し、他
端が第1の四方弁、第2の四方弁を介して前記複数台の
熱交換器に接続する低圧ガス管と、前記給湯用熱交換器
及び前記複数台の熱交換器に冷媒流量制御器を介して接
続する液管と、前記第1圧縮機の吐出側と前記第2圧縮
機の吐出側を第3開閉弁を介して連結する高圧ガス連通
管と、前記第2圧縮機の吐出側と前記第1逆止弁と第2
開閉弁の間を第4開閉弁を介して連結する圧縮機連通管
と、を備えた構成にしたので、冷暖房や給湯、氷蓄熱な
どの各熱交換器に要求される機能に応じて、各熱交換器
毎に3つ以上の飽和温度が設定できる。また、凝縮温度
と蒸発温度の差が小さい時や大きい時で、複数台の圧縮
機の運転を使い分けることによって、高効率なサイクル
が実現できる。また、冷房や氷蓄熱と暖房や給湯が同時
に運転される時には、冷房や氷蓄熱の廃熱が暖房や給湯
に利用することができるので、エネルギーの有効利用が
できる。
The multi-temperature generation circuit according to the vapor compression refrigeration cycle of the present invention includes a first compressor, a second compressor, a hot water heat exchanger and a plurality of heat exchangers, and a first four-way valve. ,
A second four-way valve, a third four-way valve, one end on the discharge side of the first compressor, and the other end on the hot water supply heat exchanger and the first
Four-way valve, a high-pressure gas pipe connected to the plurality of heat exchangers via a third four-way valve, one end to the discharge side of the second compressor via the first opening / closing valve, and the other end to the first Medium pressure connected to the plurality of heat exchangers via the second four-way valve and the third four-way valve, and branched in the middle to connect to the suction side of the first compressor via the fifth on-off valve. The gas pipe, one end of which is connected to the suction side of the second compressor, the first check valve and the second opening / closing valve are connected in this order to the suction side of the first compressor, and the other end of which is the first Low-pressure gas pipe connected to the plurality of heat exchangers via a four-way valve and a second four-way valve, and connected to the hot water supply heat exchanger and the plurality of heat exchangers via a refrigerant flow controller Liquid pipe, a high pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, and the second pressure Wherein a discharge side of the machine the first check valve and the second
The compressor communication pipe that connects between the on-off valves via the fourth on-off valve is provided, so that each of the heat exchangers such as cooling and heating, hot water supply, and ice heat storage has a function depending on the function required. Three or more saturation temperatures can be set for each heat exchanger. In addition, when the difference between the condensation temperature and the evaporation temperature is small or large, a highly efficient cycle can be realized by selectively operating the plurality of compressors. Further, when cooling or ice heat storage and heating or hot water supply are operated at the same time, waste heat of cooling or ice heat storage can be used for heating or hot water supply, so that energy can be effectively used.

【0228】[0228]

【発明の効果】この発明は、圧縮機の数より多いガス管
と、これに接続された熱交換器に共通の液管で蒸気圧縮
式冷凍サイクルを構成するので、各熱交換器毎に多くの
飽和温度を同時に設定可能であり、さらに所望の構成を
自在に選択できるので、標準構成品でどんな条件にでも
適用できるとともに仕様変更等の改造も容易であり、し
かも温度条件を最大限に利用したり熱回収が可能になる
など、高効率で運転範囲の広いサイクルを得ることがで
きる。
According to the present invention, since the vapor compression refrigeration cycle is constituted by the gas pipes which are more than the number of compressors and the liquid pipe common to the heat exchangers connected to the compressors, a large number of gas pipes are provided for each heat exchanger. Since the saturation temperature of can be set at the same time and the desired configuration can be freely selected, it can be applied to any condition with the standard configuration product and modification such as specification change is easy, and the temperature condition can be used to the maximum extent. It is possible to obtain a highly efficient cycle with a wide operating range, such as heat recovery and heat recovery.

【0229】また、複数の温度を同時に効率良く得るこ
とができるため、例えば、暖房と給湯が同時に、どちら
の性能を低下させることなく、行うことができる。
Further, since it is possible to efficiently obtain a plurality of temperatures at the same time, for example, heating and hot water supply can be performed at the same time without lowering the performance of either.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1の多温度生成回路の冷媒系
の構成図である。
FIG. 1 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit according to a first embodiment of the present invention.

【図2】この発明の実施例1の多温度生成回路の凝縮温
度と蒸発温度の差が比較的小さい2温度生成時の運転動
作状態説明図である。
FIG. 2 is an explanatory diagram of a driving operation state when generating two temperatures in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit according to the first embodiment of the present invention is relatively small.

【図3】この発明の実施例1の多温度生成回路の凝縮温
度と蒸発温度の差が比較的大きい2温度生成時の運転動
作状態説明図である。
FIG. 3 is an operation operation state explanatory diagram when generating two temperatures in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit according to the first embodiment of the present invention is relatively large.

【図4】この発明の実施例1の多温度生成回路の2つの
凝縮温度と1つの蒸発温度の差が比較的小さい3温度生
成時の運転動作状態説明図である。
FIG. 4 is an operation operation state explanatory diagram when three temperatures are generated in the multi-temperature generation circuit according to the first embodiment of the present invention, in which a difference between two condensation temperatures and one evaporation temperature is relatively small.

【図5】この発明の実施例1の多温度生成回路の2つの
凝縮温度と1つの蒸発温度の差が比較的大きい3温度生
成時の運転動作状態説明図である。
FIG. 5 is an operation operation state explanatory diagram when three temperatures are generated in the multi-temperature generation circuit according to the first embodiment of the present invention, in which a difference between two condensation temperatures and one evaporation temperature is relatively large.

【図6】この発明の実施例1の多温度生成回路の1つの
凝縮温度と2つの蒸発温度の差が比較的小さい3温度生
成時の運転動作状態説明図である。
FIG. 6 is an explanatory diagram of a driving operation state when three temperatures are generated in the multi-temperature generation circuit according to the first embodiment of the present invention when a difference between one condensation temperature and two evaporation temperatures is relatively small.

【図7】この発明の実施例1の多温度生成回路の1つの
凝縮温度と2つの蒸発温度の差が比較的大きい3温度生
成時の運転動作状態説明図である。
FIG. 7 is an explanatory diagram of a driving operation state when three temperatures are generated in the multi-temperature generation circuit according to the first embodiment of the present invention when the difference between one condensation temperature and two evaporation temperatures is relatively large.

【図8】この発明の実施例2の多温度生成回路の冷媒系
の構成図である。
FIG. 8 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit according to a second embodiment of the present invention.

【図9】この発明の実施例3の多温度生成回路の構成図
である。
FIG. 9 is a configuration diagram of a multi-temperature generation circuit according to a third embodiment of the present invention.

【図10】この発明の実施例3の3凝縮1蒸発運転時の
動作状態説明図である。
FIG. 10 is an explanatory diagram of an operating state at the time of a 3-condensing 1-evaporating operation according to the third embodiment of the present invention.

【図11】この発明の実施例3の2凝縮2蒸発運転時の
動作状態説明図である。
FIG. 11 is an operation state explanatory diagram at the time of the two-condensation / two-evaporation operation of the third embodiment of the present invention.

【図12】この発明の実施例4の多温度生成回路の構成
図である。
FIG. 12 is a configuration diagram of a multi-temperature generation circuit according to a fourth embodiment of the present invention.

【図13】この発明の実施例4の2凝縮1蒸発運転時の
動作状態説明図である。
FIG. 13 is an explanatory view of the operating state during the two-condensing and one-evaporating operation according to the fourth embodiment of the present invention.

【図14】この発明の実施例5の多温度生成回路の構成
図である。
FIG. 14 is a configuration diagram of a multi-temperature generation circuit according to a fifth embodiment of the present invention.

【図15】この発明の実施例5の冷房運転時の動作状態
説明図である。
FIG. 15 is an operation state explanatory diagram during a cooling operation according to the fifth embodiment of the present invention.

【図16】この発明の実施例5の暖房運転時の動作状態
説明図である。
[Fig. 16] Fig. 16 is an operation state explanatory view during heating operation according to the fifth embodiment of the present invention.

【図17】この発明の実施例5の給湯運転時の動作状態
説明図である。
FIG. 17 is an explanatory diagram of an operating state during a hot water supply operation according to the fifth embodiment of the present invention.

【図18】この発明の実施例5の冷房給湯運転時の動作
状態説明図である。
[Fig. 18] Fig. 18 is an operation state explanatory diagram at the time of cooling hot water supply operation according to the fifth embodiment of the present invention.

【図19】この発明の実施例5の暖房給湯運転時の動作
状態説明図である。
[Fig. 19] Fig. 19 is an explanatory view of the operating state during the heating and hot water supply operation according to the fifth embodiment of the present invention.

【図20】この発明の実施例5の追焚き運転時の動作状
態説明図である。
FIG. 20 is an operation state explanatory diagram at the time of the additional heating operation according to the fifth embodiment of the present invention.

【図21】この発明の実施例5の給湯利用急速追焚き運
転時の動作状態説明図である。
[Fig. 21] Fig. 21 is an operation state explanatory diagram at the time of rapid hot water replenishment operation using hot water supply in Embodiment 5 of the present invention.

【図22】この発明の実施例5の暖房追焚き運転時の動
作状態説明図である。
[Fig. 22] Fig. 22 is an operation state explanatory diagram at the time of heating additional heating according to the fifth embodiment of the present invention.

【図23】この発明の実施例5の残湯熱回収給湯運転時
の動作状態説明図である。
FIG. 23 is an explanatory diagram of an operating state at the time of the residual hot water heat recovery hot water supply operation according to the fifth embodiment of the present invention.

【図24】この発明の実施例5の給湯利用デフロスト暖
房運転時の動作状態説明図である。
FIG. 24 is an operation state explanatory diagram during hot water supply-use defrost heating operation according to the fifth embodiment of the present invention.

【図25】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。
FIG. 25 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle according to Embodiment 6 of the present invention.

【図26】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的小さい場合の2温度生成時の運転動
作状態図である。
[Fig. 26] Fig. 26 is a diagram showing the operating state during two-temperature generation when the difference between the condensation temperature and the evaporation temperature is relatively small in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to the sixth embodiment of the present invention.

【図27】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的大きい場合の2温度生成時の運転動
作状態図である。
FIG. 27 is a diagram showing the operating state during two-temperature generation when the difference between the condensation temperature and the evaporation temperature is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to the sixth embodiment of the present invention.

【図28】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 28 is a diagram showing an operating state of operation when generating three temperatures when the difference between two condensation temperatures and one evaporation temperature is relatively small in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 6 of the present invention. Is.

【図29】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 29 is a diagram showing an operating state of operation when generating three temperatures when the difference between two condensation temperatures and one evaporation temperature is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 6 of the present invention. Is.

【図30】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 30 is a diagram showing the operating state of operation when generating three temperatures when the difference between one condensation temperature and two evaporation temperatures is relatively small in the multi-temperature generation circuit using the vapor compression refrigeration cycle according to Embodiment 6 of the present invention. Is.

【図31】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 31 is a diagram showing an operating state of operation when generating three temperatures when the difference between one condensation temperature and two evaporation temperatures is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to the sixth embodiment of the present invention. Is.

【図32】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。
FIG. 32 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle according to Embodiment 7 of the present invention.

【図33】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的小さい場合の2温度生成時の運転動
作状態図である。
FIG. 33 is a diagram showing the operating state during two-temperature generation when the difference between the condensation temperature and the evaporation temperature is relatively small in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to the seventh embodiment of the present invention.

【図34】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的大きい場合の2温度生成時の運転動
作状態図である。
[Fig. 34] Fig. 34 is a diagram showing the operation state during two-temperature generation when the difference between the condensation temperature and the evaporation temperature is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to the seventh embodiment of the present invention.

【図35】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 35 is a diagram showing an operating state of operation at the time of generating three temperatures when the difference between two condensation temperatures and one evaporation temperature is relatively small in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to the seventh embodiment of the present invention. Is.

【図36】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 36 is a diagram showing an operating state of operation when generating three temperatures when the difference between two condensation temperatures and one evaporation temperature is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 7 of the present invention. Is.

【図37】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 37 is a diagram showing an operating state of operation when generating three temperatures when the difference between one condensation temperature and two evaporation temperatures is relatively small in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 7 of the present invention. Is.

【図38】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 38 is a diagram showing the operating state when generating three temperatures when the difference between one condensation temperature and two evaporation temperatures is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 7 of the present invention. Is.

【図39】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。
FIG. 39 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle according to Embodiment 8 of the present invention.

【図40】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的小さい場合の2温度生成時の運転動
作状態図である。
[Fig. 40] Fig. 40 is a diagram showing the operating state during two-temperature generation when the difference between the condensation temperature and the evaporation temperature is relatively small in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to the eighth embodiment of the present invention.

【図41】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的大きい場合の2温度生成時の運転動
作状態図である。
[Fig. 41] Fig. 41 is a diagram showing the operating state when two temperatures are generated in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 8 of the present invention when the difference between the condensation temperature and the evaporation temperature is relatively large.

【図42】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 42 is a diagram showing the operating state of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the eighth embodiment of the present invention when three temperatures are generated when the difference between two condensation temperatures and one evaporation temperature is relatively small. Is.

【図43】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 43 is a diagram showing an operating state of operation at the time of generating three temperatures in the case where the difference between two condensation temperatures and one evaporation temperature is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 8 of the present invention. Is.

【図44】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 44 is a diagram showing the operating state of operation when generating three temperatures when the difference between one condensation temperature and two evaporation temperatures is relatively small in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 8 of the present invention. Is.

【図45】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 45 is a diagram showing the operating state when generating three temperatures when the difference between one condensation temperature and two evaporation temperatures is relatively large in the multi-temperature generation circuit by the vapor compression refrigeration cycle according to Embodiment 8 of the present invention. Is.

【図46】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の冷媒系の構成図である。
FIG. 46 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle of Embodiment 9 of the present invention.

【図47】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の凝縮温度と蒸発温度の差が比
較的小さい2温度生成時の運転動作状態図である。
[Fig. 47] Fig. 47 is an operation state diagram during two-temperature generation in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the ninth embodiment of the present invention is relatively small.

【図48】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の凝縮温度と蒸発温度の差が比
較的大きい2温度生成時の運転動作状態図である。
[Fig. 48] Fig. 48 is an operation state diagram during two-temperature generation in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the ninth embodiment of the present invention is relatively large.

【図49】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の2つの凝縮温度と1つの蒸発
温度の差が比較的小さい3温度生成時の運転動作状態図
である。
[Fig. 49] Fig. 49 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the ninth embodiment of the present invention when generating three temperatures with a relatively small difference between two condensation temperatures and one evaporation temperature.

【図50】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の2つの凝縮温度と1つの蒸発
温度の差が比較的大きい3温度生成時の運転動作状態図
である。
[Fig. 50] Fig. 50 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the ninth embodiment of the present invention at the time of generating three temperatures in which the difference between two condensation temperatures and one evaporation temperature is relatively large.

【図51】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的小さい3温度生成時の運転動作状態図
である。
[Fig. 51] Fig. 51 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the ninth embodiment of the present invention at the time of generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively small.

【図52】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的小さい3温度生成時の運転動作状態図
である。
[Fig. 52] Fig. 52 is an operation state diagram of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the ninth embodiment of the present invention when generating three temperatures with a relatively small difference between one condensation temperature and two evaporation temperatures.

【図53】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的大きい3温度生成時の運転動作状態図
である。
[Fig. 53] Fig. 53 is an operation state diagram of the multi-temperature generation circuit in the vapor compression refrigeration cycle of the ninth embodiment of the present invention when three temperatures in which a difference between one condensation temperature and two evaporation temperatures is relatively large are generated.

【図54】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的大きい3温度生成時の運転動作状態図
である。
FIG. 54 is a diagram showing the operating state of the multi-temperature generation circuit in the vapor compression refrigeration cycle of the ninth embodiment of the present invention at the time of generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively large.

【図55】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の冷媒系の構成図である。
[Fig. 55] Fig. 55 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle of Embodiment 10 of the present invention.

【図56】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的小さい2温度生成時の運転動作状態図である。
[Fig. 56] Fig. 56 is an operation state diagram during two-temperature generation in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the tenth embodiment of the present invention is relatively small.

【図57】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
[Fig. 57] Fig. 57 is an operation state diagram during two-temperature generation in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the tenth embodiment of the present invention is relatively large.

【図58】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
[Fig. 58] Fig. 58 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the tenth embodiment of the present invention at the time of generating two temperatures in which the difference between the condensation temperature and the evaporation temperature is relatively large.

【図59】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 59] Fig. 59 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the tenth embodiment of the present invention when three temperatures at which the difference between two condensation temperatures and one evaporation temperature is relatively small are generated.

【図60】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 60] Fig. 60 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the tenth embodiment of the present invention at the time of generating three temperatures in which the difference between two condensation temperatures and one evaporation temperature is relatively small.

【図61】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 61] Fig. 61 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the tenth embodiment of the present invention at the time of generating three temperatures in which the difference between two condensation temperatures and one evaporation temperature is relatively large.

【図62】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 62] Fig. 62 is a diagram showing the operating state of the multi-temperature generation circuit in the vapor compression refrigeration cycle of the tenth embodiment of the present invention at the time of generating three temperatures in which the difference between the two condensation temperatures and the one evaporation temperature is relatively large.

【図63】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 63] Fig. 63 is a diagram showing the operating state of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the tenth embodiment of the present invention when generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively small.

【図64】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 64] Fig. 64 is a diagram showing the operating state of the multi-temperature generation circuit in the vapor compression refrigeration cycle of the tenth embodiment of the present invention at the time of generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively small.

【図65】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 65] Fig. 65 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the tenth embodiment of the present invention at the time of generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively large.

【図66】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 66] Fig. 66 is an operation state diagram of the multi-temperature generation circuit in the vapor compression refrigeration cycle of the tenth embodiment of the present invention at the time of generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively large.

【図67】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の冷媒系の構成図である。
[Fig. 67] Fig. 67 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle of Embodiment 11 of the present invention.

【図68】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的小さい2温度生成時の運転動作状態図である。
[Fig. 68] Fig. 68 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the eleventh embodiment of the present invention at the time of generating two temperatures in which the difference between the condensation temperature and the evaporation temperature is relatively small.

【図69】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
[Fig. 69] Fig. 69 is an operation state diagram during two-temperature generation in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the eleventh embodiment of the present invention is relatively large.

【図70】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
[Fig. 70] Fig. 70 is a diagram showing the operation state during two-temperature generation in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the eleventh embodiment of the present invention is relatively large.

【図71】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 71 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the eleventh embodiment of the present invention at the time of generating three temperatures in which the difference between the two condensation temperatures and the one evaporation temperature is relatively small.

【図72】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 72] Fig. 72 is a diagram showing the operating state of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the eleventh embodiment of the present invention when generating three temperatures with a relatively small difference between the two condensation temperatures and one evaporation temperature.

【図73】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 73] Fig. 73 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the eleventh embodiment of the present invention when three temperatures at which the difference between two condensation temperatures and one evaporation temperature is relatively large are generated.

【図74】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 74] Fig. 74 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the eleventh embodiment of the present invention when three temperatures at which the difference between two condensation temperatures and one evaporation temperature is relatively large are generated.

【図75】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 75] Fig. 75 is an operation state diagram of the multi-temperature generation circuit according to the eleventh embodiment of the present invention at the time of generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively small.

【図76】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 76] Fig. 76 is an operation state diagram of the multi-temperature generation circuit according to the eleventh embodiment of the present invention when generating three temperatures with a relatively small difference between one condensation temperature and two evaporation temperatures.

【図77】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 77] Fig. 77 is an operational state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the eleventh embodiment of the present invention when generating three temperatures with a relatively large difference between one condensation temperature and two evaporation temperatures.

【図78】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 78] Fig. 78 is a diagram showing the operating state of the multi-temperature generation circuit according to the eleventh embodiment of the present invention when generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively large.

【図79】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の冷媒系の構成図である。
[Fig. 79] Fig. 79 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit by a vapor compression refrigeration cycle of Embodiment 12 of the present invention.

【図80】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的小さい2温度生成時の運転動作状態図である。
[Fig. 80] Fig. 80 is an operation state diagram during two-temperature generation in which the difference between the condensation temperature and the evaporation temperature of the multi-temperature generation circuit in the vapor compression refrigeration cycle according to the twelfth embodiment of the present invention is relatively small.

【図81】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
FIG. 81 is an operation state diagram of the multi-temperature generation circuit in the vapor compression refrigeration cycle of the twelfth embodiment of the present invention at the time of generating two temperatures in which the difference between the condensation temperature and the evaporation temperature is relatively large.

【図82】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 82] Fig. 82 is a diagram showing the operating state of the multi-temperature generation circuit according to the twelfth embodiment of the present invention at the time of generating three temperatures in which the difference between two condensation temperatures and one evaporation temperature is relatively small.

【図83】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 83] Fig. 83 is an operation state diagram of the twelfth embodiment of the present invention at the time of generating three temperatures in which the difference between two condensation temperatures and one evaporation temperature in the multi-temperature generation circuit by the vapor compression refrigeration cycle is relatively large.

【図84】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
[Fig. 84] Fig. 84 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the twelfth embodiment of the present invention when generating three temperatures with a relatively small difference between one condensation temperature and two evaporation temperatures.

【図85】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
[Fig. 85] Fig. 85 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle of the twelfth embodiment of the present invention when generating three temperatures in which the difference between one condensation temperature and two evaporation temperatures is relatively large.

【図86】従来の蒸気圧縮式サイクルの冷媒系の構成図
である。
[Fig. 86] Fig. 86 is a configuration diagram of a refrigerant system of a conventional vapor compression cycle.

【図87】従来の蒸気圧縮式サイクルの運転動作状態図
である。
[Fig. 87] Fig. 87 is a diagram showing the operating state of the conventional vapor compression cycle.

【符号の説明】[Explanation of symbols]

1 第1圧縮機 2 第2圧縮機 3 第3圧縮機 4a〜d 開閉弁 5 第1ガス管 6 第2ガス管 7 第3ガス管 8 第4ガス管 11 第1アキュムレータ 12 第2アキュムレータ 13 第3圧縮機の吐出配管 14 第2圧縮機の吐出配管 15 第1圧縮機の吐出配管 16 第3圧縮機の吸入配管 17 第2圧縮機の吸入配管 18 第1圧縮機の吸入配管 20a〜d 開閉弁 21 第1開閉弁 22 第2開閉弁 23 第3開閉弁 24 第4開閉弁 25 第5開閉弁 26a〜d 開閉弁 27a〜d 開閉弁 28a〜d 開閉弁 29a〜d 開閉弁 30a 第7開閉弁 30b 第8開閉弁 30d 第6開閉弁 31a〜d 膨張弁 32 毛細管 33 冷媒流量制御器 41 第1逆止弁 42 第2逆止弁 51a〜c 熱交換器 52 第1の逆止弁 53 第1の開閉弁 54 第2の逆止弁 55 第3の逆止弁 56 アキュムレータ 57 給湯用熱交換器 58 追焚き用熱交換器 59 室内熱交換器 60 室外熱交換器 61 高圧ガス管 62 第2高圧ガス管 63 低圧ガス管 64 液管 65 高圧ガス連通管 66 圧縮機連通管 67 第2のバイパス管 68 第1のバイパス管 69 液レシーバー 71 熱交換部 72 第1の吐出管 73 第3の切換四方弁 74 第2の吐出管 76 第1の吸入管 78 第2の吸入管 80 第1のバイパス管 82 第2のバイパス管 83 吐出側接続管 86 吸入側接続管 89 第3のバイパス管 91 第5のバイパス管 93 第4のバイパス管 121 第1の開閉弁 123 第2の開閉弁 125 第3の開閉弁 127 第4の開閉弁 129 第5の開閉弁 131 第6の開閉弁 134 第7の開閉弁 135 第8の開閉弁 137 第9の開閉弁 138 第10の開閉弁 140 第11の開閉弁 142 第12の開閉弁 144 第13の開閉弁 150 四方弁 180 第2の吐出管 181 第1の開閉弁 182 第1の吐出管 183 第1の四方弁 184 第2の吸入管 185 第2の開閉弁 186 第1の接続管 187 第2の四方弁 188 第2の接続管 189 第3の開閉弁 190 第3の接続管 191 第4の開閉弁 192 第5の開閉弁 193 第4の接続管 194 第1の吸入管 195 第5の接続管 271 第1切換四方弁 272 第2切換四方弁 273 第3切換四方弁 1 1st compressor 2 2nd compressor 3 3rd compressor 4a-d opening / closing valve 5 1st gas pipe 6 2nd gas pipe 7 3rd gas pipe 8 4th gas pipe 11 1st accumulator 12 2nd accumulator 13th 3 Discharge pipe of the compressor 14 Discharge pipe of the 2nd compressor 15 Discharge pipe of the 1st compressor 16 Suction pipe of the 3rd compressor 17 Suction pipe of the 2nd compressor 18 Suction pipe of the 1st compressor 20a ~ d Opening / closing Valve 21 1st opening / closing valve 22 2nd opening / closing valve 23 3rd opening / closing valve 24 4th opening / closing valve 25 5th opening / closing valve 26a-d opening / closing valve 27a-d opening / closing valve 28a-d opening / closing valve 29a-d opening / closing valve 30a 7th opening / closing Valve 30b Eighth on-off valve 30d Sixth on-off valve 31a-d Expansion valve 32 Capillary tube 33 Refrigerant flow controller 41 First check valve 42 Second check valve 51a-c Heat exchanger 52 First check valve 53th 1 on-off valve 54 second Stop valve 55 Third check valve 56 Accumulator 57 Heat exchanger for hot water supply 58 Heat exchanger for reheating 59 Indoor heat exchanger 60 Outdoor heat exchanger 61 High pressure gas pipe 62 Second high pressure gas pipe 63 Low pressure gas pipe 64 Liquid Pipe 65 High-pressure gas communication pipe 66 Compressor communication pipe 67 Second bypass pipe 68 First bypass pipe 69 Liquid receiver 71 Heat exchange section 72 First discharge pipe 73 Third switching four-way valve 74 Second discharge pipe 76 First suction pipe 78 Second suction pipe 80 First bypass pipe 82 Second bypass pipe 83 Discharge side connection pipe 86 Suction side connection pipe 89 Third bypass pipe 91 Fifth bypass pipe 93 Fourth bypass pipe Pipe 121 First on-off valve 123 Second on-off valve 125 Third on-off valve 127 Fourth on-off valve 129 Fifth on-off valve 131 Sixth on-off valve 134 Seventh on-off valve 135 Eighth Open / close valve 137 9th open / close valve 138 10th open / close valve 140 11th open / close valve 142 12th open / close valve 144 13th open / close valve 150 4 way valve 180 2nd discharge pipe 181 1st open / close valve 182 1st Discharge pipe 183 First four-way valve 184 Second suction pipe 185 Second opening / closing valve 186 First connecting pipe 187 Second four-way valve 188 Second connecting pipe 189 Third opening / closing valve 190 Third connection Pipe 191 4th on-off valve 192 5th on-off valve 193 4th connecting pipe 194 1st suction pipe 195 5th connecting pipe 271 1st switching four-way valve 272 2nd switching four-way valve 273 3rd switching four-way valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七種 哲二 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 岡田 哲治 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 湯山 ▲ひろし▼ 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 松岡 文雄 鎌倉市大船二丁目14番40号 三菱電機株式 会社生活システム研究所内 (72)発明者 井上 誠司 鎌倉市大船二丁目14番40号 三菱電機株式 会社生活システム研究所内 (72)発明者 隅田 嘉裕 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 田中 直樹 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Shichika 3-18-1, Ogashi, Shizuoka City Mitsubishi Electric Corporation Shizuoka Manufacturing Co., Ltd. (72) Inventor Tetsuji Okada 3-18-1, Oka Shizuoka Mitsubishi Electric Corporation Company Shizuoka Factory (72) Inventor Yuyama ▲ Hiroshi ▼ 3-18-1, Oga, Shizuoka City Mitsubishi Electric Co., Ltd. Shizuoka Factory (72) Inventor Fumio Matsuoka 2-14-40 Ofuna, Kamakura City Mitsubishi Electric Company Life System Research Laboratory (72) Inventor Seiji Inoue 2-14-40 Ofuna, Kamakura City Mitsubishi Electric Corporation Life Systems Research Laboratory (72) Inventor Yoshihiro Sumida 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Corporation In-house (72) Inventor Naoki Tanaka 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 複数の開閉弁あるいは逆止弁を介して直
列または並列に接続可能に設けられた複数台の圧縮機
と、 上記圧縮機の各吐出側もしくは各吸入側のいずれか一方
に上記開閉弁もしくは逆止弁を介して、または直接にそ
れぞれ接続された複数のガス管と、 上記圧縮機の各吐出側もしくは各吸入側のいずれか他方
に上記開閉弁もしくは逆止弁を介して、または直接に接
続された少なくとも1本の他のガス管と、 上記複数のガス管及び他のガス管に開閉弁を介してそれ
ぞれ一端が接続されるとともに、他端が減圧手段を介し
て冷媒を流す共通の冷媒管にそれぞれ接続された複数台
の熱交換器と、 を備えた蒸気圧縮式冷凍サイクルによる多温度生成回
路。
1. A plurality of compressors that can be connected in series or in parallel through a plurality of on-off valves or check valves, and one of the discharge side and each suction side of the compressors. Via a switching valve or a check valve, or a plurality of gas pipes directly connected to each of the discharge side or the suction side of the compressor on the other side, via the switching valve or the check valve, Alternatively, at least one other gas pipe that is directly connected to the plurality of gas pipes and the other gas pipes has one end connected to each other via an opening / closing valve, and the other end is connected to a refrigerant via a pressure reducing means. A multi-temperature generation circuit using a vapor compression refrigeration cycle equipped with a plurality of heat exchangers, each of which is connected to a common refrigerant pipe.
【請求項2】 第1圧縮機、第2圧縮機、及び複数台の
熱交換器を備え、一端部が上記第1圧縮機の吐出側もし
くは吸入側のいずれか一方に、他端部が開閉器を介して
上記複数台の熱交換器に接続する第1高圧ガス管、一端
部が第1開閉器を介して上記第2圧縮機の吐出側もしく
は吸入側のいずれか一方に、他端部が開閉器を介して上
記複数台の熱交換器に接続するとともに、途中で分岐し
て第2開閉器を介して上記第1圧縮機の吸入側もしくは
吐出側のいずれか他方に接続する第2高圧ガス管、一端
部が上記第2圧縮機の吸入側もしくは吐出側のいずれか
他方に接続するとともに第3開閉器を介して上記第1圧
縮機の吸入側もしくは吐出側のいずれか他方に接続し、
他端部が開閉器を介して上記複数台の熱交換器に接続す
る低圧ガス管、複数台の熱交換器に冷媒流量制御器を介
して接続する液管、及び第4開閉器を介して上記第2圧
縮機の吐出側と上記第1圧縮機の吸入側とを連結し上記
第2圧縮機の吐出ガスを上記第1圧縮機に送給する圧縮
機連通管を設けて構成した蒸気圧縮式冷凍サイクルによ
る多温度生成回路。
2. A first compressor, a second compressor, and a plurality of heat exchangers, one end of which is either a discharge side or a suction side of the first compressor, and the other end of which is opened and closed. High pressure gas pipe connected to the plurality of heat exchangers via a compressor, one end of which is either the discharge side or the suction side of the second compressor via the first switch, and the other end is Is connected to the plurality of heat exchangers via a switch, and is branched midway to be connected to either the suction side or the discharge side of the first compressor via the second switch. High-pressure gas pipe, one end of which is connected to either the suction side or the discharge side of the second compressor, and the other side of which is connected to the suction side or the discharge side of the first compressor via a third switch. Then
Through the low pressure gas pipe whose other end is connected to the plurality of heat exchangers via a switch, the liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and the fourth switch. Vapor compression constituted by connecting a discharge side of the second compressor and a suction side of the first compressor and providing a compressor communication pipe for feeding the discharge gas of the second compressor to the first compressor Multi-temperature generation circuit by the freezing cycle.
【請求項3】 第5開閉器を介して第2圧縮機の吐出側
と第1高圧ガス管を連結し上記第2圧縮機の吐出ガスを
上記第1高圧ガス管に送給する高圧ガス連通管が設けら
れている請求項第2項記載の蒸気圧縮式冷凍サイクルに
よる多温度生成回路。
3. A high pressure gas communication for connecting the discharge side of the second compressor and the first high pressure gas pipe via a fifth switch to feed the discharge gas of the second compressor to the first high pressure gas pipe. The multi-temperature generation circuit according to claim 2, wherein a pipe is provided.
【請求項4】 第2圧縮機の吐出配管は第2高圧ガス管
と高圧ガス連通管及び圧縮機連通管の共通配管に分岐
し、さらに上記高圧ガス連通管と圧縮機連通管配管に分
岐して、上記高圧ガス連通管は第1高圧ガス管に接続
し、上記圧縮機連通管は第3開閉器を構成する逆止弁と
開閉弁間の低圧ガス管と接続して第1圧縮機に連通して
いる請求項第3項記載の蒸気圧縮式冷凍サイクルによる
多温度生成回路。
4. The discharge pipe of the second compressor branches into a common pipe for the second high-pressure gas pipe, the high-pressure gas communication pipe, and the compressor communication pipe, and further branches into the high-pressure gas communication pipe and the compressor communication pipe pipe. The high-pressure gas communication pipe is connected to the first high-pressure gas pipe, and the compressor communication pipe is connected to the low-pressure gas pipe between the check valve and the on-off valve forming the third switch to connect to the first compressor. The multi-temperature generation circuit according to claim 3, which is in communication with the vapor compression refrigeration cycle.
【請求項5】 第1圧縮機及び第2圧縮機の吸入側の低
圧ガス管に第1アキュムレータが第1圧縮機の吸入側の
第2高圧ガス管に第2アキュムレータが設けられている
請求項第2項ないし第4項のいずれかに記載の蒸気圧縮
式冷凍サイクルによる多温度生成回路。
5. The first accumulator is provided in the low pressure gas pipe on the suction side of the first compressor and the second compressor, and the second accumulator is provided in the second high pressure gas pipe on the suction side of the first compressor. A multi-temperature generation circuit using the vapor compression refrigeration cycle according to any one of items 2 to 4.
【請求項6】 液管と第1アキュムレータとを接続し、
管路に第6開閉器と流量制御器を有するバイパス配管、
及び上記流量制御器と第1アキュムレータ間のバイパス
配管と第1圧縮機の吸入配管との間で熱交換を行う熱交
換部を設けた請求項5項記載の蒸気圧縮式冷凍サイクル
による多温度生成回路。
6. A liquid pipe and a first accumulator are connected,
By-pass piping having a sixth switch and a flow controller in the pipeline,
6. A multi-temperature generation by a vapor compression refrigeration cycle according to claim 5, further comprising a heat exchanging section for exchanging heat between the bypass pipe between the flow rate controller and the first accumulator and the suction pipe of the first compressor. circuit.
【請求項7】 第1圧縮機または第2圧縮機は能力可変
型圧縮機である請求項第2項ないし第6項のいずれかに
記載の蒸気圧縮式冷凍サイクルによる多温度生成回路。
7. The multi-temperature generation circuit according to any one of claims 2 to 6, wherein the first compressor or the second compressor is a variable capacity compressor.
【請求項8】 n個の飽和温度を同時に得ることができ
る蒸気圧縮式冷凍サイクルにおいてn−1個の圧縮機を
備え、それぞれの圧縮機を複数の開閉弁あるいは逆止弁
を介して直列あるいは並列に接続するとともに、一端部
が圧縮機のそれぞれの吐出あるいは吸入側に他端部が開
閉弁を介して複数台の熱交換器に接続される任意の飽和
温度をもつn個のガス配管群と前記複数台の熱交換器に
冷媒流量制御弁を介して接続する1個の液配管とを設け
たことを特徴とする多温度生成回路。
8. A vapor compression refrigeration cycle capable of simultaneously obtaining n saturation temperatures, comprising n-1 compressors, each compressor being connected in series via a plurality of on-off valves or check valves. A group of n gas pipes that are connected in parallel and that have one end connected to each of the discharge or suction sides of the compressor and the other end connected to a plurality of heat exchangers through open / close valves and have an arbitrary saturation temperature And a single liquid pipe connected to the plurality of heat exchangers via a refrigerant flow control valve.
【請求項9】 第1圧縮機、第2圧縮機及び複数台の熱
交換器を備え、一端部が第1の逆止弁を介して上記第1
圧縮機の吐出側もしくは吸入側のいずれか一方に、他端
部が開閉弁を介して上記複数台の熱交換器に接続する第
1ガス管、一端部が上記第2圧縮機の吐出側もしくは吸
入側のいずれか一方に、他端部が開閉弁を介して上記複
数台の熱交換器に接続する第2ガス管、一端部がアキュ
ムレータの吸入側もしくは吐出側のいずれか他方に、他
端部が開閉弁を介して複数台の熱交換器に接続する第3
ガス管、複数台の熱交換器に冷媒流量制御器を介して接
続する液管を設けるとともに、上記アキュムレータの吐
出側と第1、第2の圧縮機の吸入側とをそれぞれ、第
2、第3の逆止弁を介して個々に接続し、上記第1ガス
管の第1の逆止弁出口側の配管と第2ガス管とを第1の
開閉弁を介して連通させたことを特徴とする蒸気圧縮式
冷凍サイクルによる多温度生成回路。
9. A first compressor, a second compressor and a plurality of heat exchangers are provided, wherein one end of the first compressor is provided with a first check valve.
Either the discharge side or the suction side of the compressor, the other end is a first gas pipe connected to the plurality of heat exchangers via an on-off valve, and the one end is the discharge side of the second compressor or The second gas pipe, which has the other end connected to the plurality of heat exchangers via the on-off valve on one side of the suction side, the other end on the other side of the suction side or the discharge side of the accumulator, and the other end The third part is connected to multiple heat exchangers via open / close valves
A gas pipe and a liquid pipe connected to a plurality of heat exchangers via a refrigerant flow rate controller are provided, and the discharge side of the accumulator and the suction sides of the first and second compressors are respectively provided with a second pipe and a second pipe. 3 are individually connected via a check valve, and the pipe on the first check valve outlet side of the first gas pipe and the second gas pipe are communicated with each other via the first on-off valve. A multi-temperature generation circuit using a vapor compression refrigeration cycle.
【請求項10】 第1圧縮機、第2圧縮機及び給湯熱交
換器、風呂の追焚き熱交換器、室内熱交換器、室外熱交
換器の複数台の熱交換器を備え、一端部が第1の逆止弁
を介して上記第1の圧縮機の吐出側もしくは吸入側のい
ずれか一方に、他端部が開閉弁を介して給湯熱交換器、
追焚き熱交換器、室外熱交換器にそれぞれ接続する第1
ガス管、一端部が上記第2圧縮機の吐出側もしくは吸入
側のいずれか一方に、他端部が開閉弁を介して室内熱交
換器、室外熱交換器にそれぞれ接続する第2ガス管、一
端部がアキュムレータの吸入側もしくは吐出側のいずれ
か他方に、他端部が開閉弁を介して上記複数台の熱交換
器のそれぞれに接続する第3ガス管、上記複数台の熱交
換器のそれぞれに冷媒流量制御器を介して接続する液管
を設けるとともに、上記アキュムレータの吐出側と第
1、第2の圧縮機の吸入側とをそれぞれ、第2、第3の
逆止弁を介して個々に接続し、上記第1ガス管の第1の
逆止弁出口側の配管と第2ガス管とを第1の開閉弁を介
して連通させたことを特徴とする蒸気圧縮式冷凍サイク
ルによる多温度生成回路。
10. A plurality of heat exchangers including a first compressor, a second compressor and a hot water supply heat exchanger, a bath reheating heat exchanger, an indoor heat exchanger, and an outdoor heat exchanger, one end of which is provided. A hot water supply heat exchanger through the first check valve to either the discharge side or the suction side of the first compressor, and the other end through an open / close valve;
First connected to each of the additional heat exchanger and the outdoor heat exchanger
A gas pipe, one end of which is connected to either the discharge side or the suction side of the second compressor, and the other end of which is connected to an indoor heat exchanger or an outdoor heat exchanger via an on-off valve, A third gas pipe whose one end is connected to either the suction side or the discharge side of the accumulator and the other end is connected to each of the plurality of heat exchangers through an on-off valve, and the plurality of heat exchangers are connected. A liquid pipe connected to each of them via a refrigerant flow rate controller is provided, and the discharge side of the accumulator and the suction sides of the first and second compressors are respectively connected via second and third check valves. According to a vapor compression refrigeration cycle, which is characterized in that the first gas pipe is connected to the first check valve outlet side of the first gas pipe and the second gas pipe is communicated with the second gas pipe via a first opening / closing valve. Multi-temperature generation circuit.
【請求項11】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が上記第1圧縮機の吐出側に、他端
が開閉弁を介して上記複数台の熱交換器に接続する高圧
ガス管と、一端が第1開閉弁を介して上記第2圧縮機の
吐出側に、他端が開閉弁を介して上記複数台の熱交換器
に接続するとともに、上記第1開閉弁と開閉弁の間から
分岐して第5開閉弁及び第2逆止弁を介して上記第1圧
縮機の吸入側に接続する中圧ガス管と、一端が上記第2
圧縮機の吸入側に接続するとともに第1逆止弁及び第2
開閉弁をこの順に介して上記第1圧縮機の吸入側に接続
し、他端が開閉弁を介して上記複数台の熱交換器に接続
する低圧ガス管と、上記複数台の熱交換器に冷媒流量制
御器を介して接続する液管と、上記第1圧縮機の吐出側
と上記第2圧縮機の吐出側を第3開閉弁を介して連結す
る高圧ガス連通管と、上記第2圧縮機の吐出側と上記第
1逆止弁と第2開閉弁の間を第4開閉弁を介して連結す
る圧縮機連通管と、上記中圧ガス管から第7開閉弁を介
して上記液管に至る第1のバイパス路と、上記液管から
第8開閉弁を介して上記第1圧縮機の吸入側へ至る第2
バイパス路と、を備えた蒸気圧縮式冷凍サイクルによる
多温度生成回路。
11. A first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor, and the other end of which is provided with an opening / closing valve. A high-pressure gas pipe connected to the exchanger, one end connected to the discharge side of the second compressor via the first opening / closing valve, and the other end connected to the plurality of heat exchangers via the opening / closing valve. A medium pressure gas pipe branched from between the first on-off valve and the on-off valve and connected to the suction side of the first compressor via a fifth on-off valve and a second check valve, and one end of the second on-off valve
The first check valve and the second check valve are connected to the suction side of the compressor.
A low-pressure gas pipe connected to the suction side of the first compressor through the on-off valve in this order, and the other end connected to the heat exchangers through the on-off valve, and the heat exchangers A liquid pipe connected via a refrigerant flow controller, a high pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, and the second compression Compressor communication pipe connecting the discharge side of the machine with the first check valve and the second open / close valve via a fourth open / close valve, and the liquid pipe from the intermediate pressure gas pipe through a seventh open / close valve To the suction side of the first compressor from the liquid pipe via the eighth opening / closing valve.
A multi-temperature generation circuit by a vapor compression refrigeration cycle including a bypass path.
【請求項12】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が上記第1圧縮機の吐出側に、他端
が開閉弁を介して上記複数台の熱交換器に接続する高圧
ガス管と、一端が第1開閉弁を介して上記第2圧縮機の
吐出側に、他端が開閉弁を介して上記複数台の熱交換器
に接続するとともに、上記第1開閉弁と開閉弁の間から
分岐して第5開閉弁及び第2逆止弁を介して上記第1圧
縮機の吸入側に接続する中圧ガス管と、一端が上記第2
圧縮機の吸入側に接続するとともに第1逆止弁及び第2
開閉弁をこの順に介して上記第1圧縮機の吸入側に接続
し、他端が開閉弁を介して上記複数台の熱交換器に接続
する低圧ガス管と、上記複数台の熱交換器に冷媒流量制
御器を介して接続する液管と、上記第1圧縮機の吐出側
と上記第2圧縮機の吐出側を第3開閉弁を介して連結す
る高圧ガス連通管と、上記第2圧縮機の吐出側と上記第
1逆止弁と第2開閉弁の間を第4開閉弁を介して連結す
る圧縮機連通管と、上記中圧ガス管から冷媒流量制御器
を介して前記液管に至る第1のバイパス路と、上記液管
から第8開閉弁を介して上記第1圧縮機の吸入側へ至る
第2バイパス路と、を備えた蒸気圧縮式冷凍サイクルに
よる多温度生成回路。
12. A first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor, and the other end of which is provided with an opening / closing valve. A high-pressure gas pipe connected to the exchanger, one end connected to the discharge side of the second compressor via the first opening / closing valve, and the other end connected to the plurality of heat exchangers via the opening / closing valve. A medium pressure gas pipe branched from between the first on-off valve and the on-off valve and connected to the suction side of the first compressor via a fifth on-off valve and a second check valve, and one end of the second on-off valve
The first check valve and the second check valve are connected to the suction side of the compressor.
A low-pressure gas pipe connected to the suction side of the first compressor through the on-off valve in this order, and the other end connected to the heat exchangers through the on-off valve, and the heat exchangers A liquid pipe connected via a refrigerant flow controller, a high pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, and the second compression A compressor communication pipe connecting the discharge side of the machine with the first check valve and the second open / close valve via a fourth open / close valve, and the liquid pipe from the intermediate pressure gas pipe via a refrigerant flow controller. A multi-temperature generation circuit by a vapor compression refrigeration cycle, which includes a first bypass passage leading to the liquid pipe and a second bypass passage extending from the liquid pipe to the suction side of the first compressor via an eighth opening / closing valve.
【請求項13】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が上記第1圧縮機の吐出側に、他端
が開閉弁を介して上記複数台の熱交換器に接続する高圧
ガス管と、一端が第1開閉弁を介して上記第2圧縮機の
吐出側に、他端が開閉弁を介して上記複数台の熱交換器
に接続するとともに、上記第1開閉弁と開閉弁の間から
分岐して第5開閉弁及び第2逆止弁を介して上記第1圧
縮機の吸入側に接続する中圧ガス管と、一端が上記第2
圧縮機の吸入側に接続するとともに第1逆止弁及び第2
開閉弁をこの順に介して上記第1圧縮機の吸入側に接続
し、他端が開閉弁を介して上記複数台の熱交換器に接続
する低圧ガス管と、上記複数台の熱交換器に冷媒流量制
御器を介して接続する液レシーバーと、上記第1圧縮機
の吐出側と上記第2圧縮機の吐出側を第3開閉弁を介し
て連結する高圧ガス連通管と、上記第2の圧縮機の吐出
側と上記第1逆止弁と第2開閉弁の間を第4開閉弁を介
して連結する圧縮機連通管と、上記中圧ガス管から第7
開閉弁を介して上記液レシーバーに至る第1のバイパス
路と、上記液レシーバーから第8開閉弁を介して上記第
1圧縮機の吸入側へ至る第2バイパス路と、を備えた蒸
気圧縮式冷凍サイクルによる多温度生成回路。
13. A first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor, and the other end of which is provided with an opening / closing valve. A high-pressure gas pipe connected to the exchanger, one end connected to the discharge side of the second compressor via the first opening / closing valve, and the other end connected to the plurality of heat exchangers via the opening / closing valve. A medium pressure gas pipe branched from between the first on-off valve and the on-off valve and connected to the suction side of the first compressor via a fifth on-off valve and a second check valve, and one end of the second on-off valve
The first check valve and the second check valve are connected to the suction side of the compressor.
A low-pressure gas pipe connected to the suction side of the first compressor through the on-off valve in this order, and the other end connected to the heat exchangers through the on-off valve, and the heat exchangers A liquid receiver connected via a refrigerant flow controller, a high pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve, and the second The compressor communication pipe that connects the discharge side of the compressor to the first check valve and the second open / close valve via a fourth open / close valve;
Vapor compression type having a first bypass passage leading to the liquid receiver via an on-off valve and a second bypass passage leading from the liquid receiver to the suction side of the first compressor via an eighth on-off valve Multi-temperature generation circuit by refrigeration cycle.
【請求項14】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が第1の開閉弁を有する第1の吐出
管を介して上記第1圧縮機の吐出側に、他端が開閉弁を
介して上記複数台の熱交換器に接続する高圧ガス管と、
一端が第2の開閉弁を有する第2の吐出管を介して上記
第2圧縮機の吐出側に、他端が開閉弁を介して上記複数
台の熱交換器に接続する中圧ガス管と、一端が第4の開
閉弁を有する第2の吸入管を介して上記第2圧縮機の吸
入側に、他端が開閉弁を介して上記複数台の熱交換器に
接続する低圧ガス管と、上記複数台の熱交換器に冷媒流
量制御器を介して接続する液管と、上記中圧ガス管と上
記第1圧縮機の吸入側とを第3の開閉弁を介して接続す
る第1の吸入管と、上記第1の吐出管と上記第2の吐出
管を第7の開閉弁及び第8の開閉弁を介して接続する吐
出側接続管と、上記第1の吸入管と上記第2の吸入管を
第9の開閉弁及び第10の開閉弁を介して接続する吸入
側接続管と、上記中圧ガス管と上記第2の吸入管とを第
5開閉弁を介して接続する第1のバイパス管と、上記低
圧管と上記第1の吸入管を第6開閉弁を介して接続する
第2のバイパス管と、上記第7の開閉弁、第8の開閉弁
の間と上記第9の開閉弁、第10の開閉弁の間を第11
の開閉弁を介して接続する第3のバイパス管と、上記第
2の吐出管と上記高圧ガス管とを第13の開閉弁を介し
て接続する第4のバイパス管と、上記第1の吐出管と上
記中圧ガス管とを第12の開閉弁を介して接続する第5
のバイパス管と、を備えた蒸気圧縮式冷凍サイクルによ
る多温度生成回路。
14. A discharge side of the first compressor via a first compressor, a second compressor, a plurality of heat exchangers, and a first discharge pipe having a first opening / closing valve at one end. A high pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve,
A medium pressure gas pipe having one end connected to the discharge side of the second compressor via a second discharge pipe having a second on-off valve, and the other end connected to the plurality of heat exchangers via an on-off valve. A low pressure gas pipe having one end connected to the suction side of the second compressor via a second suction pipe having a fourth on-off valve and the other end connected to the plurality of heat exchangers via the on-off valve. A liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, the medium pressure gas pipe and a suction side of the first compressor connected via a third opening / closing valve, Suction pipe, a discharge-side connecting pipe that connects the first discharge pipe and the second discharge pipe via a seventh opening / closing valve and an eighth opening / closing valve, the first suction pipe, and the first suction pipe. The suction side connecting pipe connecting the second suction pipe through the ninth opening and closing valve and the tenth opening and closing valve, the intermediate pressure gas pipe and the second suction pipe through the fifth opening and closing valve. Between the continuing first bypass pipe, the second bypass pipe connecting the low pressure pipe and the first suction pipe via the sixth opening / closing valve, the seventh opening / closing valve, and the eighth opening / closing valve. And between the ninth on-off valve and the tenth on-off valve above
Third bypass pipe connected via the on-off valve, a fourth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via the thirteenth open-close valve, and the first discharge pipe A fifth connecting the pipe and the medium pressure gas pipe through a twelfth on-off valve
A multi-temperature generation circuit using a vapor compression refrigeration cycle, which includes a bypass pipe of.
【請求項15】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、四方弁と、一端が第1の開閉弁を有する
第1の吐出管を介して上記第1圧縮機の吐出側に、他端
が開閉弁を介して上記複数台の熱交換器に接続する高圧
ガス管と、一端が第2の開閉弁を有する第2の吐出管を
介して上記第2圧縮機の吐出側に、他端が開閉弁を介し
て上記複数台の熱交換器に接続するとともに、途中から
分岐して上記四方弁に接続する中圧ガス管と、一端が上
記四方弁に、他方が開閉弁を介して上記複数台の熱交換
器に接続する低圧ガス管と、上記複数台の熱交換器に冷
媒流量制御器を介して接続する液管と、上記四方弁と上
記第1圧縮機の吸入側とを第3の開閉弁を介して接続す
る第1の吸入管と、上記四方弁と上記第2圧縮機の吸入
側とを第4の開閉弁を介して接続する第2の吸入管と、
上記第1の吐出管と上記第2の吐出管を第7の開閉弁及
び第8の開閉弁を介して接続する吐出側接続管と、上記
第1の吸入管と上記第2の吸入管を第9の開閉弁及び第
10の開閉弁を介して接続する吸入側接続管と、上記第
7の開閉弁、第8の開閉弁の間と上記第9の開閉弁、第
10の開閉弁の間を第11の開閉弁を介して接続する第
3のバイパス管と、上記第2の吐出管と上記高圧ガス管
とを第13の開閉弁を介して接続する第4のバイパス管
と、上記第1の吐出管と前記中圧ガス管とを第12の開
閉弁を介して接続する第5のバイパス管と、を備えた蒸
気圧縮式冷凍サイクルによる多温度生成回路。
15. The first compressor via a first compressor, a second compressor, a plurality of heat exchangers, a four-way valve, and a first discharge pipe having a first opening / closing valve at one end. On the discharge side of the machine, the other end is connected to the plurality of heat exchangers via an on-off valve, and the second compression pipe is connected via a second discharge pipe having a second on-off valve at one end. On the discharge side of the machine, the other end is connected to the plurality of heat exchangers via an on-off valve, a medium pressure gas pipe branched from the middle and connected to the four-way valve, and one end to the four-way valve, The other is a low-pressure gas pipe connected to the plurality of heat exchangers via an on-off valve, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, the four-way valve, and the first A first suction pipe connecting the suction side of the compressor via a third opening / closing valve, and a fourth opening / closing valve connecting the four-way valve and the suction side of the second compressor. A second suction pipe connected via
A discharge side connecting pipe that connects the first discharge pipe and the second discharge pipe via a seventh opening / closing valve and an eighth opening / closing valve, the first suction pipe, and the second suction pipe. Between the suction side connecting pipe connected through the ninth opening / closing valve and the tenth opening / closing valve, between the seventh opening / closing valve and the eighth opening / closing valve, and between the ninth opening / closing valve and the tenth opening / closing valve. A third bypass pipe connecting the two via an eleventh on-off valve, a fourth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth open-close valve, and A multi-temperature generation circuit according to a vapor compression refrigeration cycle, comprising: a first discharge pipe and a fifth bypass pipe connecting the medium pressure gas pipe via a twelfth on-off valve.
【請求項16】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、第1の四方弁と、第2の四方弁と、一端
が上記第1の四方弁が接続された第1の吐出管を介して
上記第1圧縮機の吐出側に、他端が開閉弁を介して上記
複数台の熱交換器に接続する高圧ガス管と、他端が開閉
弁を介して上記複数台の熱交換器に接続する中圧ガス管
と、一端が上記第2圧縮機の吸入側に第2の開閉弁を介
して接続する第2の吸入管に、他端が開閉弁を介して上
記複数台の熱交換器に接続する低圧ガス管と、上記複数
台の熱交換器に冷媒流量制御器を介して接続する液管
と、上記低圧ガス管と上記第1圧縮機とを上記第2の四
方弁を介して接続する第1の吸入管と、上記第2圧縮機
の吐出側と上記第1の開閉弁の間と上記第1の四方弁と
を接続する第1の接続管と、上記第2の圧縮機の吸入側
と上記第2の開閉弁との間に上記第2の四方弁とを接続
する第2の接続管と、上記第1の四方弁と第2の四方弁
を第3の開閉弁を介して接続する第3の接続管と、上記
第3の開閉弁の両側から分岐し、第4の開閉弁、第5の
開閉弁を介してそれぞれ上記中圧ガス管の一端に接続す
る第4の接続管及び第5の接続管と、を備えた蒸気圧縮
式冷凍サイクルによる多温度生成回路。
16. A first compressor, a second compressor, a plurality of heat exchangers, a first four-way valve, a second four-way valve, and one end of which is connected to the first four-way valve. Through the first discharge pipe to the discharge side of the first compressor, the other end through a high pressure gas pipe connected to the plurality of heat exchangers through the open / close valve, and the other end through the open / close valve. A medium pressure gas pipe connected to the plurality of heat exchangers, a second suction pipe having one end connected to the suction side of the second compressor via a second opening / closing valve, and the other end having an opening / closing valve. A low pressure gas pipe connected to the plurality of heat exchangers via a liquid pipe, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, the low pressure gas pipe and the first compressor. A first suction pipe connected via the second four-way valve, a first connection connecting the discharge side of the second compressor and the first on-off valve, and the first four-way valve. A pipe, a second connecting pipe connecting the second four-way valve between the suction side of the second compressor and the second on-off valve, the first four-way valve and the second connecting pipe. A third connecting pipe connecting a four-way valve via a third opening / closing valve and a branch from both sides of the third opening / closing valve, and the medium pressure via the fourth opening / closing valve and the fifth opening / closing valve, respectively. A multi-temperature generation circuit by a vapor compression refrigeration cycle including a fourth connection pipe and a fifth connection pipe connected to one end of a gas pipe.
【請求項17】 第1圧縮機と、第2圧縮機と、給湯用
熱交換器及び複数台の熱交換器と、第1の四方弁と、第
2の四方弁と、第3の四方弁と、一端が上記第1圧縮機
の吐出側に、他端が上記給湯用熱交換器及び上記第1の
四方弁、第3の四方弁を介して上記複数台の熱交換器に
接続する高圧ガス管と、一端が上記第1開閉弁を介して
上記第2圧縮機の吐出側に、他端が第2の四方弁、第3
の四方弁を介して上記複数台の熱交換器に接続するとと
もに、途中で分岐して第5開閉弁を介して上記第1圧縮
機の吸入側に接続する中圧ガス管と、一端が上記第2圧
縮機の吸入側に接続するとともに第1逆止弁と第2開閉
弁をこの順に介して上記第1圧縮機の吸入側に接続し、
他端が第1の四方弁、第2の四方弁を介して上記複数台
の熱交換器に接続する低圧ガス管と、上記給湯用熱交換
器及び複数台の熱交換器に冷媒流量制御器を介して接続
する液管と、上記第1圧縮機の吐出側と上記第2圧縮機
の吐出側を第3開閉弁を介して連結する高圧ガス連通管
と、上記第2圧縮機の吐出側と上記第1逆止弁と第2開
閉弁の間を第4開閉弁を介して連結する圧縮機連通管
と、を備えた蒸気圧縮式冷凍サイクルによる多温度生成
回路。
17. A first compressor, a second compressor, a hot water heat exchanger and a plurality of heat exchangers, a first four-way valve, a second four-way valve, and a third four-way valve. And one end connected to the discharge side of the first compressor and the other end connected to the plurality of heat exchangers via the heat exchanger for hot water supply, the first four-way valve, and the third four-way valve. A gas pipe, one end of which is connected to the discharge side of the second compressor through the first opening / closing valve, and the other end of which is a second four-way valve, a third
A medium pressure gas pipe connected to the plurality of heat exchangers via the four-way valve, and branched in the middle to connect to the suction side of the first compressor via the fifth opening / closing valve; The first check valve and the second opening / closing valve are connected to the suction side of the first compressor via the first check valve and the second opening / closing valve in this order,
A low-pressure gas pipe having the other end connected to the plurality of heat exchangers via a first four-way valve and a second four-way valve, the hot water supply heat exchanger and the plurality of heat exchangers, and a refrigerant flow rate controller. And a high pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third opening / closing valve, and the discharge side of the second compressor. And a compressor communication pipe that connects the first check valve and the second opening / closing valve via a fourth opening / closing valve, and a multi-temperature generation circuit by a vapor compression refrigeration cycle.
JP5190319A 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle Expired - Lifetime JP3036310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5190319A JP3036310B2 (en) 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP22502192 1992-08-01
JP4-225021 1993-01-11
JP246393 1993-01-11
JP5-2463 1993-01-11
JP5190319A JP3036310B2 (en) 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH06257889A true JPH06257889A (en) 1994-09-16
JP3036310B2 JP3036310B2 (en) 2000-04-24

Family

ID=27275361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5190319A Expired - Lifetime JP3036310B2 (en) 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3036310B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001129A1 (en) * 2001-06-26 2003-01-03 Daikin Industries, Ltd. Freezing device
WO2005033593A1 (en) * 2003-10-06 2005-04-14 Daikin Industries, Ltd. Freezer
US6883346B2 (en) 2001-10-23 2005-04-26 Daikin Industries, Ltd. Freezer
JP2011052865A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Air conditioner
US8713958B2 (en) 2009-08-28 2014-05-06 Sanyo Electric Co., Ltd. Air conditioner having indoor and outdoor units
JP6373469B1 (en) * 2017-11-08 2018-08-15 三菱重工サーマルシステムズ株式会社 heat pump
CN111316048A (en) * 2017-11-08 2020-06-19 三菱重工制冷空调系统株式会社 Heat pump
EP2389516B1 (en) * 2009-01-23 2024-01-10 BITZER Kühlmaschinenbau GmbH Compressors with different volume indexes and method for same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698217B2 (en) 2001-06-26 2004-03-02 Daikin Industries, Ltd. Freezing device
CN100353128C (en) * 2001-06-26 2007-12-05 大金工业株式会社 Freezing device
WO2003001129A1 (en) * 2001-06-26 2003-01-03 Daikin Industries, Ltd. Freezing device
US6883346B2 (en) 2001-10-23 2005-04-26 Daikin Industries, Ltd. Freezer
WO2005033593A1 (en) * 2003-10-06 2005-04-14 Daikin Industries, Ltd. Freezer
AU2004278637B2 (en) * 2003-10-06 2007-05-10 Daikin Industries, Ltd. Refrigeration apparatus
US7237405B2 (en) 2003-10-06 2007-07-03 Daikin Industries, Ltd. Refrigeration apparatus
CN100373112C (en) * 2003-10-06 2008-03-05 大金工业株式会社 Freezer
EP2389516B1 (en) * 2009-01-23 2024-01-10 BITZER Kühlmaschinenbau GmbH Compressors with different volume indexes and method for same
US8713958B2 (en) 2009-08-28 2014-05-06 Sanyo Electric Co., Ltd. Air conditioner having indoor and outdoor units
EP3273184A1 (en) * 2009-08-28 2018-01-24 Sanyo Electric Co., Ltd. Air conditioner
JP2011052865A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Air conditioner
WO2019093420A1 (en) * 2017-11-08 2019-05-16 三菱重工サーマルシステムズ株式会社 Heat pump
JP2019086238A (en) * 2017-11-08 2019-06-06 三菱重工サーマルシステムズ株式会社 heat pump
CN111316048A (en) * 2017-11-08 2020-06-19 三菱重工制冷空调系统株式会社 Heat pump
CN111316047A (en) * 2017-11-08 2020-06-19 三菱重工制冷空调系统株式会社 Heat pump
EP3705809A4 (en) * 2017-11-08 2021-01-06 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat pump
JP6373469B1 (en) * 2017-11-08 2018-08-15 三菱重工サーマルシステムズ株式会社 heat pump

Also Published As

Publication number Publication date
JP3036310B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
EP1788325B1 (en) Freezing apparatus
US7272948B2 (en) Heat pump with reheat and economizer functions
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
CN203249455U (en) Air conditioning device
EP2049848A1 (en) Tandem compressors with pulse width modulation suction valve
JP2001056159A (en) Air conditioner
WO2024198359A1 (en) Ultralow-temperature single-stage and double-stage hybrid air source heat pump unit
KR101695689B1 (en) Refrigerator
JP3036310B2 (en) Multi-temperature generation circuit by vapor compression refrigeration cycle
CN206222580U (en) air conditioner
CN106765749A (en) Air conditioner
KR102274194B1 (en) An air conditioner
CN206222581U (en) air conditioner
JPH02178575A (en) Heat pump for cooling or heating and supplying hot water system
JP2007163011A (en) Refrigeration unit
JPH05133635A (en) Cold accumulation type air conditioning apparatus
KR100857564B1 (en) Multi-heat pump
CN110234938A (en) The outdoor system of air conditioner
KR102718100B1 (en) Automotive air conditioning system
JPH04257661A (en) Two stage compression refrigerating cycle device
CN106766292A (en) air conditioner
KR100522404B1 (en) Refrigeration System of Multi Type Air Conditioner
KR100488532B1 (en) Cooling system
JP2997598B2 (en) Multifunctional heat pump system
JP3657579B2 (en) Air conditioning system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20140225

EXPY Cancellation because of completion of term