JPH06257714A - Device and method for supplying slurry fuel of mixed coas and water for pressurized fluidized bed type boiler - Google Patents

Device and method for supplying slurry fuel of mixed coas and water for pressurized fluidized bed type boiler

Info

Publication number
JPH06257714A
JPH06257714A JP4498793A JP4498793A JPH06257714A JP H06257714 A JPH06257714 A JP H06257714A JP 4498793 A JP4498793 A JP 4498793A JP 4498793 A JP4498793 A JP 4498793A JP H06257714 A JPH06257714 A JP H06257714A
Authority
JP
Japan
Prior art keywords
fluidized bed
coal
pressurized fluidized
mixed slurry
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4498793A
Other languages
Japanese (ja)
Inventor
Kenji Toukawa
謙示 東川
Kimihiro Nonaka
公大 野中
Hiroshi Takezaki
博 武▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4498793A priority Critical patent/JPH06257714A/en
Publication of JPH06257714A publication Critical patent/JPH06257714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep a desired combustion performance of a pressurized fluidized bed type boiler by a method wherein an unstable state of flow rate of supplying CWP or a closing trouble in a supplying pipe is prevented. CONSTITUTION:An increased viscosity caused by a variation in nature of a coal water mixed slurry (CWP) and a pressure loss in a CWP supplying pipe 3 are detected by a pressure difference sensor 10. As they become predetermined dangerous values, water is fed and controlled to be supplied to the corresponding locations with a water feeding pipe 12, thereby an unstable state of a flow rate of CWP supplying during an operation of the pressurized fluidized bed type boiler 101 is eliminated and a closing of the supplying pipe 3 can be prevented, so that a combustion performance of the boiler 101 is not substantially influenced. Although a closing trouble of the sensor device itself for the pressure loss can be expected during supplying of CWP 120 of high viscosity, even in that case, a water supplying control for the supplying pipe 3 is carried out under a combination of O2 and NOx concentration sensor 14 for the discharged gas of the boiler 101, resulting that back-up for the device may easily be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧流動層ボイラの主
要装置である燃料供給装置に係わり、特に供給配管内に
ある石炭粒子と水を混合してスラリー状の流体(Coal W
ater Paste、以下CWPと称する)の粘度を調整するこ
とによって、供給配管内での閉塞等を未然に防止し、加
圧流動層ボイラへのCWP供給量を安定化するのに好適
なCWP燃料供給装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply device, which is a main device of a pressurized fluidized bed boiler, and particularly to a slurry fluid (Coal W) prepared by mixing coal particles and water in a supply pipe.
By adjusting the viscosity of ater Paste (hereinafter referred to as CWP), it is possible to prevent clogging in the supply pipe before it occurs and to supply CWP fuel suitable for stabilizing the CWP supply amount to the pressurized fluidized bed boiler. It relates to the device.

【0002】[0002]

【従来の技術】加圧流動層ボイラへの石炭燃料を供給す
る方法として、 1)乾燥した石炭粒子を直列に接続した複数個の容器に
よって段階的に石炭供給先の圧力まで昇圧するロックホ
ッパと石炭を空気輸送する空気輸送システムを用いて加
圧流動層ボイラへ供給する乾式供給方式と、 2)燃料をCWPとし、ポンプを昇圧および圧送手段と
して用いて加圧流動層ボイラへCWPを供給する湿式供
給方式とがある。 一方、加圧流動層ボイラは一般的には燃焼室の圧力が最
大負荷時には10〜15kg/cm2・g、最低負荷時
には4〜6kg/cm2・g程度で運転されるため、石
炭燃料供給装置は、この供給先の加圧流動層ボイラの圧
力に追従させる必要がある。
2. Description of the Related Art As a method for supplying coal fuel to a pressurized fluidized bed boiler, 1) a lock hopper for stepwise increasing the pressure to the coal supply destination by a plurality of containers in which dried coal particles are connected in series. A dry supply system for supplying coal to a pressurized fluidized bed boiler using an air transportation system for pneumatically transporting coal, and 2) supplying CWP to the pressurized fluidized bed boiler by using CWP as fuel and using a pump as a pressure increasing and pumping means. There is a wet supply system. On the other hand, the pressurized fluid Doso boiler generally to 10~15kg / cm 2 · g at the time of the maximum load pressure of the combustion chamber, at the time of minimum load is operated at about 4~6kg / cm 2 · g, coal fueling The device needs to follow the pressure of the pressurized fluidized bed boiler of this supply destination.

【0003】すなわち、前記乾式供給方式では、供給先
の圧力変化に対応してロックホッパの圧力を調整する必
要があるため運転操作が複雑となり、また、これによる
制御装置などの設備コストも高くなるなどの不利な点が
多く、さらに乾燥した石炭を供給するため、燃焼室内で
の温度(以下、層温度と言う)にアンバランスが生じる
ため好ましくない。この乾式供給方式に比べ前記湿式供
給方式では、ポンプによりCWPを昇圧および圧送する
が、供給先の圧力によりポンプの吐出圧が決まるため、
供給先の圧力変化にスムーズに対応できるメリットがあ
る。また、湿式であるため石炭燃料の燃焼時間も長く、
層温度のアンバランスも生じ難いという利点があり、加
圧流動層ボイラでは湿式供給方式が多く採用されつつあ
る。
That is, in the dry supply method, the pressure of the lock hopper needs to be adjusted in accordance with the change in the pressure of the supply destination, which complicates the operation operation and also increases the equipment cost of the control device and the like. Since there are many disadvantages such as the above, and since dry coal is supplied, an imbalance occurs in the temperature in the combustion chamber (hereinafter referred to as bed temperature), which is not preferable. Compared to the dry supply method, in the wet supply method, the CWP is boosted and pressure-fed by the pump, but the discharge pressure of the pump is determined by the pressure of the supply destination.
It has the advantage of being able to respond smoothly to changes in pressure at the supply destination. Also, since it is a wet type, the combustion time of coal fuel is long,
Since there is an advantage that an imbalance of bed temperature is unlikely to occur, a pressurized fluidized bed boiler is often adopted by a wet supply system.

【0004】以下、加圧流動層ボイラへCWPを湿式で
供給する湿式供給方式の概略系統について図4を用いて
説明する。圧力容器104内に収納された加圧流動層ボ
イラ101は、その底部に空気分散板105が設けら
れ、その上に流動媒体粒子102が充填されている。加
圧空気106は圧力容器104に供給された後、燃焼用
空気107として空気分散板105を通って加圧流動層
ボイラ101内に供給され、流動媒体粒子102を流動
化して流動層109を形成する。一方、燃料の石炭11
4は所定の粒径分布に調整されてCWP調整タンク11
1に連続的に投入され、さらに石炭114の供給量に対
する所定割合の水116と流動層内脱硫用の石灰石11
5が連続的に投入される。この石炭114、石灰石11
5および水116は、CWP調整タンク111内で電動
機112によって回転する撹拌翼113によって混合、
撹拌された後、CWPタンク121に送られ貯蔵され
る。CWPタンク121内においても、CWP120の
石炭114と水116が分離するのを防止するため、電
動機122によって回転する撹拌翼123によって撹拌
される。加圧流動層ボイラ101には、CWPポンプ1
により昇圧されたCWPタンク121からのCWP12
0が供給配管3を通して輸送され、CWPノズル110
により流動層109内に吹き込まれる。加圧流動層ボイ
ラ101から排出する燃焼排ガスはサイクロン103で
ダストを除去された後、排ガス配管108を通ってガス
タービン(図示省略)に導入される。
Hereinafter, a schematic system of a wet supply system for supplying CWP to the pressurized fluidized bed boiler in a wet manner will be described with reference to FIG. The pressurized fluidized bed boiler 101 housed in the pressure vessel 104 is provided with an air dispersion plate 105 at the bottom thereof, and fluid medium particles 102 are filled on the air dispersion plate 105. The compressed air 106 is supplied to the pressure vessel 104 and then supplied as combustion air 107 through the air dispersion plate 105 into the pressurized fluidized bed boiler 101 to fluidize the fluidized medium particles 102 to form a fluidized bed 109. To do. On the other hand, fuel coal 11
4 is a CWP adjustment tank 11 adjusted to a predetermined particle size distribution
1 is continuously charged, and further, water 116 and a limestone 11 for desulfurization in a fluidized bed at a predetermined ratio to the amount of coal 114 supplied.
5 are continuously charged. This coal 114, limestone 11
5 and water 116 are mixed by a stirring blade 113 rotated by an electric motor 112 in the CWP adjustment tank 111,
After being stirred, it is sent to the CWP tank 121 and stored. In the CWP tank 121 as well, in order to prevent the coal 114 and the water 116 of the CWP 120 from being separated, the stirring blade 123 that is rotated by the electric motor 122 is agitated. The pressurized fluidized bed boiler 101 includes a CWP pump 1
CWP12 from the CWP tank 121 boosted by
0 is transported through the supply pipe 3 and the CWP nozzle 110
Is blown into the fluidized bed 109. The combustion exhaust gas discharged from the pressurized fluidized bed boiler 101 is introduced into a gas turbine (not shown) through an exhaust gas pipe 108 after dust is removed by a cyclone 103.

【0005】正常運転時には、CWP120はCWPタ
ンク121のバルブ2を開いてCWPポンプ1により供
給配管3、三方弁4を通って加圧流動層ボイラ101の
CWPノズル110から流動層109へ供給される。な
お、加圧流動層ボイラ101へのCWP120供給開始
時のウォーミングあるいはCWP120の供給配管3の
パージのために三方弁4およびCWP戻り管5が設けら
れている。しかしながら、石炭114と水116を混合
したCWP120を製造する場合には、燃焼性能上から
は水116の蒸発顕熱を低減するため、できるだけ低水
分が望ましく石炭量に対して所定の比率で設定した水1
16が加えられる。しかし、石炭114の性状(特に石
炭の付着水分)は保管状態、大気状態に左右されるため
常に均質なCWP120を製造することは不可能に近
く、CWP120性状は時々刻々変化する。
During normal operation, the CWP 120 opens the valve 2 of the CWP tank 121 and is supplied from the CWP nozzle 110 of the pressurized fluidized bed boiler 101 to the fluidized bed 109 through the supply pipe 3 and the three-way valve 4 by the CWP pump 1. . A three-way valve 4 and a CWP return pipe 5 are provided for warming when the supply of the CWP 120 to the pressurized fluidized bed boiler 101 is started or for purging the supply pipe 3 of the CWP 120. However, in the case of producing the CWP 120 in which the coal 114 and the water 116 are mixed, in order to reduce the evaporation sensible heat of the water 116 from the viewpoint of combustion performance, it is desirable that the moisture content be as low as possible and set at a predetermined ratio with respect to the amount of coal. Water 1
16 is added. However, since the properties of the coal 114 (particularly the water content adhering to the coal) depend on the storage condition and the atmospheric condition, it is almost impossible to manufacture a uniform CWP120, and the properties of the CWP120 change from moment to moment.

【0006】このため輸送中においては、CWP120
中の石炭濃度が増加(水分濃度が低下)すると、その粘
度が高くなり、供給配管3の圧力損失が増大し、供給配
管3が閉塞気味となる。この場合には、CWP120の
供給量が不足し、最悪の場合には供給配管3の閉塞に至
る。特に、加圧流動層ボイラ101運転中のCWP12
0の燃料供給不安定や瞬時の供給ストップは、ボイラ1
01の燃焼状態を急激に変化させるため燃焼排ガス中の
NOx、SOxの排出濃度を左右し、環境保全性能に重
大な影響を及ぼすこととなる。
Therefore, during transportation, CWP120
When the coal concentration in the inside increases (the water concentration decreases), its viscosity increases, the pressure loss of the supply pipe 3 increases, and the supply pipe 3 becomes slightly blocked. In this case, the supply amount of CWP 120 is insufficient, and in the worst case, the supply pipe 3 is blocked. In particular, the CWP 12 during operation of the pressurized fluidized bed boiler 101
0 fuel supply instability or instantaneous supply stop
Since the combustion state of No. 01 is drastically changed, the emission concentration of NOx and SOx in the combustion exhaust gas is influenced, and the environmental protection performance is seriously affected.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術は、加圧
流動層ボイラ101の運転中にCWP120の安定量供
給を保持する点についての配慮がされておらず、CWP
性状が変化(CWPの粘度が増加)して、CWP120
の供給流量の不安定化を招き、最悪の場合には供給配管
3を閉塞することがあり、加圧流動層ボイラ101の燃
焼性能に重大な影響を及ぼす可能性があった。本発明の
目的は、加圧流動層ボイラへCWPを供給中に、CWP
性状変化によりCWPの粘度が増加した場合でも、事前
にその兆候を検出し、CWP供給流量の不安定化や供給
配管の閉塞トラブルを未然に防止して、加圧流動層ボイ
ラの燃焼性能を所定に保つことができるCWP燃料供給
装置を提供することにある。
The above prior art does not take into consideration the fact that a stable amount of CWP 120 is maintained during the operation of the pressurized fluidized bed boiler 101, and the CWP is not considered.
The property changes (the viscosity of CWP increases), and CWP120
Instability of the supply flow rate, and in the worst case, the supply pipe 3 may be blocked, which may have a significant effect on the combustion performance of the pressurized fluidized bed boiler 101. An object of the present invention is to provide a CWP to a pressurized fluidized bed boiler while the CWP is being supplied.
Even if the viscosity of CWP increases due to property changes, the sign is detected in advance to prevent instability of the CWP supply flow rate and the trouble of blockage of the supply pipe, and to determine the combustion performance of the pressurized fluidized bed boiler. It is to provide a CWP fuel supply device that can maintain

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は、次
の構成によって達成される。すなわち、石炭と水の混合
スラリー燃料を圧送するポンプおよび該燃料を輸送する
供給配管を設け、加圧流動層ボイラへ石炭水混合スラリ
ー燃料を供給する加圧流動層ボイラの石炭水混合スラリ
ー燃料供給装置において、前記石炭水混合スラリー燃料
供給配管の途中に差圧検出器と注水配管を設けると共に
加圧流動層ボイラの排ガス出口に酸素濃度と窒素酸化物
濃度検出器の少なくともいずれか一つを設け、前記差圧
検出器からの差圧検出信号と差圧設定信号との偏差信号
と、酸素濃度と窒素酸化物濃度検出器の少なくともいず
れか一つの検出信号と対応する設定信号との偏差信号に
よって供給配管へ注水する注水量を制御して、燃料輸送
系統内にある石炭水混合スラリー燃料の粘度を調整する
注水制御装置を設けた加圧流動層ボイラの石炭水混合ス
ラリー燃料供給装置である。ここで、差圧検出器は供給
配管の少なくとも一つの閉塞危険箇所に設けることが望
ましく、また、燃料圧送ポンプより上流側の供給配管内
に圧力異常がある場合に備えて、差圧検出器を燃料圧送
ポンプの出口近傍の供給配管に設け、該供給配管への注
水口を燃料圧送ポンプより上流側の供給配管に配置する
構成とすることができる。
The above object of the present invention can be achieved by the following constitutions. That is, a pump for pumping a mixed slurry fuel of coal and water and a supply pipe for transporting the fuel are provided, and a coal water mixed slurry fuel supply of a pressurized fluidized bed boiler for supplying the coal water mixed slurry fuel to the pressurized fluidized bed boiler is provided. In the apparatus, a differential pressure detector and a water injection pipe are provided in the middle of the coal water mixed slurry fuel supply pipe, and at least one of oxygen concentration and nitrogen oxide concentration detector is provided at the exhaust gas outlet of the pressurized fluidized bed boiler. A deviation signal between the differential pressure detection signal and the differential pressure setting signal from the differential pressure detector, and a deviation signal between the setting signal corresponding to at least one of the oxygen concentration and nitrogen oxide concentration detectors. Coal in a pressurized fluidized bed boiler equipped with a water injection control device that controls the amount of water injected into the supply pipe to adjust the viscosity of the coal-water mixed slurry fuel in the fuel transportation system. Mixing a slurry fuel supply system. Here, it is desirable that the differential pressure detector is provided in at least one blockage danger point of the supply pipe, and in addition, in case the pressure abnormality is present in the supply pipe upstream from the fuel pressure pump, the differential pressure detector is installed. It can be configured such that it is provided in the supply pipe near the outlet of the fuel pressure pump and the water injection port to the supply pipe is arranged in the supply pipe upstream of the fuel pressure pump.

【0009】また、前記注水制御装置は差圧検出器から
の差圧検出信号と差圧設定信号との偏差信号が異常値を
示すと、供給配管への第一次注水制御を行い、さらに酸
素濃度と窒素酸化物濃度検出器からの酸素濃度と窒素酸
化物濃度検出信号と酸素濃度と窒素酸化物濃度設定信号
の偏差信号が異常値を示すと、供給配管への第二次注水
制御を行う構成とすることができる。また、注水制御装
置は差圧検出器の不調時には酸素濃度と窒素酸化物濃度
検出器からの検出信号による注水制御を優先するように
しても良い。このとき、後流側の差圧検出器が設けられ
た閉塞危険箇所から前流側の差圧検出器が設けられた閉
塞危険箇所に向け順次、シーケンシャルに注水制御する
こともできる。
Further, when the deviation signal between the differential pressure detection signal from the differential pressure detector and the differential pressure setting signal shows an abnormal value, the water injection control device performs the primary water injection control to the supply pipe and further oxygen When the deviation signal between the oxygen concentration and nitrogen oxide concentration detection signal from the concentration and nitrogen oxide concentration detector and the deviation signal of oxygen concentration and nitrogen oxide concentration setting signal shows an abnormal value, the secondary water injection control to the supply pipe is performed. It can be configured. Further, the water injection control device may prioritize water injection control based on detection signals from the oxygen concentration and nitrogen oxide concentration detectors when the differential pressure detector is out of order. At this time, it is also possible to perform the sequential water injection control from the blockage risk location where the differential pressure detector on the downstream side is provided to the blockage danger location where the differential pressure detector on the upstream side is provided.

【0010】また、本発明の上記目的は次の構成によっ
ても達成される。すなわち、石炭と水の混合スラリー燃
料を圧送しながら加圧流動層ボイラへ石炭水混合スラリ
ー燃料を供給する加圧流動層ボイラの石炭水混合スラリ
ー燃料供給方法において、前記石炭水混合スラリー燃料
供給中の圧力の異常または加圧流動層ボイラの排ガス中
の酸素濃度と窒素酸化物濃度の少なくとも一方の異常に
よって前記供給途中の燃料への注水量を制御して、燃料
輸送系統内にある石炭水混合スラリー燃料の粘度を調整
する加圧流動層ボイラの石炭水混合スラリー燃料供給方
法である。ここで、石炭水混合スラリー燃料供給中の圧
力異常により注水の第一次制御を行い、更にボイラ排ガ
ス中の酸素濃度と窒素酸化物濃度の異常によって、注水
の第二次制御を行う石炭水混合スラリー燃料供給方法、
または、石炭水混合スラリー燃料供給中の圧力の検出が
不調の場合は、ボイラ排ガス中の酸素濃度と窒素酸化物
濃度の異常による注水制御を優先させる石炭水混合スラ
リー燃料供給方法とすることもできる。このとき、後流
側の閉塞危険箇所から前流側の閉塞危険箇所に向け順
次、シーケンシャルに注水制御することもできる。
The above object of the present invention can also be achieved by the following configuration. That is, in the coal water mixed slurry fuel supply method of the pressurized fluidized bed boiler, which supplies the coal water mixed slurry fuel to the pressurized fluidized bed boiler while pumping the mixed slurry fuel of coal and water, during the coal water mixed slurry fuel supply. Of the coal water mixture in the fuel transportation system by controlling the amount of water injected into the fuel during the supply depending on the abnormality in the pressure in the exhaust gas or the abnormality in at least one of the oxygen concentration and the nitrogen oxide concentration in the exhaust gas of the pressurized fluidized bed boiler. It is a coal water mixed slurry fuel supply method for a pressurized fluidized bed boiler that adjusts the viscosity of the slurry fuel. Here, primary control of water injection is performed due to abnormal pressure during coal water mixed slurry fuel supply, and secondary control of water injection is performed according to abnormal oxygen concentration and nitrogen oxide concentration in boiler exhaust gas. Slurry fuel supply method,
Alternatively, when the detection of the pressure during the coal water mixed slurry fuel supply is unsuccessful, a coal water mixed slurry fuel supply method that prioritizes the water injection control due to the abnormal oxygen concentration and nitrogen oxide concentration in the boiler exhaust gas can also be used. . At this time, it is also possible to carry out sequential water injection control from the blockage risk point on the downstream side to the blockage danger point on the upstream side.

【0011】[0011]

【作用】[Action]

(1)CWP供給配管の圧力損失を監視しているので、
CWP性状変化による粘度上昇を圧力損失で容易に検出
でき、予め設定した危険値になると、その部位に水を注
水制御(注水はパルス的で良い)することにより、加圧
流動層ボイラ運転中のCWP供給流量の不安定化を解消
し、CWP供給配管の閉塞を未然に防止することができ
るので、加圧流動層ボイラの燃焼性能に重大な影響を及
ぼすことがない。 (2)CWP供給配管毎に注水制御できるので、必要最
小限の注水で済むため、余分な水分の増加も少なく、加
圧流動層ボイラの燃焼における水の蒸発顕熱の増加も少
なくて済む。 (3)高粘度のCWPを供給するに当たっては、当然な
がら圧力損失の検出装置自体の閉塞トラブルも予想され
るが、その場合でも、加圧流動層ボイラ排ガス中の酸素
(O2)、窒素酸化物(NOx)濃度変化を監視する装
置と組み合わせたCWP供給配管への注水制御を行うの
で、容易にバックアップが可能である。すなわち、加圧
流動層ボイラの燃焼性能においては、CWP燃料の供給
流量の変化に対して、例えば所定の供給量よりも不足し
た場合を考えると、層温度の低下よりも早く排ガス中の
2、NOx濃度の変化が現れるため、この排ガス中の
2、NOx濃度変化を監視し、注水制御に組み合わせ
ることにより、非常に迅速に対処が可能である。
(1) Since the pressure loss of the CWP supply pipe is monitored,
Viscosity increase due to changes in CWP properties can be easily detected by pressure loss, and when a preset dangerous value is reached, water injection control (water injection may be pulsed) is applied to that portion to prevent the increase in pressure fluidized bed boiler operation. Since the instability of the CWP supply flow rate can be eliminated and the CWP supply pipe can be prevented from being blocked, the combustion performance of the pressurized fluidized bed boiler is not significantly affected. (2) Since water injection can be controlled for each CWP supply pipe, the minimum amount of water injection is sufficient, so that an increase in excess water is small, and an increase in evaporation sensible heat of water in combustion of the pressurized fluidized bed boiler is also small. (3) When supplying high-viscosity CWP, it is naturally expected that the pressure loss detection device itself will be clogged, but even in that case, oxygen (O 2 ) and nitrogen oxidation in the exhaust gas of the pressurized fluidized bed boiler will occur. Since the water injection control to the CWP supply pipe is performed in combination with the device that monitors changes in the concentration of NOx (NOx), backup can be easily performed. That is, in the combustion performance of the pressurized fluidized bed boiler, considering a case where the supply flow rate of the CWP fuel is insufficient, for example, below a predetermined supply amount, the O 2 in the exhaust gas is discharged faster than the decrease in the bed temperature. , NOx concentration changes appear. Therefore, by monitoring the change in O 2 and NOx concentrations in the exhaust gas and combining them with water injection control, it is possible to deal with them very quickly.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。 実施例1 図1において、10は差圧検出器、11は制御装置、1
2は注水配管、13は注水バルブ、14はO2、NOx
濃度検出器、15は差圧検出信号、16はO2、NOx
濃度検出信号、17aは差圧設定信号、17bはO2
NOx設定信号、18は注水バルブ13の制御信号で、
他の部材については、図4に示した部材と同一のものは
同一符号で示す。図1では供給配管3はCWP燃料によ
る閉塞危険箇所であるベンド部に配置した例を示してい
るが、供給配管3のどこの位置に設けても良い。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 In FIG. 1, 10 is a differential pressure detector, 11 is a control device,
2 is a water injection pipe, 13 is a water injection valve, 14 is O 2 , NOx
Concentration detector, 15 is differential pressure detection signal, 16 is O 2 , NOx
Concentration detection signal, 17a differential pressure setting signal, 17b O 2
NOx setting signal, 18 is a control signal for the water injection valve 13,
Regarding other members, the same members as those shown in FIG. 4 are designated by the same reference numerals. Although FIG. 1 shows an example in which the supply pipe 3 is arranged at a bend part which is a blockage danger point due to CWP fuel, it may be provided at any position of the supply pipe 3.

【0013】次に、本実施例を説明する以前にO2、N
Ox濃度検出器14からのO2、NOx濃度検出信号1
6を制御因子に用いる理由について説明する。図示して
いないガスタービンに直結した圧縮機によって加圧され
た加圧空気106は、先ず圧力容器104に供給された
後、燃焼用空気107として加圧流動層ボイラ101に
供給される。この燃焼用空気107の流量制御は、通常
は燃料量(ここでいうCWP量)に対し一定の比率にな
るように制御され、さらに加圧流動層ボイラ101の排
ガス中のO2濃度を測定し設定値との偏差を補正するよ
うに制御される。しかしながら、例えば加圧流動層ボイ
ラ101へのCWP120の供給が突然ストップした場
合には、当然燃焼用空気107の流量が調整されること
になるが、圧力容器104の容積がバッファタンクとな
るため、燃焼用空気流量の速やかな追従は得られない。
従って、加圧流動層ボイラ101の燃焼状態は空気量過
大となり排ガス中のO2、NOx濃度が上昇することと
なり、特にNOx濃度の増加は所定の環境保全性能を確
保できないという問題に発展する。
Next, before explaining this embodiment, O 2 , N
O 2 and NOx concentration detection signal 1 from the Ox concentration detector 14
The reason why 6 is used as the control factor will be described. The compressed air 106 pressurized by a compressor directly connected to a gas turbine (not shown) is first supplied to the pressure vessel 104 and then supplied to the pressurized fluidized bed boiler 101 as combustion air 107. The flow rate control of the combustion air 107 is usually controlled so as to have a constant ratio with respect to the fuel amount (CWP amount here), and the O 2 concentration in the exhaust gas of the pressurized fluidized bed boiler 101 is measured. It is controlled so as to correct the deviation from the set value. However, for example, when the supply of the CWP 120 to the pressurized fluidized bed boiler 101 suddenly stops, the flow rate of the combustion air 107 is naturally adjusted, but since the volume of the pressure vessel 104 becomes a buffer tank, It is not possible to quickly follow the flow rate of combustion air.
Therefore, the combustion state of the pressurized fluidized bed boiler 101 causes an excessive amount of air, resulting in an increase in O 2 and NOx concentrations in the exhaust gas, and an increase in the NOx concentration leads to a problem that a predetermined environmental protection performance cannot be secured.

【0014】一方、供給配管3からCWPノズル110
に供給されるCWP120の供給量は、加圧流動層ボイ
ラ101への出力要求などにより制御されるが、実際に
CWP120がどの程度の量で供給されているかは、供
給配管3の途中に流量計を設けるか、予めCWPポンプ
1の流量特性(CWPポンプ1の出力とCWP供給量の
関係)を調査しておくことなどにより、ある程度まで把
握することができる。しかし、空気のような流体と異な
り、CWP120は流量計測自体も困難であり、またC
WP120の性状が時々刻々と変化するためCWPポン
プ1の流量特性も精度上問題がある。そのため、CWP
120が供給配管3内で詰まり傾向となり、CWP12
0の供給量が減少したにも拘わらず、そのことが計測さ
れない場合がでてくる。この場合、供給配管3の差圧検
出器10に差圧異常として現れないCWP120の減少
であっても、CWP供給量と燃焼用空気の所定の比率が
崩れるので、加圧流動層ボイラ101の出口の排ガス配
管108に設けたO2、NOx濃度検出器14により
2、NOx濃度の増加として検出することができる。
On the other hand, from the supply pipe 3 to the CWP nozzle 110
The supply amount of the CWP 120 supplied to the CMP 120 is controlled by an output request to the pressurized fluidized bed boiler 101, etc. The actual amount of the CWP 120 supplied is determined by a flow meter in the middle of the supply pipe 3. It is possible to grasp to some extent by providing the above or by investigating the flow rate characteristic of the CWP pump 1 (relationship between the output of the CWP pump 1 and the CWP supply amount) in advance. However, unlike a fluid such as air, the CWP 120 is difficult to measure the flow rate itself, and C
Since the properties of the WP 120 change from moment to moment, the flow rate characteristic of the CWP pump 1 also has a problem in accuracy. Therefore, CWP
120 tends to become clogged in the supply pipe 3, and the CWP12
There may be cases where the supply amount of 0 has decreased, but this has not been measured. In this case, even if the CWP 120 that does not appear as a differential pressure abnormality in the differential pressure detector 10 of the supply pipe 3 is reduced, the predetermined ratio of the CWP supply amount and the combustion air collapses, so the outlet of the pressurized fluidized bed boiler 101. The increase in O 2 and NOx concentrations can be detected by the O 2 and NOx concentration detector 14 provided in the exhaust gas pipe 108.

【0015】従って、本実施例においては、排ガス配管
108にO2、NOx濃度検出器14を設け、このO2
NOx濃度検出器14からのO2、NOx濃度検出信号
16も制御因子に用いたのである。従って、図1に示す
ように、供給配管3の途中に設けた差圧検出器10によ
り供給配管3の差圧を連続的にモニタし、差圧検出信号
15と差圧設定信号17aの異常の有無を制御装置11
で判断し、危険値になれば制御信号18により注水バル
ブ13を制御して注水配管12より供給配管3の途中へ
水を注水する。さらに、加圧流動層ボイラ101の出口
の排ガス配管108に設けた排ガス中のO2、NOx濃
度検出器14により、O2、NOx濃度検出信号16を
制御装置11に与え、注水制御をバックアップする。こ
れら二種類の検出信号に基づく注水制御で供給配管3内
にあるCWP120の粘度を低下させて、供給配管3内
での圧力損失を減少させ、CWP供給流量を安定させる
ことができ、CWP120の供給配管3での閉塞を未然
に防止することができるのである。
Therefore, in the present embodiment, the exhaust gas pipe 108 is provided with the O 2 and NOx concentration detector 14, and the O 2
The O 2 and NOx concentration detection signals 16 from the NOx concentration detector 14 were also used as control factors. Therefore, as shown in FIG. 1, the differential pressure detector 10 provided in the middle of the supply pipe 3 continuously monitors the differential pressure of the supply pipe 3 to check whether the differential pressure detection signal 15 and the differential pressure setting signal 17a are abnormal. Presence / absence control device 11
If the dangerous value is reached, the water injection valve 13 is controlled by the control signal 18 to inject water from the water injection pipe 12 into the supply pipe 3. Further, the O 2 and NOx concentration detector 14 in the exhaust gas provided in the exhaust gas pipe 108 at the outlet of the pressurized fluidized bed boiler 101 gives an O 2 and NOx concentration detection signal 16 to the control device 11 to back up the water injection control. . By the water injection control based on these two types of detection signals, the viscosity of the CWP 120 in the supply pipe 3 can be reduced, the pressure loss in the supply pipe 3 can be reduced, and the CWP supply flow rate can be stabilized. The blockage in the pipe 3 can be prevented in advance.

【0016】実施例2 図2は本発明の他の実施例の説明図である。図1と同じ
部材は同一番号で示した。本実施例は供給配管3の実際
の配置によって、数箇所にベンド部などの閉塞危険箇所
ができた場合の対策を図ったものである。この場合も前
記閉塞危険箇所に差圧検出器10a、10b、10cを
設け、供給配管3内の圧力損失が危険値となれば前記検
出器10a、10b、10cのどこが危険箇所であるか
を制御装置11で判断させ、自動的に注水バルブ13
a、13b、13cを制御して注水するようにする。ま
た、このとき、図1に示す実施例1と同様に排ガス中の
2、NOx濃度検出器14により制御装置11での異
常判断のバックアップをする。なお、差圧検出器10
a、10b、10cのいずれかが不調の時には、排ガス
中のO2、NOx濃度異常により不調な差圧検出器10
の設けられた閉塞危険箇所を他の閉塞危険箇所に優先さ
せて注水を行う制御を制御装置11が行う。また、差圧
検出器10の全てが不調となった場合には、後流側の差
圧検出器10の設けられた閉塞危険箇所から前流側のそ
れに向け順次、シーケンシャルに注水制御することも可
能である。
Embodiment 2 FIG. 2 is an explanatory view of another embodiment of the present invention. The same members as those in FIG. 1 are indicated by the same numbers. In the present embodiment, a countermeasure is taken in the case where there is a danger of blockage such as a bend portion due to the actual arrangement of the supply pipe 3. In this case as well, the differential pressure detectors 10a, 10b, 10c are provided at the blockage danger point, and if the pressure loss in the supply pipe 3 becomes a dangerous value, it is controlled which of the detectors 10a, 10b, 10c is the danger point. The device 11 makes a judgment, and the water injection valve 13 automatically
A, 13b, and 13c are controlled to inject water. At this time, the abnormality determination in the control device 11 is backed up by the O 2 and NOx concentration detector 14 in the exhaust gas as in the first embodiment shown in FIG. The differential pressure detector 10
When any of a, 10b, and 10c is out of order, the differential pressure detector 10 is out of order due to abnormal O 2 and NOx concentrations in the exhaust gas.
The control device 11 performs control to inject water by prioritizing the blockage danger point provided with the other blockage danger point. Further, when all of the differential pressure detectors 10 are out of order, it is possible to perform sequential water injection control from the blockage danger point where the differential pressure detectors 10 on the downstream side are provided to that on the upstream side. It is possible.

【0017】実施例3 図3に本実施例のシステムの説明図を示す。図1と同じ
部材は同一番号で示した。本実施例はCWPポンプ1の
上流側でCWP120の供給が不安定となった場合に有
効なものである。本実施例は、CWPポンプ1の上流側
でのCWP120の供給が不安定となったときには、そ
の上流側の供給配管3内の圧力損失がほとんど検出され
ないことが予想されることから、圧力損失の検出が比較
的確実に行えるCWPポンプ1の出口に設けた差圧検出
器10により制御装置11で危険箇所の有無を判断し
て、CWPポンプ1の上流側の供給配管3内に注水する
制御を行うものであり、後の操作は図1および図2に示
す実施例と同様である。
Embodiment 3 FIG. 3 shows an explanatory view of the system of this embodiment. The same members as those in FIG. 1 are indicated by the same numbers. This embodiment is effective when the supply of the CWP 120 becomes unstable on the upstream side of the CWP pump 1. In the present embodiment, when the supply of the CWP 120 on the upstream side of the CWP pump 1 becomes unstable, it is expected that the pressure loss in the supply pipe 3 on the upstream side is hardly detected. The control device 11 determines the presence or absence of a dangerous place by the differential pressure detector 10 provided at the outlet of the CWP pump 1 that can detect the relatively reliably, and controls the injection of water into the supply pipe 3 on the upstream side of the CWP pump 1. The subsequent operation is the same as that of the embodiment shown in FIGS. 1 and 2.

【0018】[0018]

【発明の効果】本発明によれば、運転中のCWP性状変
動に対しても、CWP供給量の不安定を解消でき、最悪
の供給配管閉塞も未然に防止することができるので、加
圧流動層ボイラの燃焼性能に重大な悪影響を及ぼすこと
がない。また、特に石炭の付着水分の低下によるCWP
粘度の増加などのCWP性状の変動に対してもCWP供
給側で対応でき、しかも、CWP供給配管の配置上もフ
レキシビリティーができるなどの効果が挙げられる。
According to the present invention, the instability of the CWP supply amount can be eliminated even when the CWP property changes during operation, and the worst supply pipe blockage can be prevented in advance. It does not seriously affect the combustion performance of the single-layer boiler. In addition, especially CWP due to a decrease in water content adhering to coal
The CWP supply side can cope with fluctuations in CWP properties such as an increase in viscosity, and the CWP supply pipe can be flexibly arranged.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の加圧流動層ボイラの概略
系統図である。
FIG. 1 is a schematic system diagram of a pressurized fluidized bed boiler according to a first embodiment of the present invention.

【図2】 本発明の実施例2の加圧流動層ボイラの概略
系統図である。
FIG. 2 is a schematic system diagram of a pressurized fluidized bed boiler according to a second embodiment of the present invention.

【図3】 本発明の実施例3の加圧流動層ボイラの概略
系統図である。
FIG. 3 is a schematic system diagram of a pressurized fluidized bed boiler according to a third embodiment of the present invention.

【図4】 従来技術の湿式供給方式による加圧流動層ボ
イラの概略系統図である。
FIG. 4 is a schematic system diagram of a pressurized fluidized bed boiler according to a conventional wet feed system.

【符号の説明】[Explanation of symbols]

1…CWPポンプ、3…供給配管、10…差圧検出器、
11…制御装置、12…注水配管、13…注水バルブ、
14…O2、NOx濃度検出器、15…差圧検出信号、
16…O2、NOx濃度検出信号、17a…差圧設定信
号、17b…O2、NOx設定信号、18…制御信号、
101…加圧流動層ボイラ、102…流動媒体粒子、1
03…サイクロン、104…圧力容器、105…空気分
散板、106…加圧空気、107…燃焼用空気、108
…排ガス配管、109…流動層、110…CWPノズ
ル、111…CWP調整タンク、112…電動機、11
3…撹拌翼、114…石炭、115…石灰石、116…
水、120…CWP、121…CWPタンク、122…
電動機、123…撹拌翼
1 ... CWP pump, 3 ... supply pipe, 10 ... differential pressure detector,
11 ... Control device, 12 ... Water injection pipe, 13 ... Water injection valve,
14 ... O 2 , NOx concentration detector, 15 ... Differential pressure detection signal,
16 ... O 2 , NOx concentration detection signal, 17a ... Differential pressure setting signal, 17b ... O 2 , NOx setting signal, 18 ... Control signal,
101 ... Pressurized fluidized bed boiler, 102 ... Fluid medium particles, 1
03 ... Cyclone, 104 ... Pressure vessel, 105 ... Air dispersion plate, 106 ... Pressurized air, 107 ... Combustion air, 108
... Exhaust gas piping, 109 ... Fluidized bed, 110 ... CWP nozzle, 111 ... CWP adjustment tank, 112 ... Electric motor, 11
3 ... Stirrer, 114 ... Coal, 115 ... Limestone, 116 ...
Water, 120 ... CWP, 121 ... CWP tank, 122 ...
Electric motor, 123 ... stirring blade

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 石炭と水の混合スラリー燃料を圧送する
ポンプおよび該燃料を輸送する供給配管を設け、加圧流
動層ボイラへ石炭水混合スラリー燃料を供給する加圧流
動層ボイラの石炭水混合スラリー燃料供給装置におい
て、 前記石炭水混合スラリー燃料供給配管の途中に差圧検出
器と注水配管を設けると共に加圧流動層ボイラの排ガス
出口に酸素濃度と窒素酸化物濃度検出器の少なくともい
ずれか一つを設け、前記差圧検出器からの差圧検出信号
と差圧設定信号との偏差信号と、酸素濃度と窒素酸化物
濃度検出器の少なくともいずれか一つの検出信号と対応
する設定信号との偏差信号によって供給配管へ注水する
注水量を制御して、燃料輸送系統内にある石炭水混合ス
ラリー燃料の粘度を調整する注水制御装置を設けたこと
を特徴とする加圧流動層ボイラの石炭水混合スラリー燃
料供給装置。
1. A coal-water mixture for a pressurized fluidized bed boiler, which is provided with a pump for pumping a mixed slurry fuel of coal and water and a supply pipe for transporting the fuel, and supplies the coal-water mixed slurry fuel to the pressurized fluidized bed boiler. In the slurry fuel supply device, a differential pressure detector and a water injection pipe are provided in the middle of the coal water mixed slurry fuel supply pipe, and at least one of oxygen concentration and nitrogen oxide concentration detector is provided at the exhaust gas outlet of the pressurized fluidized bed boiler. And a deviation signal between the differential pressure detection signal and the differential pressure setting signal from the differential pressure detector, and a setting signal corresponding to at least one of the oxygen concentration and nitrogen oxide concentration detector detection signals. An additional feature is to provide a water injection control device that controls the amount of water injected into the supply pipe by the deviation signal to adjust the viscosity of the coal-water mixed slurry fuel in the fuel transportation system. Coal water slurry mixture fuel supply system of the fluidized bed boiler.
【請求項2】 差圧検出器は供給配管の少なくとも一つ
の閉塞危険箇所に設けたことを特徴とする請求項1記載
の加圧流動層ボイラの石炭水混合スラリー燃料供給装
置。
2. The coal water mixed slurry fuel supply system for a pressurized fluidized bed boiler according to claim 1, wherein the differential pressure detector is provided at at least one blockage danger point of the supply pipe.
【請求項3】 差圧検出器は燃料圧送ポンプの出口近傍
の供給配管に設け、該供給配管への注水口を燃料圧送ポ
ンプより上流側の供給配管に配置したことを特徴とする
請求項1記載の加圧流動層ボイラの石炭水混合スラリー
燃料供給装置。
3. The differential pressure detector is provided in a supply pipe near an outlet of the fuel pressure pump, and a water injection port to the supply pipe is arranged in a supply pipe upstream of the fuel pressure pump. A coal water mixed slurry fuel supply system for a pressurized fluidized bed boiler as described above.
【請求項4】 注水制御装置は差圧検出器からの差圧検
出信号と差圧設定信号との偏差信号が異常値を示すと、
供給配管への第一次注水制御を行い、さらに酸素濃度と
窒素酸化物濃度検出器からの検出信号と酸素濃度と窒素
酸化物濃度設定信号の少なくともいずれか一つの偏差信
号が異常値を示すと、供給配管への第二次注水制御を行
うことを特徴とする請求項1、2または3記載の加圧流
動層ボイラの石炭水混合スラリー燃料供給装置。
4. The water injection control device, when the deviation signal between the differential pressure detection signal from the differential pressure detector and the differential pressure setting signal indicates an abnormal value,
When the primary water injection control to the supply pipe is performed and further the deviation signal of at least one of the detection signal from the oxygen concentration and nitrogen oxide concentration detector and the oxygen concentration and nitrogen oxide concentration setting signal shows an abnormal value. The coal water mixed slurry fuel supply device for a pressurized fluidized bed boiler according to claim 1, 2 or 3, wherein secondary water injection control to the supply pipe is performed.
【請求項5】 注水制御装置は差圧検出器の不調時には
酸素濃度と窒素酸化物濃度検出器からの少なくともいず
れか一つの検出信号による注水制御を優先するようにし
たことを特徴とする請求項1、2または3記載の加圧流
動層ボイラの石炭水混合スラリー燃料供給装置。
5. The water injection control device prioritizes water injection control by at least one detection signal from the oxygen concentration and nitrogen oxide concentration detectors when the differential pressure detector is out of order. 1. A coal water mixed slurry fuel supply device for a pressurized fluidized bed boiler according to 1, 2, or 3.
【請求項6】 後流側の差圧検出器の設けられた閉塞危
険箇所から前流側の差圧検出器の設けられた閉塞危険箇
所に向け順次、シーケンシャルに注水制御することを特
徴とする請求項5記載の加圧流動層ボイラの石炭水混合
スラリー燃料供給装置。
6. The water injection control is performed in sequence from the blockage danger point where the differential pressure detector on the downstream side is provided to the blockage danger point where the differential pressure detector on the upstream side is provided. The coal water mixed slurry fuel supply device for a pressurized fluidized bed boiler according to claim 5.
【請求項7】 石炭と水の混合スラリー燃料を圧送しな
がら加圧流動層ボイラへ石炭水混合スラリー燃料を供給
する加圧流動層ボイラの石炭水混合スラリー燃料供給方
法において、 前記石炭水混合スラリー燃料供給中の圧力の異常または
加圧流動層ボイラの排ガス中の酸素濃度と窒素酸化物濃
度の少なくとも一方の異常によって前記供給途中の燃料
への注水量を制御して、燃料輸送系統内にある石炭水混
合スラリー燃料の粘度を調整することを特徴とする加圧
流動層ボイラの石炭水混合スラリー燃料供給方法。
7. A coal water mixed slurry fuel supply method for a pressurized fluidized bed boiler, which supplies a coal water mixed slurry fuel to a pressurized fluidized bed boiler while pumping a coal and water mixed slurry fuel. It is in the fuel transportation system by controlling the amount of water injected into the fuel during the supply depending on the abnormality in the pressure during the fuel supply or the abnormality in at least one of the oxygen concentration and the nitrogen oxide concentration in the exhaust gas of the pressurized fluidized bed boiler. A coal water mixed slurry fuel supply method for a pressurized fluidized bed boiler, which comprises adjusting the viscosity of a coal water mixed slurry fuel.
【請求項8】 石炭水混合スラリー燃料供給中の圧力異
常により注水の第一次制御を行い、更にボイラ排ガス中
の酸素濃度と窒素酸化物濃度の少なくともいずれか一つ
の異常によって、注水の第二次制御を行うことを特徴と
する請求項7記載の加圧流動層ボイラの石炭水混合スラ
リー燃料供給方法。
8. The secondary control of water injection is performed by primary control of water injection due to abnormal pressure during coal-water mixed slurry fuel supply, and further due to abnormalities of at least one of oxygen concentration and nitrogen oxide concentration in boiler exhaust gas. The coal water mixed slurry fuel supply method for a pressurized fluidized bed boiler according to claim 7, wherein the following control is performed.
【請求項9】 石炭水混合スラリー燃料供給中の圧力の
検出が不調の場合は、ボイラ排ガス中の酸素濃度と窒素
酸化物濃度の少なくとも一方の異常による注水制御を優
先させることを特徴とする請求項7または8記載の加圧
流動層ボイラの石炭水混合スラリー燃料供給方法。
9. When the detection of the pressure during the supply of the coal water mixed slurry fuel is unsuccessful, priority is given to the water injection control by the abnormality of at least one of the oxygen concentration and the nitrogen oxide concentration in the boiler exhaust gas. Item 7. A coal water mixed slurry fuel supply method for a pressurized fluidized bed boiler according to Item 7 or 8.
【請求項10】 後流側の閉塞危険箇所から前流側の閉
塞危険箇所に向け順次、シーケンシャルに注水制御する
ことを特徴とする請求項9記載の加圧流動層ボイラの石
炭水混合スラリー燃料供給方法。
10. The coal-water mixed slurry fuel for a pressurized fluidized bed boiler according to claim 9, wherein water injection control is sequentially performed from the downstream danger point on the downstream side toward the upstream danger point on the upstream side. Supply method.
JP4498793A 1993-03-05 1993-03-05 Device and method for supplying slurry fuel of mixed coas and water for pressurized fluidized bed type boiler Pending JPH06257714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4498793A JPH06257714A (en) 1993-03-05 1993-03-05 Device and method for supplying slurry fuel of mixed coas and water for pressurized fluidized bed type boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4498793A JPH06257714A (en) 1993-03-05 1993-03-05 Device and method for supplying slurry fuel of mixed coas and water for pressurized fluidized bed type boiler

Publications (1)

Publication Number Publication Date
JPH06257714A true JPH06257714A (en) 1994-09-16

Family

ID=12706809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4498793A Pending JPH06257714A (en) 1993-03-05 1993-03-05 Device and method for supplying slurry fuel of mixed coas and water for pressurized fluidized bed type boiler

Country Status (1)

Country Link
JP (1) JPH06257714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10210478B2 (en) 2004-02-03 2019-02-19 Rtc Industries, Inc. Continuous display shelf edge label device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10210478B2 (en) 2004-02-03 2019-02-19 Rtc Industries, Inc. Continuous display shelf edge label device

Similar Documents

Publication Publication Date Title
US4867127A (en) Arrangement for regulating the combustion air proportions
CA2318404C (en) Method and plant for pneumatic transport of solid particles
US4662799A (en) Apparatus and process for pneumatically conveying particulate material
US6953045B2 (en) Gas delivery system
US5494381A (en) Apparatus and method for pneumatically conveying bulk materials
JP3392051B2 (en) Method and apparatus for providing a gas having a minimum pressure and a composition comprising a major component to an end use
US5470390A (en) Mixed gas supply system with a backup supply system
US4729930A (en) Augmented air supply for fuel cell power plant during transient load increases
JP5469301B2 (en) System and method for removing process gas leaks in solid delivery systems
US5855456A (en) Apparatus and method for unblocking conveying pipe
US5967429A (en) Method and apparatus for the metered feed of coarse granular material into an air jet mill
JPH06257714A (en) Device and method for supplying slurry fuel of mixed coas and water for pressurized fluidized bed type boiler
JP3481184B2 (en) Control method of boiler for propulsion device of LNG ship
US5230474A (en) Mill inert apparatus for coal pulverizer and method for prevention of explosion
US4483646A (en) Apparatus for distributing powdered particles
JP2004035913A (en) Method and device for controlling blowing of granular powder
US6823906B2 (en) Acetylene distribution system
CN112173724B (en) Control system and method for negative pressure conveying system and storage medium
JPS6097121A (en) Powder flow distribution control method
JPH0435305Y2 (en)
JPS5822216A (en) Conveying device for high pressure gas containing pulverous material
JPS5811421A (en) Circulation system for powdery or granular material carrying gas
TOMITA et al. Pneumatic transport of solids by a blow tank system
JPS6283929A (en) Pneumatic transporting facility
JP2713733B2 (en) Control method of pulverized coal injection amount to blast furnace tuyere