JPH06257487A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH06257487A
JPH06257487A JP4821193A JP4821193A JPH06257487A JP H06257487 A JPH06257487 A JP H06257487A JP 4821193 A JP4821193 A JP 4821193A JP 4821193 A JP4821193 A JP 4821193A JP H06257487 A JPH06257487 A JP H06257487A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
exhaust gas
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4821193A
Other languages
Japanese (ja)
Other versions
JP3003447B2 (en
Inventor
Hiroyasu Yoshino
太容 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5048211A priority Critical patent/JP3003447B2/en
Publication of JPH06257487A publication Critical patent/JPH06257487A/en
Application granted granted Critical
Publication of JP3003447B2 publication Critical patent/JP3003447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Abstract

PURPOSE:To adsorb sufficient HC in a catalyst so as to improve NOX treating ability by controlling HC concentration in exhaust to be increased in the predetermined duration right before switching a target air/fuel ratio between an output air/fuel ratio region and a lean air/fuel ratio region. CONSTITUTION:An exhaust emission controlling catalyst for an internal combustion engine is provided with an air/fuel ratio switching means, which switches a target air/fuel ratio of an engine intake mixture between an output air/fuel ratio region around a stoichiometric air/fuel ratio and a lean air/fuel ratio region being larger than the stoichiometric air/fuel ratio according to an engine operating condition. IN this case, an exhaust emission controlling catalyst, which is provided with HC adsorption ability, is arranged in an exhaust passage, so that NOX is reduced in the existence of HC. On the other hand, HC concentration in an exhaust gas upstream of the exhaust emission controlling catalyst is increased by an HC concentration increasing means. The HC concentration increasing means is controlled by an HC concentration controlling means so that HC concentration in the exhaust gas is increased during the predetermined duration right before switching the target air/fuel ratio between the output air/fuel ratio region and the lean air/fuel ratio region by the air/fuel ratio switching means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気浄化装置
に関し、詳しくは、HCの吸着能力を有し、HC存在下
でNOxを還元する触媒を排気通路に備えた排気浄化装
置において、前記触媒のNOx還元性能を維持するため
の技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus having a catalyst for adsorbing HC and reducing NOx in the presence of HC in an exhaust passage. The present invention relates to a technique for maintaining the NOx reduction performance of a catalyst.

【0002】[0002]

【従来の技術】近年、理論空燃比よりも大幅にリーンな
空燃比域(例えば20〜22程度の空燃比)で燃焼させるリ
ーンバーン内燃機関が開発されており、かかるリーンバ
ーン内燃機関では、リーン空燃比域でNOxを浄化させ
るためにリーンNOx触媒が使用されている。
2. Description of the Related Art In recent years, a lean-burn internal combustion engine that burns in an air-fuel ratio range (for example, an air-fuel ratio of about 20 to 22) that is significantly leaner than the theoretical air-fuel ratio has been developed. A lean NOx catalyst is used to purify NOx in the air-fuel ratio range.

【0003】前記リーンNOx触媒は、ゼオライトを主
成分とするものであり、排気中のHCを一時的に吸着
し、このHCによりNOxを還元するものであると推定
されている。従って、前記リーンNOx触媒におけるN
Oxの浄化処理には、HCの存在が不可欠であり、排気
中のHC/NOx比が低下すると、NOx還元性能が低
下する。
The lean NOx catalyst is mainly composed of zeolite, and is presumed to temporarily adsorb HC in exhaust gas and reduce NOx by this HC. Therefore, N in the lean NOx catalyst is
The presence of HC is essential for the purification process of Ox, and when the HC / NOx ratio in the exhaust gas decreases, the NOx reduction performance decreases.

【0004】そこで、HC量の不足によってリーンNO
x触媒のNOx還元性能が低下するときに、排気中のH
C量を強制的に増大させて、NOx還元性能を維持でき
るようにした排気浄化装置が提案されており、排気中の
HC量を強制的に増大させるための手段として以下のよ
うな手段A〜Cを採用している。 (A) .燃料の噴射時期を遅らせることによって、壁流
となって燃焼室に流れ込む燃料量を多くして燃料の霧化
を抑制することにより、排気中のHCを増やす(特開平
3−217640号公報参照)。
Therefore, due to lack of HC, lean NO
x when the NOx reduction performance of the x catalyst deteriorates
An exhaust gas purification device has been proposed in which the amount of C is forcibly increased so that the NOx reduction performance can be maintained. As a means for forcibly increasing the amount of HC in exhaust gas, the following means A to C is adopted. (A). By delaying the fuel injection timing, the amount of fuel that flows into the combustion chamber as a wall flow is increased and atomization of the fuel is suppressed, thereby increasing HC in the exhaust gas (see Japanese Patent Laid-Open No. 3-217640). .

【0005】(B) .冷却水温度を低くすることで燃焼
室の壁温を低下させ、これにより、燃料の霧化を抑制し
て排気中のHCを増やす(特開平3−229914号公
報参照)。 (C) .キャニスタに吸着捕集された蒸発燃料、又は、
ブローバイガスを、リーンNOx触媒上流で排気中に添
加し、排気中のHCを増やす(特開平3−242415
号公報参照)。
(B). By lowering the cooling water temperature, the wall temperature of the combustion chamber is lowered, thereby suppressing atomization of fuel and increasing HC in exhaust gas (see Japanese Patent Laid-Open No. 3-229914). (C). Evaporative fuel adsorbed and collected in the canister, or
Blow-by gas is added to the exhaust gas upstream of the lean NOx catalyst to increase HC in the exhaust gas (Japanese Patent Laid-Open No. 3-242415).
(See Japanese Patent Publication).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記
(A) 〜 (C) に示す手段のうち、 (A) の壁流量の増
大や (B) の燃焼室壁温の低下を実施した場合には、不
完全燃焼が増加して燃焼が不安定となり、運転性の悪化
をもたらす惧れがあった。また、 (B) の燃焼室壁温を
低下させる手段の場合は、HC不足が判断されてから、
冷却水温度を下げて実際に燃焼室壁温が低下するまでの
時間損失が大きく、この間のNOxは充分に浄化されず
に排出されてしまい、NOx還元性能を安定的に維持さ
せることが困難である。
[Problems to be Solved by the Invention]
Among the means shown in (A) to (C), when the wall flow rate of (A) is increased and the combustion chamber wall temperature of (B) is decreased, incomplete combustion increases and combustion becomes unstable. Therefore, there was a fear that the driving performance would deteriorate. Further, in the case of the means for lowering the combustion chamber wall temperature of (B), after it is judged that HC is insufficient,
There is a large time loss until the temperature of the cooling water drops and the wall temperature of the combustion chamber actually drops, and NOx during this time is exhausted without being sufficiently purified, making it difficult to maintain stable NOx reduction performance. is there.

【0007】更に、 (C) のHCを排気中に添加する手
段では、未使用の燃料を排気中に添加するものであるか
ら、燃費の悪化をもたらすという問題があった。また、
リーンバーン内燃機関では、理論空燃比付近の出力空燃
比域とリーン空燃比域との間で目標空燃比の切り換えを
行なうときに、トルクの急激な変化により運転性を損な
うことがないように、空燃比を徐々に変化させることが
行なわれている。ところが、NOxの排出量は、図4に
示すように、前記目標空燃比の切り換え途中の空燃比域
(16〜18程度の空燃比)で最も多くなり、このときにH
C/NOx比が小さくなってリーンNOx触媒のNOx
還元性能が低下するので、目標空燃比切り換えの際に多
量のNOxが排出されるという問題があった。
Further, in the means (C) for adding HC to the exhaust gas, since the unused fuel is added to the exhaust gas, there is a problem that the fuel consumption is deteriorated. Also,
In the lean burn internal combustion engine, when switching the target air-fuel ratio between the output air-fuel ratio range near the stoichiometric air-fuel ratio and the lean air-fuel ratio range, so as not to impair drivability due to a sudden change in torque, The air-fuel ratio is gradually changed. However, as shown in FIG. 4, the NOx emission amount becomes the highest in the air-fuel ratio range (the air-fuel ratio of about 16 to 18) during the switching of the target air-fuel ratio.
The C / NOx ratio is reduced, and the NOx of the lean NOx catalyst is reduced.
There is a problem that a large amount of NOx is discharged when the target air-fuel ratio is switched because the reduction performance is deteriorated.

【0008】ここで、前述のような目標空燃比切り換え
の際に、NOx量に対してHC量が不足してNOx還元
性能が低下することを、前述のようなHC量の増大手段
によって補償しようとしても、空燃比がNOx濃度がピ
ークとなる空燃比域に該当していることや排気中のHC
濃度の低下を直接的に検出した結果に基づいてHC量増
大手段を作動させたのでは、応答遅れが生じると共に、
多量に排出されるNOxの還元に必要とするだけのHC
量を確保できなくなる場合もあり、NOx還元能力を安
定的に高く維持させることは困難であった。
Here, when the target air-fuel ratio is switched as described above, the fact that the HC amount becomes insufficient with respect to the NOx amount and the NOx reduction performance deteriorates will be compensated by the HC amount increasing means as described above. As a result, the air-fuel ratio corresponds to the air-fuel ratio region where the NOx concentration reaches its peak and the HC in the exhaust gas
If the HC amount increasing means is operated based on the result of directly detecting the decrease in the concentration, a response delay occurs and
HC required to reduce large amounts of NOx emitted
In some cases, the amount cannot be secured, and it has been difficult to maintain the NOx reducing ability stably high.

【0009】本発明は上記問題点に鑑みなされたもので
あり、リーンNOx触媒のNOx還元性能を維持させる
ためのHC量の増大制御が、機関運転性を悪化させるこ
となく、また、未使用の燃料を用いることなく実現でき
るようにすると共に、リーンバーン内燃機関における目
標空燃比の切り換え時に、NOx還元性能を安定的に維
持できるようにすることを目的とする。
The present invention has been made in view of the above problems, and the increase control of the amount of HC for maintaining the NOx reduction performance of the lean NOx catalyst does not deteriorate engine drivability and is unused. It is an object of the present invention to be realized without using fuel and to be able to stably maintain the NOx reduction performance when switching the target air-fuel ratio in a lean burn internal combustion engine.

【0010】[0010]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の排気浄化装置は、図1及び図2に示すように
構成される。図1において、空燃比切り換え手段は、機
関吸入混合気の目標空燃比を機関運転条件に応じて理論
空燃比付近の出力空燃比域と理論空燃比よりも大きなリ
ーン空燃比域とに切り換える。
Therefore, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is constructed as shown in FIGS. 1 and 2. In FIG. 1, the air-fuel ratio switching means switches the target air-fuel ratio of the engine intake air-fuel mixture between an output air-fuel ratio region near the theoretical air-fuel ratio and a lean air-fuel ratio region larger than the theoretical air-fuel ratio according to the engine operating conditions.

【0011】排気浄化触媒は、排気通路に介装されHC
の吸着能力を有しHC存在下でNOxを還元する触媒で
ある。また、HC濃度増大手段は、排気浄化触媒上流側
の排気中HC濃度を増大せしめる手段である。そして、
HC濃度制御手段は、空燃比切り換え手段により目標空
燃比が出力空燃比域とリーン空燃比域との間で切り換え
られる直前の所定期間において、HC濃度増大手段によ
り排気中のHC濃度を増大させる。
The exhaust purification catalyst is installed in the exhaust passage and is
It is a catalyst that has the adsorption ability of reducing NOx in the presence of HC. Further, the HC concentration increasing means is means for increasing the HC concentration in the exhaust gas on the upstream side of the exhaust purification catalyst. And
The HC concentration control means causes the HC concentration increasing means to increase the HC concentration in the exhaust gas during a predetermined period immediately before the target air-fuel ratio is switched between the output air-fuel ratio range and the lean air-fuel ratio range by the air-fuel ratio switching means.

【0012】ここで、前記HC濃度制御手段が、HC濃
度増大手段によるHC濃度の増大を、機関の低回転・低
負荷時ほどより長い期間行なわせるよう構成すると良
い。一方、図2において、排気浄化触媒は、排気通路に
介装されHCの吸着能力を有しHC存在下でNOxを還
元する触媒である。HC増量要求検知手段は、排気浄化
触媒によるNOxの還元に必要とされるHC量を確保す
べく、排気中HC量の増量が要求される状態を検知す
る。
Here, it is preferable that the HC concentration control means causes the HC concentration increasing means to increase the HC concentration for a longer period when the engine is running at low speed and under low load. On the other hand, in FIG. 2, the exhaust purification catalyst is a catalyst that is interposed in the exhaust passage and has an HC adsorbing capacity and reduces NOx in the presence of HC. The HC increase request detecting means detects a state in which an increase in the amount of HC in the exhaust is required in order to secure the amount of HC required for the reduction of NOx by the exhaust purification catalyst.

【0013】そして、空燃比リッチ化手段は、HC増量
要求検知手段によりHC量の増量が要求される状態が検
知されたときに、機関吸入混合気の空燃比を強制的に所
定期間だけ目標空燃比よりもリッチ化させる。更に、発
生トルク制御手段は、空燃比リッチ化手段により空燃比
がリッチ化されるときに、該リッチ化に伴う発生トルク
の増大を抑制する方向に、発生トルクに関与する空燃比
以外の制御対象を制御する。
Then, the air-fuel ratio enriching means forcibly sets the air-fuel ratio of the engine intake air-fuel mixture to a target air-fuel ratio for a predetermined period when the HC increase request detecting means detects a state in which an increase in the HC amount is requested. Make it richer than the fuel ratio. Furthermore, when the air-fuel ratio enriching means enriches the air-fuel ratio, the generated torque control means controls the control target other than the air-fuel ratio related to the generated torque in the direction of suppressing the increase in the generated torque due to the enrichment. To control.

【0014】ここで、内燃機関が各気筒別に燃料を噴射
供給する燃料噴射手段を備えて構成される場合には、前
記空燃比リッチ化手段が、特定気筒に噴射供給される燃
料量を強制的に増大補正することで前記特定気筒の空燃
比のみをリッチ化させ、前記発生トルク制御手段が、前
記特定気筒での発生トルクを他気筒の発生トルクに一致
させるべく、前記特定気筒に対してのみ発生トルクを抑
制する制御を行なうよう構成することができる。
Here, when the internal combustion engine is provided with fuel injection means for injecting fuel for each cylinder, the air-fuel ratio enriching means forcibly controls the amount of fuel injected and supplied to a specific cylinder. Only by increasing the air-fuel ratio of the specific cylinder by increasing the correction, the generated torque control means, in order to match the generated torque in the specific cylinder with the generated torque of other cylinders, only for the specific cylinder. The control can be configured to suppress the generated torque.

【0015】また、前記空燃比リッチ化手段が全気筒の
空燃比を強制的にリッチ化させ、前記発生トルク制御手
段が前記目標空燃比相当の発生トルクに一致させるべく
全気筒に対して発生トルクを抑制する制御を行なうよう
構成することもできる。また、前記発生トルク制御手段
が、点火時期と排気還流量との少なくと一方を制御する
ことによって発生トルクの増大を抑制する構成とすると
良い。
Further, the air-fuel ratio enriching means forcibly enriches the air-fuel ratios of all the cylinders, and the generated torque control means makes the generated torque for all cylinders to match the generated torque corresponding to the target air-fuel ratio. It is also possible to configure so as to perform the control for suppressing. Further, the generated torque control means may be configured to suppress an increase in generated torque by controlling at least one of the ignition timing and the exhaust gas recirculation amount.

【0016】更に、機関吸入混合気の目標空燃比を機関
運転条件に応じて理論空燃比付近の出力空燃比域と理論
空燃比よりも大きなリーン空燃比域とに切り換える空燃
比切り換え手段を有する場合には、前記HC増量要求検
知手段が、前記空燃比切り換え手段により目標空燃比が
出力空燃比域とリーン空燃比域との間で切り換えられる
直前の所定期間をHC量の増大要求状態として検知する
よう構成すると良い。
Further, when there is an air-fuel ratio switching means for switching the target air-fuel ratio of the engine intake air-fuel mixture between the output air-fuel ratio region near the theoretical air-fuel ratio and the lean air-fuel ratio region larger than the theoretical air-fuel ratio in accordance with the engine operating conditions. In addition, the HC increase request detection means detects a predetermined period immediately before the target air-fuel ratio is switched between the output air-fuel ratio range and the lean air-fuel ratio range by the air-fuel ratio switching means as the HC amount increase request state. It is better to configure it.

【0017】[0017]

【作用】かかる構成の排気浄化装置によると、目標空燃
比が出力空燃比域とリーン空燃比域との間で切り換えら
れる直前に、排気浄化触媒の上流側の排気中HC濃度を
増大させる処理がなされる。ここで、排気浄化触媒のH
C吸着能力によって前記HC濃度増大処理によって増大
したHCが一定期間吸着されるから、空燃比切り換え途
中でNOx濃度がピークとなる空燃比域を通過すること
があっても、上記のようにして事前に吸着させておいた
HCによってNOxの還元性能を維持することが可能と
なる。
According to the exhaust gas purification device having such a configuration, the process for increasing the HC concentration in the exhaust gas on the upstream side of the exhaust gas purification catalyst is performed immediately before the target air-fuel ratio is switched between the output air-fuel ratio region and the lean air-fuel ratio region. Done. Here, H of the exhaust purification catalyst
Since the HC increased by the HC concentration increasing process due to the C adsorption capacity is adsorbed for a certain period of time, even if it may pass through the air-fuel ratio region where the NOx concentration reaches its peak during the air-fuel ratio switching, It is possible to maintain the NOx reduction performance by the HC adsorbed on the.

【0018】ここで、機関の低回転・低負荷時にはHC
の排出量が少ないから、空燃比切り換え直前にHC量の
増大を図る場合には、低回転・低負荷時ほど長い期間H
C量増大処理を実行させるようにする。また、本発明で
は、HCの吸着能力を有し、HC存在下でNOxを還元
する排気浄化触媒におけるNOx還元性能を維持するた
めにHC量の増大が要求されるときに、排気浄化触媒上
流側のHC濃度を増大させる手段として、機関吸入混合
気の空燃比を強制的に所定期間だけ目標空燃比よりもリ
ッチ化させる手段を設ける。そして、HC濃度増大のた
めに空燃比をリッチ化させたことによって出力の急増が
発生することを抑止すべく、空燃比以外の制御対象を出
力抑制方向に制御させる。
Here, when the engine is running at low speed and under low load, HC
Since the amount of exhaust of H is small, when increasing the amount of HC immediately before switching the air-fuel ratio, the H
The C amount increasing process is executed. Further, in the present invention, when the amount of HC is required to be increased in order to maintain the NOx reduction performance in the exhaust purification catalyst that has the ability to adsorb HC and reduces NOx in the presence of HC, the exhaust purification catalyst upstream side As a means for increasing the HC concentration of the above, means for forcibly making the air-fuel ratio of the engine intake air-fuel mixture richer than the target air-fuel ratio for a predetermined period is provided. Then, in order to prevent a sudden increase in output due to the enrichment of the air-fuel ratio for increasing the HC concentration, control targets other than the air-fuel ratio are controlled in the output suppressing direction.

【0019】前記空燃比のリッチ化は、全気筒ではなく
特定気筒のみ行なわせる構成とすることができ、この場
合には、気筒間での発生トルクのばらつきが生じないよ
うに、前記リッチ化させる特定気筒の発生トルクを他気
筒のレベルに一致させるようにする。また、前記空燃比
のリッチ化は、全気筒で行なっても良く、この場合に
は、基準の目標空燃比相当の発生トルクとなるように、
全気筒に対して発生トルクを抑制する制御を施す。
The enrichment of the air-fuel ratio may be performed only in a specific cylinder instead of all cylinders. In this case, the enrichment is performed so that the generated torque does not vary among the cylinders. The generated torque of a specific cylinder is made to match the level of another cylinder. Further, the enrichment of the air-fuel ratio may be performed in all cylinders, and in this case, the generated torque is equivalent to the reference target air-fuel ratio,
Control is performed to suppress the generated torque for all cylinders.

【0020】前記空燃比のリッチ化に伴う出力増大を抑
制するには、点火時期の遅角補正や排気還流量の増大制
御を行なえば良い。また、前記空燃比リッチ化によるH
C量の増大制御を、出力空燃比域とリーン空燃比域との
間の切り換え直前に実行させるようにすれば、空燃比切
り換え時の大気中へのNOx排出量の増大を、機関運転
性を悪化させることなく抑制できることになる。
In order to suppress the output increase due to the enrichment of the air-fuel ratio, ignition timing retard correction or exhaust gas recirculation amount increase control may be performed. In addition, H due to the enrichment of the air-fuel ratio
If the control for increasing the C amount is executed immediately before switching between the output air-fuel ratio region and the lean air-fuel ratio region, the increase in the NOx emission amount into the atmosphere at the time of switching the air-fuel ratio can be controlled by the engine operability. It can be suppressed without deteriorating.

【0021】[0021]

【実施例】以下に本発明の実施例を説明する。一実施例
のシステム構成を示す図3において、内燃機関1には、
エアクリーナ2,吸気ダクト3,スロットルチャンバ
4,吸気マニホールド5を介して空気が吸入される。
EXAMPLES Examples of the present invention will be described below. In FIG. 3 showing the system configuration of one embodiment, the internal combustion engine 1 is
Air is taken in through the air cleaner 2, the intake duct 3, the throttle chamber 4, and the intake manifold 5.

【0022】前記吸気ダクト3には、機関の吸入空気流
量Qを検出するエアフローメータ6が介装されている。
前記スロットルチャンバ4には、吸入空気量を調整する
バタフライ式のスロットル弁7が介装されており、この
スロットル弁7には、その開度TVOを検出するポテン
ショメータ式のスロットルセンサ8が付設されている。
An air flow meter 6 for detecting the intake air flow rate Q of the engine is installed in the intake duct 3.
A butterfly type throttle valve 7 for adjusting the amount of intake air is installed in the throttle chamber 4, and a potentiometer type throttle sensor 8 for detecting the opening TVO is attached to the throttle valve 7. There is.

【0023】また、前記スロットル弁7をバイパスして
機関に供給される補助空気量を制御するために、開度制
御されるアイドル制御バルブ9、エアコン信号に応じて
オン・オフ的に開閉するファーストアイドルコントロー
ルバルブ(FICD)10、冷却水温度に応じて補助空気
量を調整するエアレギュレータ11が設けられている。一
方、前記吸気マニホールド5の各ブランチ部には、図示
しないフューエルタンクから圧送されプレッシャレギュ
レータにより所定圧力に調整された燃料を、間欠的に機
関1に噴射供給するための電磁式のインジェクタ12が設
けられており、このインジェクタ12の開弁時間を介して
燃料供給量、引いては、機関吸入混合気の空燃比を制御
できるようになっている。
Further, in order to control the amount of auxiliary air supplied to the engine by bypassing the throttle valve 7, an idle control valve 9 whose opening is controlled, and a fast opening / closing in accordance with an air conditioner signal. An idle control valve (FICD) 10 and an air regulator 11 for adjusting the amount of auxiliary air according to the temperature of the cooling water are provided. On the other hand, each branch portion of the intake manifold 5 is provided with an electromagnetic injector 12 for intermittently injecting and supplying to the engine 1 fuel that is pressure-fed from a fuel tank (not shown) and adjusted to a predetermined pressure by a pressure regulator. It is possible to control the fuel supply amount, and hence the air-fuel ratio of the engine intake air-fuel mixture, through the valve opening time of the injector 12.

【0024】また、各気筒の燃焼室に臨ませて点火栓13
が設けられており、この点火栓13には、点火時期制御信
号に応じてイグニッションコイル14で発生した高電圧が
ディストリビュータ15を介して分配供給されるようにな
っている。前記ディストリビュータ15には、クランク角
センサ16が内蔵されており、該クランク角センサ16は、
所定クランク角毎に検出信号を出力する。尚、前記クラ
ンク角センサ16からの検出信号に基づいて機関回転速度
が算出される。
Also, the spark plug 13 is exposed to the combustion chamber of each cylinder.
Is provided, and the high voltage generated in the ignition coil 14 is distributed and supplied to the spark plug 13 via the distributor 15 in response to the ignition timing control signal. The distributor 15 has a built-in crank angle sensor 16, and the crank angle sensor 16 is
A detection signal is output for each predetermined crank angle. The engine speed is calculated based on the detection signal from the crank angle sensor 16.

【0025】機関1からの排気は、排気マニホールド1
7,排気ダクト18,リーンNOx触媒19(排気浄化触
媒),マフラー20を介して大気中に排出される。前記排
気ダクト18には、機関吸入混合気の空燃比と密接な関係
にある排気中の酸素濃度を検出する酸素センサ21が介装
されている。また、リーンNOx触媒19の下流側には排
気温度を検出する排気温度センサ22が設けられている。
Exhaust gas from the engine 1 is exhausted from the exhaust manifold 1
7, the exhaust duct 18, the lean NOx catalyst 19 (exhaust gas purification catalyst), and the muffler 20 to be discharged into the atmosphere. An oxygen sensor 21 for detecting the oxygen concentration in the exhaust gas, which is closely related to the air-fuel ratio of the engine intake air-fuel mixture, is installed in the exhaust duct 18. An exhaust gas temperature sensor 22 that detects the exhaust gas temperature is provided downstream of the lean NOx catalyst 19.

【0026】前記リーンNOx触媒19は、遷移金属或い
は貴金属を担持せしめたゼオライトからなり、HCの吸
着能力(HCストレージ効果)を有すると共に、酸化雰
囲気中HC存在下でNOxを還元する機能を有する触媒
である。マイクロコンピュータを内蔵したコントロール
ユニット23は、前記各種センサの他、機関の冷却水温度
を検出する水温センサ24,機関のノッキング振動を検出
するノックセンサ25からの検出信号などを入力し、イン
ジェクタ12による燃料噴射量、点火栓13による点火時
期、更に、アイドル制御バルブ9で調整される補助空気
量などを制御する機能を有している。
The lean NOx catalyst 19 is composed of a zeolite supporting a transition metal or a noble metal, has a HC adsorbing capacity (HC storage effect), and has a function of reducing NOx in the presence of HC in an oxidizing atmosphere. Is. The control unit 23 having a built-in microcomputer inputs the detection signals from the water temperature sensor 24 that detects the cooling water temperature of the engine, the knock sensor 25 that detects the knocking vibration of the engine, and the like in addition to the various sensors described above. It has a function of controlling the fuel injection amount, the ignition timing by the spark plug 13, and the auxiliary air amount adjusted by the idle control valve 9.

【0027】尚、図3において、26はキャニスタであ
り、図示しないフューエルタンク内の蒸発燃料を吸着捕
集すると共に、該吸着捕集した蒸発燃料を機関吸気系に
脱離供給する。前記コントロールユニット23は、機関吸
入混合気の目標空燃比を、前記各種センサに基づき検出
される運転条件に応じて、理論空燃比付近の出力空燃比
域と、理論空燃比よりも大きな燃焼安定限界付近のリー
ン空燃比域(空燃比20〜22程度)とに切り換え、該切り
換え設定される目標空燃比に応じて燃料噴射量を制御す
るようになっている。従って、本実施例の機関1は所謂
リーンバーン機関である。
In FIG. 3, a canister 26 adsorbs and collects the evaporated fuel in a fuel tank (not shown), and desorbs and supplies the evaporated fuel to the engine intake system. The control unit 23, the target air-fuel ratio of the engine intake air-fuel mixture, according to the operating conditions detected based on the various sensors, the output air-fuel ratio region near the stoichiometric air-fuel ratio, combustion stability limit larger than the theoretical air-fuel ratio A lean air-fuel ratio range (air-fuel ratio of about 20 to 22) is switched to the vicinity, and the fuel injection amount is controlled according to the target air-fuel ratio that is set to be switched. Therefore, the engine 1 of this embodiment is a so-called lean burn engine.

【0028】ここで、前記リーンNOx触媒は、前述の
ように、HCの存在によってNOxを還元処理するもの
であるから、HC量が不足するとNOxの還元性能が低
下する。特に、前述のように出力空燃比域とリーン空燃
比域との間で空燃比を変化させるときには、図4に示す
ように、NOx排出量がピークとなる空燃比域(空燃比
16〜18程度)を通過し、然も、このときにHC/NOx
比が小さくなって、リーンNOx触媒19におけるNOx
の還元処理が期待できなくなるので、空燃比の切り換え
を行なうときに多くのNOxが大気中に排出される惧れ
がある。
Since the lean NOx catalyst reduces NOx due to the presence of HC as described above, if the amount of HC is insufficient, the NOx reduction performance deteriorates. Particularly, when changing the air-fuel ratio between the output air-fuel ratio range and the lean air-fuel ratio range as described above, as shown in FIG.
16-18)), and at this time, HC / NOx
As the ratio becomes smaller, NOx in the lean NOx catalyst 19
Since it is no longer possible to expect a reduction process of NOx, a large amount of NOx may be emitted into the atmosphere when the air-fuel ratio is switched.

【0029】そこで、本実施例では、空燃比切り換え時
に以下のようにしてHC量を確保して、NOxの還元性
能を維持できるようにしてある。図5のフローチャート
は、出力空燃比域(略理論空燃比)とリーン空燃比域と
の間における目標空燃比の切り換え制御を示すものであ
る。尚、本実施例において空燃比切り換え手段としての
機能は、前記図5のフローチャートに示すように、コン
トロールユニット23がソフトウェア的に備えている。ま
た、本実施例では機関1は直列4気筒機関とする。
Therefore, in this embodiment, the amount of HC is secured in the following manner when the air-fuel ratio is switched so that the NOx reducing performance can be maintained. The flowchart of FIG. 5 shows the control of switching the target air-fuel ratio between the output air-fuel ratio range (substantially the theoretical air-fuel ratio) and the lean air-fuel ratio range. Incidentally, the function as the air-fuel ratio switching means in this embodiment is provided by the control unit 23 as software, as shown in the flowchart of FIG. In addition, in this embodiment, the engine 1 is an in-line four-cylinder engine.

【0030】図5のフローチャートに示すルーチンは、
1サイクル毎に実行されるものであり、まず、機関負
荷,回転速度,冷却水温度等の情報を読み込む(S1
1)。前記機関負荷は、前記エアフローメータ6で検出
される吸入空気流量Qと、クランク角センサ16からの検
出信号に基づいて算出される機関回転速度Neとに基づ
いて別のルーチンで演算される基本燃料噴射量Tp(←
K×Q/Ne)で代表させることができる。
The routine shown in the flow chart of FIG.
It is executed every cycle. First, information such as engine load, rotation speed, cooling water temperature, etc. is read (S1
1). The engine load is a basic fuel calculated in another routine based on the intake air flow rate Q detected by the air flow meter 6 and the engine rotation speed Ne calculated based on the detection signal from the crank angle sensor 16. Injection amount Tp (←
It can be represented by K × Q / Ne).

【0031】そして、前記機関負荷,回転速度の情報に
基づいて、現状の運転条件が予め設定されたリーン運転
領域に含まれるか否かを判別し、更に、冷却水温度の情
報に基づいてリーン運転可能な条件であるか否かを判別
することで、リーン運転が可能であるか否かを判別する
(S12)。ここで、リーン運転が可能であると判別され
た場合には、目標空燃比の設定切り換え状態を示すリー
ン判定フラグFLEANに1をセットし(S13)、リー
ン運転が不可能で出力空燃比域(理論空燃比)での燃焼
(ストイキ運転)を行なわせる必要があるときには、前
記リーン判定フラグFLEANに0をセットする(S1
4)。
Then, based on the information on the engine load and the rotational speed, it is determined whether or not the current operating conditions are included in a preset lean operating region, and further, based on the information on the cooling water temperature, the lean operation is performed. By determining whether or not the driving is possible, it is determined whether or not lean operation is possible (S12). If it is determined that the lean operation is possible, the lean determination flag FLEAN indicating the setting switching state of the target air-fuel ratio is set to 1 (S13), and the lean operation is impossible and the output air-fuel ratio range ( When it is necessary to perform combustion (stoichiometric operation) at the stoichiometric air-fuel ratio, the lean determination flag FLEAN is set to 0 (S1).
Four).

【0032】次いで、今回設定されたリーン判定フラグ
FLEANと、本プログラム前回実行時に設定されたリ
ーン判定フラグFLEAN(=FL−OLD)とを比較
する(S15)。ここで、今回設定されたリーン判定フラ
グFLEANが前回値に対して異なるとき、換言すれ
ば、リーン空燃比域から出力空燃比域への切り換え、又
は、出力空燃比域からリーン空燃比域への切り換えが行
なわれたときには、リッチ化フラグFRICHに1をセ
ットする(S16)。
Next, the lean determination flag FLEAN set this time is compared with the lean determination flag FLEAN (= FL-OLD) set at the previous execution of this program (S15). Here, when the lean determination flag FLEAN set this time is different from the previous value, in other words, switching from the lean air-fuel ratio range to the output air-fuel ratio range, or from the output air-fuel ratio range to the lean air-fuel ratio range When the switching is performed, the enrichment flag FRICH is set to 1 (S16).

【0033】前記リッチ化フラグFRICHは、実際に
空燃比の切り換えを行なう前の所定期間だけ、切り換え
前の空燃比よりもリッチな空燃比で燃焼させる状態を示
すフラグである(図9参照)。一方、前記リーン判定フ
ラグFLEANが前回と同じ場合には、リッチ化フラグ
FRICHの設定を行なわずに進む。
The enrichment flag FRICH is a flag indicating a state in which combustion is performed at an air-fuel ratio richer than the air-fuel ratio before switching for a predetermined period before actually switching the air-fuel ratio (see FIG. 9). On the other hand, when the lean determination flag FLEAN is the same as the previous time, the process proceeds without setting the enrichment flag FRICH.

【0034】そして、本プログラムの次回実行時におけ
るS15での判別のために、今回設定されたリーン判定フ
ラグFLEANを前回値FL−OLDにセットする(S
17)。次いで、上記のリーン運転が可能であるか否か
の判定結果を受けて、実際の目標空燃比の設定を行なう
(S18)。
Then, the lean determination flag FLEAN set this time is set to the previous value FL-OLD for the determination in S15 at the next execution of this program (S).
17). Next, the actual target air-fuel ratio is set based on the result of the determination as to whether or not the lean operation is possible (S18).

【0035】前記S18における目標空燃比設定の詳細
は、図6及び図7のフローチャートに示してある。尚、
本実施例において、HC濃度増大手段,HC濃度制御手
段,HC増量要求検知手段,空燃比リッチ化手段,発生
トルク制御手段としての機能は、前記図6及び図7のフ
ローチャートに示すように、コントロールユニット23が
ソフトウェア的に備えている。
Details of the target air-fuel ratio setting in S18 are shown in the flow charts of FIGS. 6 and 7. still,
In this embodiment, the functions of the HC concentration increasing means, the HC concentration controlling means, the HC increasing demand detecting means, the air-fuel ratio enriching means, and the generated torque controlling means are controlled as shown in the flow charts of FIGS. 6 and 7. The unit 23 is provided as software.

【0036】この図6及び図7のフローチャートにおい
て、まず、前記リッチ化フラグFRICHの判定を行な
う(S201)。そして、前記リッチ化フラグFRICHが
1であるときには、空燃比をリッチ化させる制御の初期
状態を判定するためのフラグFR−OLDを判定する
(S202)。
In the flowcharts of FIGS. 6 and 7, first, the enrichment flag FRICH is determined (S201). When the enrichment flag FRICH is 1, the flag FR-OLD for determining the initial state of the control for enriching the air-fuel ratio is determined (S202).

【0037】ここで、前記フラグFR−OLDが0であ
ると判別され、リッチ化制御の初期状態であるときに
は、前記フラグFR−OLDに1をセットした後(S20
3)、図8に示すように予め機関負荷と機関回転速度とに
より割り付けられたマップから、空燃比を実際に切り換
える前に空燃比を強制的にリッチ化させる期間TRを読
み取る(S204)。そして、前記リッチ化期間TRを計測
するためのタイマーtRを所定値Δtだけカウントアッ
プさせ(S205)、リッチ化期間の計測をスタートさせ
る。
Here, if it is determined that the flag FR-OLD is 0, and it is in the initial state of the enrichment control, after the flag FR-OLD is set to 1 (S20).
3) As shown in FIG. 8, the period TR for forcibly enriching the air-fuel ratio before the actual switching of the air-fuel ratio is read from the map previously assigned by the engine load and the engine rotation speed (S204). Then, the timer t R for measuring the enrichment period TR is counted up by a predetermined value Δt (S205), and the measurement of the enrichment period is started.

【0038】即ち、出力空燃比域とリーン空燃比域との
間における空燃比の切り換えが設定されても、直ちに切
り換えを開始するのではなく、前記リッチ化期間TRだ
け空燃比の切り換え開始を遅延させ、該遅延期間中に切
り換え前の空燃比よりもリッチな空燃比で燃焼させるこ
とでHCを多く排出させて、前記遅延期間中にリーンN
Ox触媒19に対して可能範囲内の最大量のHCを吸着さ
せるようにする(図9参照)。
That is, even if the switching of the air-fuel ratio between the output air-fuel ratio region and the lean air-fuel ratio region is set, the switching is not started immediately, but the start of switching the air-fuel ratio is delayed by the enrichment period TR. Then, during the delay period, a large amount of HC is discharged by burning with an air-fuel ratio richer than the air-fuel ratio before switching, and a lean N
The maximum amount of HC within the possible range is adsorbed to the Ox catalyst 19 (see FIG. 9).

【0039】前記リーンNOx触媒19では、その触媒の
担持量によって吸着可能なHC総量MOが決定されるの
で、運転条件及び空燃比設定から機関からのHC排出量
を求め、更に、この値からHC吸着量が前記吸着可能量
MOになるまでの時間を求め、この時間を前記リッチ化
期間TRとしてある。HCの排出量は、高負荷・高回転
になるほど増加するので、前記リッチ化期間TRは、機
関の高負荷・高回転ほど短い期間に、換言すれば、機関
の低負荷・低回転ほど長い期間となるように設定され
る。従って、前記リッチ化期間TRだけ所定のリッチ化
処理を行なえば、リーンNOx触媒19に対して吸着可能
な最大量のHCが吸着されることが予測される。
In the lean NOx catalyst 19, the total amount MO of HC that can be adsorbed is determined by the amount of the catalyst carried. Therefore, the amount of HC emission from the engine is determined from the operating conditions and the air-fuel ratio setting, and from this value, the amount of HC emission is increased. The time until the adsorption amount reaches the adsorbable amount MO is obtained, and this time is defined as the enrichment period TR. Since the HC discharge amount increases as the load and rotation speed increase, the enrichment period TR becomes shorter as the load and rotation speed of the engine become shorter, in other words, as the load and rotation speed of the engine become longer. Is set. Therefore, if the predetermined enrichment process is performed only during the enrichment period TR, it is predicted that the maximum amount of HC that can be adsorbed to the lean NOx catalyst 19 will be adsorbed.

【0040】次に、機関負荷と機関回転速度とにより割
り付けられた通常運転時用の空燃比・点火時期のマップ
を、前記リーン判定フラグFLEANに基づいて参照
し、この参照値をそれぞれMKMR,MADVにセット
する(S206)。前記通常運転時用の空燃比・点火時期マ
ップは、図10に示すように、出力空燃比域用(ストイキ
用)とリーン空燃比域用との2種類が予め用意されてお
り、前記リーン判定フラグFLEANに基づいていずれ
か一方のマップを選択し、そのときの機関負荷と回転と
から目標となるリーン空燃比と点火時期とを前記選択し
たマップから参照する。
Next, the map of the air-fuel ratio and the ignition timing for the normal operation, which is assigned by the engine load and the engine speed, is referred to on the basis of the lean determination flag FLEAN, and these reference values are respectively MKMR and MADV. (S206). As shown in FIG. 10, two types of air-fuel ratio / ignition timing maps for normal operation are prepared in advance, one for the output air-fuel ratio range (for stoichiometry) and the other for the lean air-fuel ratio range. One of the maps is selected based on the flag FLEAN, and the target lean air-fuel ratio and ignition timing are referred to from the selected map based on the engine load and the rotation at that time.

【0041】そして、前記参照値MKMR, MADVを
各気筒毎に割り当てられたKMR(i),ADV(i)
(i=1〜4)に格納させる(S207)。ここで、リーン
判定フラグFLEANは前回に対して反転しており、本
来であれば、リーン判定フラグFLEANが1であれば
リーン空燃比域(リーン運転)用のマップを参照し、ま
た、リーン判定フラグFLEANが0であれば出力空燃
比域(ストイキ運転)用のマップを参照することにな
る。
Then, the reference values MKMR, MADV are assigned to each cylinder as KMR (i), ADV (i).
It is stored in (i = 1 to 4) (S207). Here, the lean determination flag FLEAN is inverted with respect to the previous time, and normally, if the lean determination flag FLEAN is 1, the lean air-fuel ratio range (lean operation) map is referred to, and the lean determination is also performed. If the flag FLEAN is 0, the map for the output air-fuel ratio range (stoichiometric operation) will be referred to.

【0042】しかしながら、本実施例では前記リッチ化
期間TR中(フラグFRICHが1である間)は空燃比
の切り換えを遅延させ、リーン判定フラグFLEANが
反転してから前記リッチ化期間TRが経過した後に初め
て空燃比の切り換えを行なう(図9参照)。従って、前
述のように、リッチ化フラグFRICHが1であると判
定されるリッチ化期間TRであるS206 では、リーン判
定フラグFLEANが0であるリーン空燃比域から出力
空燃比域への切り換え時には、切り換え前のリーン空燃
比域用のマップを参照し、また、リーン判定フラグFL
EANが1である出力空燃比域(理論空燃比)からリー
ン空燃比域への切り換え時には、切り換え前の出力空燃
比域用のマップを参照するものとする。
However, in the present embodiment, the air-fuel ratio switching is delayed during the enrichment period TR (while the flag FRICH is 1), and the enrichment period TR has elapsed since the lean determination flag FLEAN was inverted. Only after that, the air-fuel ratio is switched (see FIG. 9). Therefore, as described above, in S206, which is the enrichment period TR in which the enrichment flag FRICH is determined to be 1, in switching from the lean air-fuel ratio region where the lean determination flag FLEAN is 0 to the output air-fuel ratio region, Refer to the map for the lean air-fuel ratio range before switching, and check the lean determination flag FL.
When switching from the output air-fuel ratio range (theoretical air-fuel ratio) where EAN is 1 to the lean air-fuel ratio range, the map for the output air-fuel ratio range before switching shall be referred to.

【0043】上記では、全気筒の空燃比・点火時期とし
て、切り換え前の空燃比設定に対応する通常データを設
定させたが、次のS208 ,S209 では、特定気筒の空燃
比のみをリッチ化させるために、前記特定気筒の空燃比
・点火時期設定を書き換える処理が行なわれる。即ち、
出力空燃比域とリーン空燃比域との間での空燃比切り換
えが指示されると、特定気筒以外の気筒については単純
に実際の切り換え制御の開始を遅らせるが、特定気筒に
ついては、前記遅延期間内で強制的に多くのHCを排出
させるべく、少なくとも他気筒よりもリッチ化させるも
のである。
In the above, the normal data corresponding to the air-fuel ratio setting before switching is set as the air-fuel ratio / ignition timing of all cylinders. However, in the following S208 and S209, only the air-fuel ratio of the specific cylinder is made rich. Therefore, a process of rewriting the air-fuel ratio / ignition timing setting of the specific cylinder is performed. That is,
When the air-fuel ratio switching between the output air-fuel ratio range and the lean air-fuel ratio range is instructed, the start of actual switching control is simply delayed for cylinders other than the specific cylinder, but for the specific cylinder, the delay period In order to forcibly discharge a large amount of HC inside, at least it is made richer than other cylinders.

【0044】コントロールユニット23には、予め前記特
定気筒をリッチ化させるための空燃比・点火時期マップ
として、図10(c),(d)に示すように、出力空燃比
域(ストイキ)からリーン空燃比域への切り換え時に用
いるマップと、逆方向への切り換え時に用いるマップと
が備えられており、例えば出力空燃比域からリーン空燃
比域への切り換え時のリッチ化期間においては、他気筒
については図10(a)のマップが用いられるが、特定気
筒については図10(c)のマップが用いられる。
In the control unit 23, an air-fuel ratio / ignition timing map for enriching the specific cylinder is set in advance from the output air-fuel ratio range (stoichiometric) as shown in FIGS. 10 (c) and 10 (d). A map used when switching to the air-fuel ratio range and a map used when switching to the opposite direction are provided.For example, during the enrichment period when switching from the output air-fuel ratio range to the lean air-fuel ratio range, other cylinders The map of FIG. 10 (a) is used, while the map of FIG. 10 (c) is used for the specific cylinder.

【0045】ここで、図10(a)のマップと図10(c)
のマップ、図10(b)のマップと図10(d)のマップを
それぞれに比較すると、同一の負荷・回転に対応するデ
ータSijとS' ij 又はLijとL' ij を用いて制御し
たときには同じ発生トルクが得られるようになってい
る。リッチ化期間TRにおいては、特定気筒のみがリッ
チ化されることになるから、空燃比の設定のみを気筒間
で異ならせると、発生トルクが特定気筒で大きくなっ
て、気筒間における発生トルクがアンバランスとなって
しまう。そこで、空燃比としてはリッチ化されても、該
リッチ化に伴って他気筒よりも発生トルクが大きくなる
ことがないように、点火時期を補正したマップをリッチ
化用の空燃比・点火時期マップとして設定し(図11参
照)、リッチ化させる特定気筒の発生トルクとリッチ化
されない他気筒の発生トルクが等しくなるようにしてあ
る。
Here, the map of FIG. 10A and the map of FIG.
Map, when compared to the respective maps and 10 maps the (d) of FIG. 10 (b), control using the data S ij and S 'ij or L ij and L' ij corresponding to the same load and rotation When it does, the same generated torque is obtained. During the enrichment period TR, only specific cylinders are enriched. Therefore, if only the setting of the air-fuel ratio is made different among the cylinders, the generated torque becomes large in the specific cylinders, and the generated torque between the cylinders becomes unbalanced. It becomes a balance. Therefore, even if the air-fuel ratio is made rich, a map in which the ignition timing is corrected is adjusted so that the generated torque does not become larger than that of other cylinders due to the enrichment. (See FIG. 11) so that the generated torque of the specific cylinder to be enriched is equal to the generated torque of the other cylinder that is not enriched.

【0046】即ち、図11に示すように、所定のリーン空
燃比で燃焼される他気筒に対し、特定気筒の空燃比を9
程度と大幅にリッチ化させると、該リッチ化に伴って前
記リッチ化気筒の発生トルクのみが増大してしまう。そ
こで、前記リッチ化による発生トルクの増大分を、点火
時期の遅角(リタード)設定によって相殺できるような
空燃比・点火時期のデータを予め実験によって求め、こ
れをリッチ化用マップとして設定する。そして、通常マ
ップを用いて制御される気筒での発生トルクと、リッチ
化用マップを用いて制御される気筒での発生トルクが、
同一負荷・回転条件で略等しくなるようにしてある。
That is, as shown in FIG. 11, the air-fuel ratio of a specific cylinder is set to 9 for the other cylinders that are burned at a predetermined lean air-fuel ratio.
If it is made substantially rich, the generated torque of the enriched cylinder only increases with the enrichment. Therefore, the air-fuel ratio / ignition timing data that can offset the increase in the generated torque due to the enrichment by the ignition timing retard setting (retard) is obtained in advance by an experiment, and this is set as the enrichment map. Then, the generated torque in the cylinder controlled using the normal map and the generated torque in the cylinder controlled using the enrichment map are
Under the same load and rotation conditions, they are made approximately equal.

【0047】S208 では前述のようにして設定されてい
るリッチ化用空燃比・点火時期マップを空燃比の切り換
え方向に応じて参照し、機関負荷・回転に応じた空燃比
・点火時期の参照値をKMR(1),ADV(1)にセ
ットする。尚、前記KMR(1),ADV(1)は、前
述のステップで通常運転用の制御値がセットされるが、
前記リッチ化用のマップの参照値に置き換えられる。
In S208, the enrichment air-fuel ratio / ignition timing map set as described above is referred to according to the switching direction of the air-fuel ratio, and the reference values of the air-fuel ratio / ignition timing depending on the engine load / rotation. Are set to KMR (1) and ADV (1). The control values for normal operation are set in the above-mentioned steps for KMR (1) and ADV (1).
It is replaced with the reference value of the enrichment map.

【0048】尚、本実施例では、図9に示すように、出
力空燃比域で14〜16程度の空燃比に制御され、リーン空
燃比域では20〜22程度の空燃比に制御されるのに対し、
出力空燃比域からリーン空燃比域への切り換え時には、
特定気筒の空燃比を所定期間だけ10〜12程度に低下(リ
ッチ化)させてから実際の切り換えを開始させ、また、
リーン空燃比域から出力空燃比域への切り換え時には、
特定気筒の空燃比を所定期間だけ8〜10程度に低下(リ
ッチ化)させてから実際の切り換えを開始させるように
した。
In this embodiment, as shown in FIG. 9, the air-fuel ratio is controlled to about 14 to 16 in the output air-fuel ratio range, and the air-fuel ratio is controlled to about 20 to 22 in the lean air-fuel ratio range. As opposed to
When switching from the output air-fuel ratio range to the lean air-fuel ratio range,
The actual switching is started after the air-fuel ratio of the specific cylinder is reduced to 10-12 (rich) for a predetermined period, and
When switching from the lean air-fuel ratio range to the output air-fuel ratio range,
The actual switching is started after the air-fuel ratio of the specific cylinder is reduced (riched) to about 8 to 10 for a predetermined period.

【0049】上記のようにして空燃比を切り換える直前
の所定期間TRにおいて、切り換え前の目標空燃比(他
気筒の空燃比)に対して特定気筒の空燃比のみを発生ト
ルクを増大させることなくよりリッチ化させる空燃比・
点火時期を設定すると、次いで、前記特定気筒(1番気
筒)に対する設定空燃比・点火時期の前回値KMR−O
LD(1),ADV−OLD(1)として、通常マップ
を参照したものではなく、前記リッチ化用マップを参照
したものをセットする(S209)。
In the predetermined period TR immediately before the air-fuel ratio is switched as described above, only the air-fuel ratio of the specific cylinder is increased with respect to the target air-fuel ratio before the switching (the air-fuel ratio of the other cylinder) without increasing the torque. Air-fuel ratio to make rich
When the ignition timing is set, then the previous value KMR-O of the set air-fuel ratio / ignition timing for the specific cylinder (first cylinder)
As the LD (1) and ADV-OLD (1), those referred to the enrichment map are set instead of those referred to the normal map (S209).

【0050】次に、タイマーtR によって計測される時
間に基づいて所定のリッチ化期間TRが経過したか否か
を判別する(S210)。そして、リッチ化期間TRが経過
していない場合には、そのままS214 以降の目標空燃比
の設定ステップに進むが、リッチ化期間TRが経過した
ことが判別されると、前記フラグFRICH,FR−O
LD及びタイマーtR をゼロリセットし(S211)、前記
リッチ化期間TRだけ遅延させておいた空燃比の切り換
えを開始させるようにする。
Next, it is determined whether or not a predetermined enrichment period TR has elapsed based on the time measured by the timer t R (S210). Then, if the enrichment period TR has not elapsed, the process directly proceeds to the setting step of the target air-fuel ratio after S214, but if it is determined that the enrichment period TR has elapsed, the flags FRICH and FR-O are set.
The LD and the timer t R are reset to zero (S211), and the switching of the air-fuel ratio delayed by the enrichment period TR is started.

【0051】前記リッチ化フラグFRICHがゼロリッ
トされると、次回からは、リーン判定フラグFLEAN
に対応して、フラグFLEANが0であるときには出力
空燃比域用の通常マップ(図10(a))を参照し、ま
た、フラグFLEANが1であるときにはリーン空燃比
域用の通常マップ(図10(b))を参照して、各気筒の
共通の空燃比・点火時期を設定する(S212 ,S213
)。
When the enrichment flag FRICH is zero-lit, the lean determination flag FLEAN is started from the next time.
Corresponding to, the normal map for the output air-fuel ratio region is referred to when the flag FLEAN is 0 (Fig. 10 (a)), and the normal map for the lean air-fuel ratio region is indicated when the flag FLEAN is 1 (Fig. 10 (b)), the common air-fuel ratio / ignition timing of each cylinder is set (S212, S213).
).

【0052】S214 〜S222 は、出力空燃比域とリーン
空燃比域の間での空燃比切り換えを行なうときに、切り
換え前の空燃比から徐々に切り換え後の空燃比に変化さ
せて、空燃比の切り換えに伴う急激な出力変化が生じな
いように目標空燃比を設定するためのステップである。
まず、今回マップを参照して設定された空燃比KMR
(i)と前回の空燃比KMR−OLD(i)とを比較
し、空燃比の増大設定がなされたか否かを判別する(S
214)。
In steps S214 to S222, when the air-fuel ratio is switched between the output air-fuel ratio range and the lean air-fuel ratio range, the air-fuel ratio before the switching is gradually changed to the air-fuel ratio after the switching, and the air-fuel ratio is changed. This is a step for setting the target air-fuel ratio so that a sudden output change due to switching does not occur.
First, the air-fuel ratio KMR set with reference to the map this time
(I) and the previous air-fuel ratio KMR-OLD (i) are compared to determine whether or not the air-fuel ratio increase setting has been made (S).
214).

【0053】ここで、設定空燃比が増大変化していると
判別された場合には、前回値KMR−OLD(i)に対
して所定のステップ量ΔRMRを加算したデータと、今
回の設定空燃比KMR(i)とを比較し、小さい方のデ
ータを最終的な目標空燃比TMR(i)にセットする。
従って、出力空燃比域からリーン空燃比域に移行すると
きには、理論空燃比付近から最終的なリーン空燃比へ一
度に変化するのではなく、前記ステップ量ΔRMRずつ
徐々に変化することになる。
When it is determined that the set air-fuel ratio is increasing, the data obtained by adding the predetermined step amount ΔRMR to the previous value KMR-OLD (i) and the set air-fuel ratio this time are set. KMR (i) is compared and the smaller data is set as the final target air-fuel ratio TMR (i).
Therefore, when the output air-fuel ratio range is shifted to the lean air-fuel ratio range, the step amount ΔRMR is gradually changed not from the stoichiometric air-fuel ratio to the final lean air-fuel ratio at once.

【0054】一方、マップを参照して求められる設定空
燃比が変化していないか又は減少変化している場合に
は、前回値KMR−OLD(i)から所定のステップ量
ΔLMRを減算したデータと、今回の設定空燃比KMR
(i)とを比較し、大きい方のデータを最終的な目標空
燃比TMR(i)にセットする。従って、リーン空燃比
域から出力空燃比域へ移行するときには、リーン空燃比
から理論空燃比付近へ一度に変化するのではなく、前記
ステップ量ΔLMRずつ徐々に変化することになる。
On the other hand, when the set air-fuel ratio obtained by referring to the map is not changing or is decreasing, the data is obtained by subtracting the predetermined step amount ΔLMR from the previous value KMR-OLD (i). , This time set air-fuel ratio KMR
(I) is compared, and the larger data is set as the final target air-fuel ratio TMR (i). Therefore, when shifting from the lean air-fuel ratio region to the output air-fuel ratio region, the lean air-fuel ratio does not change to near the stoichiometric air-fuel ratio at once, but gradually changes by the step amount ΔLMR.

【0055】また、マップを参照して求められる設定空
燃比が変化していない場合、即ち、安定的な理論空燃比
或いはリーン空燃比運転状態、若しくは、前記リッチ化
期間TRにおいては、マップ参照値がそのまま目標空燃
比TMR(i)として設定されることになる。S217 〜
S219 では、前記目標空燃比TMR(i)の設定と同様
にして、点火時期TADV(i)を徐々に変化させる処
理を行なう。
Further, when the set air-fuel ratio obtained by referring to the map has not changed, that is, in the stable stoichiometric air-fuel ratio or lean air-fuel ratio operation state, or during the enrichment period TR, the map reference value is obtained. Is directly set as the target air-fuel ratio TMR (i). S217 ~
In S219, similarly to the setting of the target air-fuel ratio TMR (i), the ignition timing TADV (i) is gradually changed.

【0056】上記の目標空燃比TMR(i)及びTAD
V(i)は、各気筒別に行なわれるようになっており、
S214 〜S219 の一連の処理が一旦終了すると、気筒数
カウンタi(初期値=1)を1アップさせる。そして、
このカウンタiが4を超えるようになるまで、換言すれ
ば、全気筒について目標空燃比TMR(i)及びTAD
V(i)の設定が終了するまでは、S214 〜S219 の処
理を繰り返す。
The above target air-fuel ratios TMR (i) and TAD
V (i) is performed for each cylinder,
Once the series of processing in S214 to S219 is completed, the cylinder number counter i (initial value = 1) is incremented by 1. And
Until the counter i exceeds 4, in other words, the target air-fuel ratios TMR (i) and TAD for all cylinders.
Until the setting of V (i) is completed, the processes of S214 to S219 are repeated.

【0057】目標空燃比TMR(i)及びTADV
(i)の設定が全気筒について終了すると、前記カウン
タiを初期値である0にリセットした後(S222)、前記
目標空燃比TMR(i)及びTADV(i)を図示しな
い空燃比・点火時期制御ルーチンへ渡し、前記目標空燃
比TMR(i)に対応する噴射量制御及びTADV
(i)に対応する点火時期制御が行なわれる。
Target air-fuel ratio TMR (i) and TADV
When the setting of (i) is completed for all the cylinders, the counter i is reset to 0 which is an initial value (S222), and then the target air-fuel ratios TMR (i) and TADV (i) are not shown in the figure. It is passed to a control routine to control the injection amount and TADV corresponding to the target air-fuel ratio TMR (i).
Ignition timing control corresponding to (i) is performed.

【0058】上記図6及び図7のフローチャートに示し
た制御を概略的に述べると、出力空燃比域(ストイキ運
転)とリーン空燃比域(リーン運転)との間で切り換え
を行なうときに、切り換えを所定期間TRだけ延期し、
かかる切り換え延期期間において特定気筒の空燃比のみ
をリッチ化させる。かかる空燃比リッチ化に当たって
は、リッチ化に伴う発生トルクの増大を抑制すべく点火
時期を他気筒に比べて遅角設定し、他気筒の発生トルク
と同等レベルとする。
The control shown in the flow charts of FIGS. 6 and 7 will be briefly described. When switching between the output air-fuel ratio range (stoichiometric operation) and the lean air-fuel ratio range (lean operation), the switching is performed. Postponed for a predetermined period TR,
Only the air-fuel ratio of the specific cylinder is made rich during the switching postponement period. In the enrichment of the air-fuel ratio, the ignition timing is retarded compared to the other cylinders in order to suppress the increase in the generated torque due to the enrichment, and the ignition timing is set to the same level as the generated torque of the other cylinders.

【0059】上記のように特定気筒をリッチ化させる
と、該特定気筒からの排気中に含まれるHC量を強制的
に増大させることができ、この特定気筒から排出される
HC量に応じた前記期間TRの設定によって、前記空燃
比切り換え遅延期間内でリーンNOx触媒19に対して吸
着可能な最大量のHCを吸着させることができる。そし
て、前記リッチ化期間TRが経過し、リーンNOx触媒
19に最大量のHCが吸着されたものと推定される状態に
なってから、実際の空燃比切り換えを開始させる。
By enriching the specific cylinder as described above, the amount of HC contained in the exhaust gas from the specific cylinder can be forcibly increased, and the amount of HC discharged from the specific cylinder can be increased. By setting the period TR, it is possible to adsorb the maximum amount of HC that can be adsorbed to the lean NOx catalyst 19 within the air-fuel ratio switching delay period. Then, the rich period TR elapses, and the lean NOx catalyst
After the state in which it is estimated that the maximum amount of HC has been adsorbed in 19 is started, the actual air-fuel ratio switching is started.

【0060】ここで、理論空燃比付近の出力空燃比域と
リーン空燃比域(空燃比20〜22程度)との間の空燃比域
(空燃比16〜18)で機関1からのNOx排出量がピーク
となるが、上記のように空燃比切り換えを開始させる直
前にリーンNOx触媒19に対して積極的に多くのHCを
吸着させておけば、実際にNOxが機関から多量に排出
される空燃比状態となったときに、前記吸着させておい
たHCの存在によってNOxの還元性能を維持させるこ
とが可能となる。
Here, the NOx emission amount from the engine 1 in the air-fuel ratio range (air-fuel ratio 16-18) between the output air-fuel ratio range near the stoichiometric air-fuel ratio and the lean air-fuel ratio range (air-fuel ratio 20-22). However, if a large amount of HC is positively adsorbed to the lean NOx catalyst 19 immediately before the air-fuel ratio switching is started as described above, a large amount of NOx is actually discharged from the engine. When the fuel ratio is reached, the presence of the adsorbed HC makes it possible to maintain the NOx reducing performance.

【0061】従って、本実施例によれば、目標空燃比が
出力空燃比域(理論空燃比)とリーン空燃比域との間で
切り換えられるときに、出力の急激な変化を回避すべく
徐々に空燃比を変化させる構成としても、切り換え途中
の空燃比域で多量に排出されるNOxを良好に還元処理
することが可能となり、運転性を維持しつつNOx排出
量の増大を回避できる。
Therefore, according to this embodiment, when the target air-fuel ratio is switched between the output air-fuel ratio range (theoretical air-fuel ratio) and the lean air-fuel ratio range, the output is gradually changed so as to avoid a sudden change. Even with a configuration in which the air-fuel ratio is changed, it is possible to favorably reduce NOx that is discharged in large amounts in the air-fuel ratio region during switching, and it is possible to avoid an increase in the NOx emission amount while maintaining operability.

【0062】尚、空燃比切り換え直前の所定期間におい
て、噴射時期を遅らせたり、燃焼室壁温度を低下させた
り、更には、ブローバイガスやキャニスタ23から脱離さ
れた蒸発燃料を排気系に添加することによって、リーン
NOx触媒19に対して空燃比切り換え途中に多量に排出
されるNOxの処理に供することができるHCを吸着さ
せるようにしても良い。
In the predetermined period immediately before the air-fuel ratio switching, the injection timing is delayed, the combustion chamber wall temperature is lowered, and further, the blow-by gas and the evaporated fuel desorbed from the canister 23 are added to the exhaust system. As a result, the lean NOx catalyst 19 may be made to adsorb HC that can be used for processing a large amount of NOx discharged during the air-fuel ratio switching.

【0063】しかしながら、本実施例のように、機関吸
入混合気の空燃比をリッチ化させる構成とすれば、前記
HC量の確保のために不完全燃焼が大幅に増大したり、
燃焼に全く供しない燃料を前記HC量の確保のために使
用することがなく、更に、応答良くHC量の増大を図れ
るため、機関の運転性や燃費を大幅に悪化させることな
く、NOxの安定的な浄化を図ることが可能である。
However, if the air-fuel ratio of the engine intake air-fuel mixture is made rich as in the present embodiment, incomplete combustion will be greatly increased to secure the HC amount,
Since the fuel that is not used for combustion is not used to secure the HC amount and the HC amount can be increased in a responsive manner, NOx stability can be stabilized without significantly deteriorating the drivability and fuel consumption of the engine. It is possible to achieve effective purification.

【0064】ところで、空燃比の切り換え直前に、リー
ンNOx触媒19に対して最大量のHCを吸着させるため
にリッチさせる気筒が発生するトルクが、他の気筒(切
り換え前の空燃比で通常に制御されている気筒)が発生
するトルクと等しくするには、図示平均有効圧Peが互
いに等しい値となる空燃比・点火時期とすれば良い。し
かし、前記図示平均有効圧Peを等しくしても、dPe
/dθまでは等しくすることはできないので、リッチ化
させた気筒と他の気筒とでは軸加振力が異なった大きさ
になり、リッチ化気筒における軸加振力がより大きくな
る。
Immediately before switching the air-fuel ratio, the torque generated by the cylinder that is made rich to adsorb the maximum amount of HC to the lean NOx catalyst 19 is controlled by the other cylinders (normally controlled by the air-fuel ratio before switching). In order to make the torque equal to the torque generated by the activated cylinder), the air-fuel ratio and the ignition timing may be set so that the indicated mean effective pressures Pe are equal to each other. However, even if the indicated mean effective pressure Pe is made equal, dPe
Since / dθ cannot be made equal to each other, the axial excitation force becomes different between the enriched cylinder and the other cylinders, and the axial excitation force in the enriched cylinder becomes larger.

【0065】一方、直列4気筒機関の場合、機関振動に
及ぼす影響はフライホイルに対して最も遠い1番気筒の
軸加振力が最も大きい。また、4番気筒の軸加振力は、
直にクランクメインベアリングに加わるが、メインベア
リングはフライホイルによる加振力が加わり強度的に最
も厳しい。従って、上記実施例では、説明を簡略化する
ためにリッチ化させる特定気筒を1番気筒としたが、機
関振動の低減や耐久性向上のためには、2番気筒や3番
気筒をリッチ化させる特定気筒とすることが望ましい。
On the other hand, in the case of an in-line four-cylinder engine, the most significant effect on engine vibration is the axial excitation force of the first cylinder farthest from the flywheel. Also, the axial excitation force of the 4th cylinder is
Although it is directly applied to the crank main bearing, the main bearing is the most severe in terms of strength due to the excitation force of the flywheel. Therefore, in the above-described embodiment, the specific cylinder to be enriched is the first cylinder for simplification of description, but the second cylinder and the third cylinder are enriched in order to reduce engine vibration and improve durability. It is desirable to use a specific cylinder.

【0066】また、図12のフローチャートに示すよう
に、空燃比の切り換え直前の所定期間において通常制御
される気筒に対してリッチ化させる気筒を順次切り換え
る構成とすることもできる。前記図12のフローチャート
は、前述した図6のフローチャートにおけるS208,S20
9 の部分の代わりに実行されるものである。
Further, as shown in the flow chart of FIG. 12, it is possible to sequentially switch the cylinders to be enriched with respect to the cylinders normally controlled in the predetermined period immediately before the switching of the air-fuel ratio. The flowchart of FIG. 12 corresponds to steps S208 and S20 in the flowchart of FIG. 6 described above.
It is executed instead of the 9th part.

【0067】まず、リッチ化気筒カウンタCYL−N
(初期値=1)で指定される気筒をリッチ化気筒とし
て、このリッチ化気筒に対する空燃比KMRと点火時期
ADVとをマップを参照して決定する(S31)。尚、前
記空燃比KMRと点火時期ADVとは、リッチ化されず
に通常に切り換え前の空燃比設定に応じて制御される気
筒に対して、空燃比としてはリッチであるが、発生トル
クとして同等となるものである。
First, the enriched cylinder counter CYL-N
The cylinder designated by (initial value = 1) is set as the enriched cylinder, and the air-fuel ratio KMR and ignition timing ADV for this enriched cylinder are determined with reference to the map (S31). Note that the air-fuel ratio KMR and the ignition timing ADV are rich in air-fuel ratio but equivalent in generated torque to a cylinder that is not controlled to be rich but is normally controlled according to the air-fuel ratio setting before switching. It will be.

【0068】次いで、上記設定された空燃比KMRと点
火時期ADVを当該リッチ化気筒における前回値として
KMR−OLD,ADV−OLDにセットする(S3
2)。次に、前記リッチ化気筒カウンタCYL−Nを1
アップし(S33)、該1アップされたリッチ化気筒カウ
ンタが4を超えた場合には(S34)、初期値である1に
リセットする処理を行なう(S35)。
Next, the set air-fuel ratio KMR and ignition timing ADV are set in KMR-OLD and ADV-OLD as previous values in the enriched cylinder (S3).
2). Next, the enriched cylinder counter CYL-N is set to 1
When the enriched cylinder counter is incremented by 1 (S33) and exceeds 1 (S34), the initial value 1 is reset (S35).

【0069】従って、前記リッチ化気筒カウンタCYL
−Nは1サイクル毎に1→2→3→4→1と変化し、こ
れに伴ってリッチ化される気筒が1サイクル毎に#1→
#2→#3→#4→#1と順次変化することになる。空
燃比をリッチ化すると、その気筒の燃焼室壁温が低下す
るが、上記のようにリッチ化気筒を順次変化させる構成
であれば、1つの気筒の壁温だけが低下してシリンダの
熱応力がアンバランスとなることがない。
Therefore, the enriched cylinder counter CYL
-N changes 1 → 2 → 3 → 4 → 1 for each cycle, and the cylinders that are enriched accordingly are # 1 → for each cycle.
It will change in the order of # 2 → # 3 → # 4 → # 1. When the air-fuel ratio is made rich, the combustion chamber wall temperature of the cylinder decreases, but if the configuration is such that the enriched cylinders are sequentially changed as described above, only the wall temperature of one cylinder decreases and the thermal stress of the cylinder decreases. Does not become an imbalance.

【0070】更に、上記実施例では、4気筒のうちの1
気筒のみをHC量の確保のために強制的にリッチ化させ
る構成としたが、2乃至3気筒或いは全気筒を空燃比切
り換え前の所定期間内でリッチ化させる構成としても良
い。例えばリーン運転から急加速のために出力空燃比
(理論空燃比)に切り換えるときに、空燃比切り換えを
比較的短時間のうちに行なわなければならない場合があ
る。空燃比の切り換えを急ぐのに伴い、一時的にリッチ
化させる期間(リッチ化期間TR)を短縮させようとす
ると、前記リッチ化期間におけるHC濃度を高める必要
が生じる。そのため、一時的にリッチ化させる気筒の数
を増やして対応することが考えられ、要求されるHC濃
度によっては全気筒を一時的にリッチ化することも可能
である。
Further, in the above embodiment, one of the four cylinders is used.
Although only the cylinders are forcibly enriched in order to secure the HC amount, two or three cylinders or all the cylinders may be enriched within a predetermined period before switching the air-fuel ratio. For example, when switching from the lean operation to the output air-fuel ratio (theoretical air-fuel ratio) for sudden acceleration, it may be necessary to switch the air-fuel ratio within a relatively short time. If it is attempted to temporarily shorten the period for enrichment (enrichment period TR) as the air-fuel ratio is switched rapidly, it is necessary to increase the HC concentration during the enrichment period. Therefore, it may be considered to increase the number of cylinders to be temporarily enriched, and it is possible to temporarily enrich all the cylinders depending on the required HC concentration.

【0071】図13のフローチャートは、機関1の急加速
時には、1気筒のみではなく全気筒についてリッチ化を
行なう制御を示すフローチャートであり、前述の図6の
フローチャートにおいて、追加実行されるようになって
いる。即ち、空燃比切り換え直前のリッチ化期間TRを
計測するためのタイマーtRをカウントアップさせると
(S205)、スロットルセンサ8で検出されるスロットル
弁7の開度TVOを読み込む(S1001)。
The flow chart of FIG. 13 is a flow chart showing the control for enriching not only one cylinder but all the cylinders when the engine 1 is rapidly accelerated, and is additionally executed in the flow chart of FIG. 6 described above. ing. That is, when the timer t R for measuring the enrichment period TR immediately before the air-fuel ratio switching is counted up (S205), the opening TVO of the throttle valve 7 detected by the throttle sensor 8 is read (S1001).

【0072】そして、今回読み込んだ開度TVOと前回
値TVO−OLDとの差ΔTVO、即ち、1サイクル間
における開度TVOの変化量を演算し(S1002)、該Δ
TVOに基づいてスロットル弁7が所定以上の割合で開
操作されている状態(急加速)であるか否かを判別する
(S1003)。ここで、急加速状態でない場合には、S20
6 へ進み、前述の説明通りに特定1気筒のみをリッチ化
させる処理を行なう。
Then, the difference ΔTVO between the opening TVO read this time and the previous value TVO-OLD, that is, the change amount of the opening TVO during one cycle is calculated (S1002), and the difference ΔTVO is calculated.
Based on TVO, it is determined whether or not the throttle valve 7 is being operated to open at a predetermined rate or more (rapid acceleration) (S1003). Here, if it is not in the rapid acceleration state, S20
Proceeding to step 6, the process for enriching only one specific cylinder is performed as described above.

【0073】一方、急加速であると判別された場合に
は、必要HC量をリーンNOx触媒19に吸着させる処理
を早急に終わらせる必要があるから、全気筒についてリ
ッチ化させるべくリッチ化用マップを参照して全気筒の
空燃比・点火時期を設定する(S1004,S1005)。ここ
で、上記のように全気筒を同時にリッチ化させる構成で
あれば、気筒間における発生トルクのばらつきは生じな
いが、空燃比をリッチ化させる処理のみを行なうと、リ
ッチ化と同時に発生トルクが急増することになってしま
う。しかしながら、前記リッチ化マップは、空燃比につ
いてはリッチ化させるが、点火時期の遅角設定によっ
て、通常の空燃比・点火時期マップを用いて制御したと
きと略同等の発生トルクが得られるように設定されてい
るので、全気筒についてリッチ化を行なっても、発生ト
ルクが急増することはない。
On the other hand, if it is determined that the acceleration is rapid, the process of adsorbing the required amount of HC to the lean NOx catalyst 19 needs to be ended immediately, so that the richening map is set to enrich all cylinders. The air-fuel ratio and ignition timing of all cylinders are set by referring to (S1004, S1005). Here, if the configuration is such that all cylinders are made rich at the same time as described above, there will be no variation in the generated torque between the cylinders, but if only the process of making the air-fuel ratio rich is performed, the generated torque will be increased simultaneously with the enrichment. It will increase rapidly. However, although the enrichment map is enriched with respect to the air-fuel ratio, it is possible to obtain substantially the same generated torque as when the control is performed using the normal air-fuel ratio / ignition timing map by setting the ignition timing retard angle. Since it is set, the generated torque does not suddenly increase even if richening is performed for all cylinders.

【0074】尚、図13のフローチャートでは省略した
が、急加速判定に伴って全気筒リッチ化処理を行なう場
合には、リッチ化期間TRを1気筒のみリッチ化させる
場合に比べて短縮させる構成とすると良い。上記のよう
にして全気筒をリッチ化させる構成とすれば、気筒間に
おける軸加振力のアンバランスが生じないため、振動・
耐久性の点で有利であり、また、短時間のうちにリーン
NOx触媒19に対して最大量のHCを吸着させることが
できるからリッチ化期間を短縮できる。
Although omitted in the flowchart of FIG. 13, when the all-cylinder enrichment process is performed in response to the rapid acceleration determination, the enrichment period TR is shortened as compared with the case where only one cylinder is enriched. Good to do. If all cylinders are made rich as described above, there will be no imbalance in the axial excitation force between the cylinders, so
It is advantageous in terms of durability, and since the maximum amount of HC can be adsorbed to the lean NOx catalyst 19 within a short time, the enrichment period can be shortened.

【0075】また、上記では、空燃比切り換えを開始さ
せる前の所定期間において空燃比をリッチ化させる処理
において、急加速時であるときにのみ全気筒をリッチ化
させ、急加速時以外では1気筒のみをリッチ化させるこ
とになるが、急加速時以外であっても全気筒をリッチ化
させる構成としても良い。また、加速を急加速,緩加速
に判別し、例えば加速時以外は1気筒のみ、緩加速時に
は2気筒を、急加速時には全気筒をリッチ化させる構成
としても良い。更に、2気筒或いは3気筒をリッチ化さ
せるときには、リッチ化させる気筒群を順次変化させる
構成としても良い。
Further, in the above, in the process of enriching the air-fuel ratio in the predetermined period before starting the air-fuel ratio switching, all the cylinders are enriched only during the rapid acceleration, and one cylinder is not activated during the rapid acceleration. However, it is also possible to have a configuration in which all the cylinders are enriched even when the vehicle is not rapidly accelerated. Alternatively, the acceleration may be determined to be a rapid acceleration or a gentle acceleration, and for example, only one cylinder may be enriched except during acceleration, two cylinders may be enriched during gentle acceleration, and all cylinders may be enriched during rapid acceleration. Further, when enriching the two cylinders or the three cylinders, the cylinder group to be enriched may be sequentially changed.

【0076】尚、上記実施例では、ゼオライトを主成分
とするリーンNOx触媒19を排気通路に備えた機関1に
ついて述べたが、HCの吸着能力を有し、HC存在下で
NOxを還元する触媒であれば、上記のように空燃比の
切り換え直前に触媒上流側のHC量を増やすことで、切
り換えが開始される前に触媒に対してNOx処理に充分
な量のHCを吸着させることができ、以て、切り換え途
中でのNOx処理能力を高めることができるから、前記
リーンNOx触媒に限らず三元触媒であっても良い。
In the above embodiment, the engine 1 having the lean NOx catalyst 19 containing zeolite as a main component in the exhaust passage is described. However, the catalyst has an HC adsorbing ability and reduces NOx in the presence of HC. In this case, by increasing the amount of HC on the upstream side of the catalyst immediately before switching the air-fuel ratio as described above, it is possible to adsorb a sufficient amount of HC for NOx treatment to the catalyst before switching is started. As a result, the NOx treatment capacity during the switching can be enhanced, and therefore, not only the lean NOx catalyst but also a three-way catalyst may be used.

【0077】また、上記実施例では、空燃比をリッチ化
させることによる発生トルクの増大を点火時期の遅角設
定によって相殺させるようにしたが、特に全気筒をリッ
チ化させる構成では、排気還流量の制御によってリッチ
化に伴う発生トルクの増大を抑制する構成とすることも
できる。更に、点火時期と排気還流量との組み合わせに
よって発生トルクの増大を抑制する構成としても良い。
Further, in the above embodiment, the increase in the generated torque due to the enrichment of the air-fuel ratio is offset by the retard setting of the ignition timing. However, particularly in the configuration in which all the cylinders are enriched, the exhaust gas recirculation amount is increased. It is also possible to suppress the increase in the generated torque due to the enrichment by the control described above. Furthermore, the combination of the ignition timing and the exhaust gas recirculation amount may be used to suppress an increase in the generated torque.

【0078】また、前記リーンNOx触媒のHC吸着能
力は、HC濃度やガス流量の他、排気温度(触媒温度)
によっても変化するから、排気温度センサ22で検出され
る排気温度に応じてリッチ化期間TRを変化させる構成
としても良い。
The HC adsorption capacity of the lean NOx catalyst is determined by the exhaust gas temperature (catalyst temperature) as well as the HC concentration and gas flow rate.
Since it also changes depending on the exhaust temperature, the rich period TR may be changed according to the exhaust temperature detected by the exhaust temperature sensor 22.

【0079】[0079]

【発明の効果】以上説明したように、本発明によると、
HCの吸着能力を有しHC存在下でNOxを還元する触
媒によって排気中のNOxを処理する排気浄化装置にお
いて、理論空燃比付近の出力空燃比域と、理論空燃比よ
りも大きなリーン空燃比域と間で目標空燃比の切り換え
が行なわれるときに、切り換えを行なう直前の所定期間
において触媒上流側のHC量を増大させて、前記触媒に
対して充分なHCを吸着させるから、切り換え途中のN
Ox処理能力を高めることができるという効果がある。
As described above, according to the present invention,
In an exhaust gas purification device that treats NOx in exhaust gas with a catalyst that has an adsorption capacity for HC and reduces NOx in the presence of HC, an output air-fuel ratio region near the stoichiometric air-fuel ratio and a lean air-fuel ratio region that is larger than the stoichiometric air-fuel ratio. When the target air-fuel ratio is switched between and, the amount of HC on the upstream side of the catalyst is increased to adsorb sufficient HC to the catalyst during a predetermined period immediately before the switching.
There is an effect that the Ox processing capacity can be enhanced.

【0080】また、触媒上流側のHC量を増大させる手
段として、機関吸入混合気の空燃比をリッチ化させる構
成としたことから、不完全燃焼を大幅に増大させること
なく、また、燃費の大幅な悪化をもたらすことなく、然
も、応答良くHC量の増大が図れる一方、前記リッチ化
によって出力が変動することがなく運転性を良好に保つ
ことができるという効果がある。
Since the air-fuel ratio of the engine intake air-fuel mixture is made rich as a means for increasing the amount of HC on the upstream side of the catalyst, the incomplete combustion is not significantly increased, and the fuel consumption is significantly increased. There is an effect that the HC amount can be increased responsively without causing any serious deterioration, and the drivability can be kept good without the output fluctuating due to the enrichment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing the basic configuration of the present invention.

【図2】本発明の基本構成を示すブロック図。FIG. 2 is a block diagram showing the basic configuration of the present invention.

【図3】実施例のシステム構成を示す概略図。FIG. 3 is a schematic diagram showing a system configuration of an embodiment.

【図4】空燃比に対するNOx,HCの排出量変化の様
子を示す線図。
FIG. 4 is a diagram showing how the emission amounts of NOx and HC change with respect to the air-fuel ratio.

【図5】空燃比切り換え制御を示すフローチャート。FIG. 5 is a flowchart showing air-fuel ratio switching control.

【図6】空燃比切り換え時のHC増大制御を示すフロー
チャート。
FIG. 6 is a flowchart showing HC increase control when switching the air-fuel ratio.

【図7】空燃比切り換え時のHC増大制御を示すフロー
チャート。
FIG. 7 is a flowchart showing HC increase control when switching the air-fuel ratio.

【図8】HC増大制御(リッチ化)期間のマップを示す
図。
FIG. 8 is a diagram showing a map of an HC increase control (enrichment) period.

【図9】実施例における空燃比変化の様子を示すタイム
チャート。
FIG. 9 is a time chart showing how the air-fuel ratio changes in the example.

【図10】実施例における空燃比・点火時期マップを示す
図。
FIG. 10 is a diagram showing an air-fuel ratio / ignition timing map in the embodiment.

【図11】空燃比・点火時期と発生トルクとの関係を示す
線図。
FIG. 11 is a diagram showing the relationship between the air-fuel ratio / ignition timing and the generated torque.

【図12】リッチ化気筒を変化させる実施例を示すフロー
チャート。
FIG. 12 is a flowchart showing an example of changing the enriched cylinder.

【図13】全気筒をリッチ化させる実施例を示すフローチ
ャート。
FIG. 13 is a flowchart showing an embodiment in which all cylinders are made rich.

【符号の説明】[Explanation of symbols]

1 内燃機関 6 エアフローメータ 12 インジェクタ 16 クランク角センサ 22 リーンNOx触媒 23 コントロールユニット 1 Internal Combustion Engine 6 Air Flow Meter 12 Injector 16 Crank Angle Sensor 22 Lean NOx Catalyst 23 Control Unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 21/08 301 C 7049−3G 41/14 310 A 8011−3G 41/36 B 8011−3G 43/00 301 B 7536−3G H 7536−3G N 7536−3G 45/00 301 G 7536−3G F02P 5/15 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location F02D 21/08 301 C 7049-3G 41/14 310 A 8011-3G 41/36 B 8011-3G 43 / 00 301 B 7536-3G H 7536-3G N 7536-3G 45/00 301 G 7536-3G F02P 5/15 B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】機関吸入混合気の目標空燃比を機関運転条
件に応じて理論空燃比付近の出力空燃比域と理論空燃比
よりも大きなリーン空燃比域とに切り換える空燃比切り
換え手段を有してなる内燃機関の排気浄化装置であっ
て、 排気通路に介装されHCの吸着能力を有しHC存在下で
NOxを還元する排気浄化触媒と、 該排気浄化触媒の上流側の排気中HC濃度を増大せしめ
るHC濃度増大手段と、 前記空燃比切り換え手段により目標空燃比が出力空燃比
域とリーン空燃比域との間で切り換えられる直前の所定
期間において、前記HC濃度増大手段により排気中のH
C濃度を増大させるHC濃度制御手段と、 を含んで構成されたことを特徴とする内燃機関の排気浄
化装置。
1. An air-fuel ratio switching means for switching a target air-fuel ratio of an engine intake air-fuel mixture between an output air-fuel ratio region near the theoretical air-fuel ratio and a lean air-fuel ratio region larger than the theoretical air-fuel ratio in accordance with engine operating conditions. An exhaust gas purification apparatus for an internal combustion engine, comprising: an exhaust gas purification catalyst which is interposed in an exhaust passage and has an ability to adsorb HC and reduces NOx in the presence of HC; and an exhaust gas HC concentration upstream of the exhaust gas purification catalyst. H concentration in the exhaust gas by the HC concentration increasing device during a predetermined period immediately before the target air-fuel ratio is switched between the output air-fuel ratio region and the lean air-fuel ratio region by the air-fuel ratio switching device.
An exhaust gas purification apparatus for an internal combustion engine, comprising: an HC concentration control means for increasing the C concentration.
【請求項2】前記HC濃度制御手段が、前記HC濃度増
大手段によるHC濃度の増大を、機関の低回転・低負荷
時ほどより長い期間行なわせることを特徴とする請求項
1記載の内燃機関の排気浄化装置。
2. The internal combustion engine according to claim 1, wherein the HC concentration control means causes the HC concentration increasing means to increase the HC concentration for a longer period when the engine is running at low speed and under low load. Exhaust purification device.
【請求項3】排気通路に介装されHCの吸着能力を有し
HC存在下でNOxを還元する排気浄化触媒と、 該排気浄化触媒によるNOxの還元に必要とされるHC
量を確保すべく、排気中HC量の増量が要求される状態
を検知するHC増量要求検知手段と、 該HC増量要求検知手段によりHC量の増量が要求され
る状態が検知されたときに、機関吸入混合気の空燃比を
強制的に所定期間だけ目標空燃比よりもリッチ化させる
空燃比リッチ化手段と、 該空燃比リッチ化手段により空燃比がリッチ化されると
きに、該リッチ化に伴う発生トルクの増大を抑制する方
向に、発生トルクに関与する空燃比以外の制御対象を制
御する発生トルク制御手段と、 を含んで構成された内燃機関の排気浄化装置。
3. An exhaust purification catalyst which is interposed in an exhaust passage and has the ability to adsorb HC and reduces NOx in the presence of HC, and the HC required for the reduction of NOx by the exhaust purification catalyst.
In order to secure a sufficient amount, an HC increase request detecting means for detecting a state in which an increase in the amount of HC in the exhaust gas is required, and when the state in which an increase in the HC amount is required is detected by the HC increase request detecting means, Air-fuel ratio enriching means for forcibly enriching the air-fuel ratio of the engine intake air-fuel mixture for a predetermined period above the target air-fuel ratio; and when the air-fuel ratio enriching means enriches the air-fuel ratio, the enrichment is performed. An exhaust emission control device for an internal combustion engine, comprising: a generated torque control means for controlling a control target other than an air-fuel ratio related to the generated torque in a direction of suppressing an increase in the generated torque.
【請求項4】内燃機関が各気筒別に燃料を噴射供給する
燃料噴射手段を備えて構成され、前記空燃比リッチ化手
段が、特定気筒に噴射供給される燃料量を強制的に増大
補正することで前記特定気筒の空燃比のみをリッチ化さ
せ、前記発生トルク制御手段が、前記特定気筒での発生
トルクを他気筒の発生トルクに一致させるべく、前記特
定気筒に対してのみ発生トルクを抑制する制御を行なう
ことを特徴とする請求項3記載の内燃機関の排気浄化装
置。
4. An internal combustion engine comprising fuel injection means for injecting fuel for each cylinder, wherein the air-fuel ratio enriching means forcibly corrects the amount of fuel injected and supplied to a specific cylinder. In order to make only the air-fuel ratio of the specific cylinder rich, and the generated torque control means match the generated torque of the specific cylinder with the generated torque of other cylinders, the generated torque is suppressed only for the specific cylinder. The exhaust emission control device for an internal combustion engine according to claim 3, wherein the control is performed.
【請求項5】前記空燃比リッチ化手段が全気筒の空燃比
を強制的にリッチ化させ、前記発生トルク制御手段が前
記目標空燃比相当の発生トルクに一致させるべく全気筒
に対して発生トルクを抑制する制御を行なうことを特徴
とする請求項3記載の内燃機関の排気浄化装置。
5. The air-fuel ratio enriching means forcibly enriches the air-fuel ratios of all the cylinders, and the generated torque control means makes the generated torque for all cylinders equal to the generated torque corresponding to the target air-fuel ratio. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein the exhaust gas purifying apparatus is configured to suppress the exhaust gas.
【請求項6】前記発生トルク制御手段が、点火時期と排
気還流量との少なくと一方を制御することによって発生
トルクの増大を抑制することを特徴とする請求項3,4
又は5のいずれかに記載の内燃機関の排気浄化装置。
6. The generated torque control means suppresses an increase in generated torque by controlling at least one of an ignition timing and an exhaust gas recirculation amount.
Or an exhaust emission control device for an internal combustion engine according to any one of 5).
【請求項7】機関吸入混合気の目標空燃比を機関運転条
件に応じて理論空燃比付近の出力空燃比域と理論空燃比
よりも大きなリーン空燃比域とに切り換える空燃比切り
換え手段を有すると共に、前記HC増量要求検知手段
が、前記空燃比切り換え手段により目標空燃比が出力空
燃比域とリーン空燃比域との間で切り換えられる直前の
所定期間をHC量の増大要求状態として検知することを
特徴とする請求項3,4,5又は6のいずれかに記載の
内燃機関の排気浄化装置。
7. An air-fuel ratio switching means for switching the target air-fuel ratio of the engine intake air-fuel mixture between an output air-fuel ratio region near the theoretical air-fuel ratio and a lean air-fuel ratio region larger than the theoretical air-fuel ratio in accordance with engine operating conditions. The HC increase request detecting means detects a predetermined period immediately before the target air-fuel ratio is switched between the output air-fuel ratio range and the lean air-fuel ratio range by the air-fuel ratio switching means as the HC amount increase request state. The exhaust emission control device for an internal combustion engine according to claim 3, 4, 5, or 6.
JP5048211A 1993-03-09 1993-03-09 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3003447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5048211A JP3003447B2 (en) 1993-03-09 1993-03-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5048211A JP3003447B2 (en) 1993-03-09 1993-03-09 Exhaust gas purification device for internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP05690999A Division JP3186730B2 (en) 1999-03-04 1999-03-04 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06257487A true JPH06257487A (en) 1994-09-13
JP3003447B2 JP3003447B2 (en) 2000-01-31

Family

ID=12797073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5048211A Expired - Fee Related JP3003447B2 (en) 1993-03-09 1993-03-09 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3003447B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051919A1 (en) * 1997-05-12 1998-11-19 Toyota Jidosha Kabushiki Kaisha Exhaust emission controlling apparatus of internal combustion engine
US6959540B2 (en) 1998-06-23 2005-11-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
WO2015198823A1 (en) * 2014-06-23 2015-12-30 いすゞ自動車株式会社 Exhaust gas cleaning system for internal combustion engine and exhaust gas cleaning method for internal combustion engine
US9976497B2 (en) 2014-01-23 2018-05-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051919A1 (en) * 1997-05-12 1998-11-19 Toyota Jidosha Kabushiki Kaisha Exhaust emission controlling apparatus of internal combustion engine
US6477834B1 (en) 1997-05-12 2002-11-12 Toyota Jidosha Kabushiki Kaisha Exhaust emission controlling apparatus of internal combustion engine
US6959540B2 (en) 1998-06-23 2005-11-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
US7086222B2 (en) 1998-06-23 2006-08-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
US7086223B2 (en) 1998-06-23 2006-08-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
US7272924B2 (en) 1998-06-23 2007-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
US9976497B2 (en) 2014-01-23 2018-05-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2015198823A1 (en) * 2014-06-23 2015-12-30 いすゞ自動車株式会社 Exhaust gas cleaning system for internal combustion engine and exhaust gas cleaning method for internal combustion engine
JP2016008518A (en) * 2014-06-23 2016-01-18 いすゞ自動車株式会社 System and method for purifying exhaust gas of internal combustion engine
CN106661989A (en) * 2014-06-23 2017-05-10 五十铃自动车株式会社 Exhaust gas cleaning system for internal combustion engine and exhaust gas cleaning method for internal combustion engine
US10415448B2 (en) 2014-06-23 2019-09-17 Isuzu Motors Limited Exhaust gas cleaning system for internal combustion engine and exhaust gas cleaning method for internal combustion engine

Also Published As

Publication number Publication date
JP3003447B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
JP3966014B2 (en) Exhaust gas purification device for internal combustion engine
JP3680611B2 (en) Exhaust gas purification device for internal combustion engine
KR100336549B1 (en) Evaporative fuel supply control device of lean-burn internal combustion engine
JP2985578B2 (en) Air-fuel ratio control device for lean burn engine
JPH07305644A (en) Air-fuel ratio controller of internal combustion engine
JPH1162728A (en) Vaporized fuel concentration determining device for internal combustion engine
JP3033449B2 (en) Combustion control device for spark ignition internal combustion engine
JP2000110614A (en) Exhaust emission control device for internal combustion engine
JP5494998B2 (en) Control device for internal combustion engine
JP3003447B2 (en) Exhaust gas purification device for internal combustion engine
JP2002130008A (en) Exhaust emission control system for internal combustion engine
JPH08121266A (en) Evaporating fuel treatment device of internal combustion engine
JP4117120B2 (en) Control device for internal combustion engine
JP3186730B2 (en) Exhaust gas purification device for internal combustion engine
JP3337410B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3622290B2 (en) Control device for internal combustion engine
JP3520731B2 (en) Engine exhaust purification device
JP3562248B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP3551083B2 (en) Exhaust gas purification device for internal combustion engine
JP3336080B2 (en) Engine control device
JP2004232477A (en) Control device of internal combustion engine
JP3384303B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11270381A (en) Air-fuel ratio control device of internal combustion engine
JP2002013437A (en) Controller of cylinder injection internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees