JPH06257448A - Intake device of internal combustion engine - Google Patents

Intake device of internal combustion engine

Info

Publication number
JPH06257448A
JPH06257448A JP5046877A JP4687793A JPH06257448A JP H06257448 A JPH06257448 A JP H06257448A JP 5046877 A JP5046877 A JP 5046877A JP 4687793 A JP4687793 A JP 4687793A JP H06257448 A JPH06257448 A JP H06257448A
Authority
JP
Japan
Prior art keywords
intake
air
intake port
control valve
swirl control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5046877A
Other languages
Japanese (ja)
Inventor
Satoshi Samejima
敏 鮫島
Hirobumi Tsuchida
博文 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5046877A priority Critical patent/JPH06257448A/en
Publication of JPH06257448A publication Critical patent/JPH06257448A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve exhaust emission purifying performance and driving performance by atomizing the fuel wall flow stuck on a intake port wall surface after being separated therefrom. CONSTITUTION:In the state where a swirl control valve 13 is closed, the supply of intake air into a second intake port 12b is limited, and a differential pressure is generated between pressures on the upstream and downstream sides of the swirl control valve 13 faced to the second intake port 12b, thereby air flows into an air introducing passage 18 from an air intake 18a and injected and supplied to a valve seat part. And the wall flow is separated from the port by a step provided in the second intake port 12b, and also atomized by air injected and supplied from the injection hole 18b of the air introducing passage 18, so as to be introduced into a combustion chamber 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の吸気装置に
関し、特に、燃料噴射弁からの噴射燃料が吸気ポートに
付着して発生した壁流を剥離させて微粒化させる技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake system for an internal combustion engine, and more particularly to a technique for separating a wall flow generated by adhering fuel injected from a fuel injection valve to an intake port into fine particles.

【0002】[0002]

【従来の技術】従来の内燃機関の吸気装置としては、例
えば、図7に示すようなものがある(実開昭60−45
829号公報参照)。即ち、このものは、燃料噴射弁1
が吸気管2の上壁部に装着され、吸気スワールを強化す
る目的で、スワール制御弁3が吸気ポート4の上流に設
けられている。
2. Description of the Related Art As a conventional intake system for an internal combustion engine, for example, there is one shown in FIG.
829). That is, this is the fuel injection valve 1
Is attached to the upper wall of the intake pipe 2, and a swirl control valve 3 is provided upstream of the intake port 4 for the purpose of strengthening the intake swirl.

【0003】このスワール制御弁3は、機関の低速低負
荷領域で閉じることにより、吸気流速が増して燃焼室5
内で強力なスワールが生成して燃料の微粒化を促進しつ
つ空気との混合性を高めて燃焼効率を向上させHC,C
O等の低減を図る一方、高速高負荷領域で開くことによ
り吸気通路面積を増大させて燃焼室5内への吸気充填効
率を高め出力を向上させるように構成されるものであ
る。
The swirl control valve 3 is closed in the low speed and low load region of the engine so that the intake flow velocity increases and the combustion chamber 5 increases.
A powerful swirl is generated in the interior to promote atomization of the fuel and improve the mixing efficiency with the air to improve the combustion efficiency.
While reducing O etc., it is configured to increase the intake passage area by increasing the intake passage area by opening in the high speed and high load region to improve the output.

【0004】[0004]

【発明が解決しようとする課題】ところで、かかる従来
の内燃機関の吸気装置にあっては、図8に示すように、
スワール制御弁3を開いた状態では、燃料噴射弁1から
の燃料噴射量に最適な空気量が各吸気ポート4a,4b
に導入され、吸気流速A及び燃料噴射量Bは左右の吸気
ポート4a,4bで同等であるため、吸気ポート4壁面
に付着する燃料壁流も両ポート4a,4bで同等とな
る。
By the way, in such a conventional intake system for an internal combustion engine, as shown in FIG.
When the swirl control valve 3 is open, the optimum air amount for the fuel injection amount from the fuel injection valve 1 is the intake ports 4a, 4b.
Since the intake flow velocity A and the fuel injection amount B are equal in the left and right intake ports 4a and 4b, the fuel wall flow adhering to the wall surface of the intake port 4 is also equal in both ports 4a and 4b.

【0005】しかし、図9に示すように、スワール制御
弁3を閉じると、切欠き3aに面する側の吸気ポート4
aに対し、その反対側の切欠き3aに面しない吸気ポー
ト4bの吸気流速aは極めて低下しているにもかかわら
ず、燃料噴射弁1より各吸気ポート4に向って噴射され
る噴射燃料の量Bは同じであるために、(b)に示すよ
うに、吸気ポート4b側では噴射された燃料が吸気ポー
ト4b壁面に付着して燃料壁流Cが増大し、HCの排出
量を却って増大させ運転性を悪化させるといった問題点
があった。
However, as shown in FIG. 9, when the swirl control valve 3 is closed, the intake port 4 on the side facing the notch 3a.
In contrast to a, although the intake flow velocity a of the intake port 4b not facing the notch 3a on the opposite side is extremely reduced, the amount of injected fuel injected from the fuel injection valve 1 toward each intake port 4 is reduced. Since the amount B is the same, as shown in (b), on the intake port 4b side, the injected fuel adheres to the wall surface of the intake port 4b and the fuel wall flow C increases, and the discharge amount of HC increases rather. However, there was a problem that the drivability was deteriorated.

【0006】尚、かかる吸気ポートに付着した壁流を微
粒化するものとして、図10に示すようなものが提案さ
れている(実開昭64−47972号公報参照)。即
ち、このものは、スロットル弁7の上流と吸気ポート4
下流との圧力差を利用して吸気ポート4のバルブシート
4c付近からアシストエアを導入させるようにしたもの
であるが、上記のようなスワール制御弁を備えたものの
ように壁流の発生が増大する吸気ポートの場合には、必
ずしも燃料の十分な微粒化は望めるものではない。
As a means for atomizing the wall flow adhering to the intake port, there has been proposed one as shown in FIG. 10 (see Japanese Utility Model Laid-Open No. 64-47972). That is, this is the one upstream of the throttle valve 7 and the intake port 4
Assist air is introduced from the vicinity of the valve seat 4c of the intake port 4 by utilizing the pressure difference with the downstream, but the generation of wall flow increases as in the case where the swirl control valve as described above is provided. In the case of an intake port that operates, it is not always possible to expect sufficient atomization of fuel.

【0007】本発明は、このような従来の問題点に鑑み
なされたものであり、吸気ポート壁面に付着した燃料壁
流を剥離させて微粒化することにより、排気浄化性能及
び運転性能を改善した内燃機関の吸気装置を提供するこ
とを目的とする。
The present invention has been made in view of such conventional problems, and improves the exhaust purification performance and the operation performance by separating the fuel wall flow adhering to the wall surface of the intake port into fine particles. An object is to provide an intake system for an internal combustion engine.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、気筒毎に複数の吸気ポートを有し、こ
れら吸気ポートの分岐点より上流の吸気通路に、何れか
の吸気ポートに面する位置に切欠きを有したスワール制
御弁を備え、所定の運転条件で該スワール制御弁を閉じ
ることにより前記切欠きに面した吸気ポートを介して吸
気を流通させてスワールを生成させる一方、少なくとも
切欠きに面しない吸気ポートに燃料を供給するようにし
た内燃機関の吸気装置において、前記スワール制御弁の
切欠きに面しない吸気ポート下流端内壁下側のバルブシ
ート部近傍に段差を設けると共に、前記スワール制御弁
の上流より導入して前記段差の直下位置に開口する噴孔
より空気を噴射供給する空気導入通路を設けた構成とす
る。
In order to achieve the above object, the present invention has a plurality of intake ports for each cylinder, and one of the intake ports is provided in an intake passage upstream from a branch point of these intake ports. A swirl control valve having a notch at a position facing the, and closing the swirl control valve under a predetermined operating condition to circulate intake air through an intake port facing the notch while generating swirl. In an intake device for an internal combustion engine, which supplies fuel to at least an intake port that does not face the notch, a step is provided near the valve seat portion below the inner wall of the downstream end of the intake port that does not face the notch of the swirl control valve. At the same time, an air introduction passage is provided, which is introduced from the upstream side of the swirl control valve and injects and supplies air from the injection hole opened immediately below the step.

【0009】また、前記噴孔を、空気の噴射方向が燃焼
室内の略中心部へ向かうように形成することもできる。
また、前記空気導入通路が設けられた吸気ポートの前記
噴孔直上流部に、吸気ポートに付着した壁流を集めるガ
イド部を設けることもできる。また、前記空気導入通路
の空気取入口を、前記切欠きに面しない位置のスワール
制御弁の直上流に設けることもできる。
Further, the injection hole may be formed so that the air injection direction is toward the substantially central portion of the combustion chamber.
Further, a guide part for collecting the wall flow adhering to the intake port may be provided immediately upstream of the injection hole of the intake port provided with the air introduction passage. Further, the air intake port of the air introduction passage may be provided immediately upstream of the swirl control valve at a position not facing the notch.

【0010】[0010]

【作用】かかる構成によれば、スワール制御弁の閉弁状
態では、燃料噴射弁からの燃料噴射量は各ポートで同じ
であるが、切欠きに面した吸気ポートに比べその反対側
の切欠きに面していない吸気ポートでは空気量は少なく
なるために、該吸気ポートでは噴射された燃料が吸気ポ
ート壁面に付着して壁流が発生しやすくなる。
According to this structure, in the closed state of the swirl control valve, the fuel injection amount from the fuel injection valve is the same in each port, but the notch on the opposite side to the intake port facing the notch is provided. Since the amount of air decreases in the intake port that does not face the above, the injected fuel adheres to the wall surface of the intake port in the intake port, and wall flow easily occurs.

【0011】また、この状態では、切欠きに面しない側
のスワール制御弁の上流と下流とで閉弁したスワール制
御弁により差圧が発生し、この差圧により空気がスワー
ル制御弁の上流より空気導入通路を介して導入される。
そして、吸気ポート壁面に付着した壁流は、吸気ポート
下流端内壁のバルブシート部近傍に設けられた段差によ
りポートより剥離させられた後、スワール制御弁の上流
より空気導入通路を介して導入され段差の直下位置に開
口する噴孔より噴射供給された空気により微粒化され燃
焼室内に導入される。これにより、HCの低減と共に、
燃焼効率の向上を図ることができる。
Further, in this state, a differential pressure is generated by the swirl control valve closed upstream and downstream of the swirl control valve on the side not facing the notch, and this differential pressure causes air to flow from the upstream of the swirl control valve. It is introduced through the air introduction passage.
Then, the wall flow adhering to the wall surface of the intake port is separated from the port by a step provided near the valve seat portion on the inner wall of the downstream end of the intake port, and then introduced from the upstream of the swirl control valve through the air introduction passage. It is atomized by the air injected and supplied from the injection hole that opens directly below the step, and is introduced into the combustion chamber. This reduces HC and
The combustion efficiency can be improved.

【0012】しかも、スワール制御弁の上流と下流の差
圧を利用して吸気ポート下流部に空気を導入するように
しているので、ソレノイドバルブ等の部品は不要であ
り、低コストでHCの低減化と燃焼性の向上を図ること
ができる。また、噴孔を、空気の噴射方向が燃焼室内の
略中心部へ向かうように形成した場合には、空気の噴射
方向が燃焼室内に発生したスワールの中心部に向かうの
で、スワールの効果を妨げることなく壁流を吸気ポート
より剥離させて微粒化することにより、HCの低減が可
能となる。
Moreover, since the air is introduced into the downstream portion of the intake port by utilizing the differential pressure between the upstream and downstream of the swirl control valve, parts such as a solenoid valve are not required, and the HC can be reduced at a low cost. And combustibility can be improved. Further, when the injection hole is formed so that the air injection direction is directed to the substantially central portion of the combustion chamber, the air injection direction is directed to the central portion of the swirl generated in the combustion chamber, which hinders the swirl effect. The HC can be reduced by separating the wall flow from the intake port and atomizing the wall flow.

【0013】また、空気導入通路が設けられた吸気ポー
トの前記噴孔直上流部に、吸気ポートに付着した壁流を
集めるガイド部を設けた場合には、より多くの壁流を集
めて吸気ポートより剥離させて微粒化することにより、
一層のHC低減化が可能となる。また、空気導入通路の
空気取入口を、切欠きに面しない位置のスワール制御弁
の直上流に設けた場合には、スワール制御弁の上流と下
流とで発生する差圧が大きくなるので、より多くの空気
を空気導入通路に導入でき、以て、剥離させた壁流の微
粒化を促進して燃焼効率を一層改善することが可能とな
る。
Further, when a guide portion for collecting the wall flow adhering to the intake port is provided immediately upstream of the injection hole of the intake port provided with the air introduction passage, more wall flow is collected and intake is performed. By peeling from the port and atomizing,
It is possible to further reduce HC. Further, when the air intake port of the air introduction passage is provided immediately upstream of the swirl control valve at a position not facing the notch, the differential pressure generated between the upstream and downstream of the swirl control valve becomes large, so A large amount of air can be introduced into the air introduction passage, whereby atomization of the separated wall flow can be promoted and combustion efficiency can be further improved.

【0014】尚、スワール制御弁の開弁状態では、燃料
噴射弁からの燃料噴射量に適合した空気量が各吸気ポー
トに導入される。そして、スワール制御弁の上流と下流
とでは差圧が生じないために、空気導入通路には空気は
流入しない。
When the swirl control valve is open, an air amount suitable for the fuel injection amount from the fuel injection valve is introduced into each intake port. Further, since no pressure difference is generated between the upstream side and the downstream side of the swirl control valve, air does not flow into the air introduction passage.

【0015】[0015]

【実施例】以下に、本発明の実施例を図に基づいて説明
する。先ず、図1及び図2において、本発明の実施例に
係る吸気装置の全体構成を説明すると、内燃機関には各
気筒の燃焼室11毎に第1吸気ポート12a及び第2吸
気ポート12bが備えられ、該吸気ポート12a,12
bの上流側にはスワール制御弁13が装着されている。
Embodiments of the present invention will be described below with reference to the drawings. First, referring to FIG. 1 and FIG. 2, the overall structure of an intake system according to an embodiment of the present invention will be described. An internal combustion engine is equipped with a first intake port 12a and a second intake port 12b for each combustion chamber 11 of each cylinder. The intake ports 12a, 12
A swirl control valve 13 is mounted on the upstream side of b.

【0016】このスワール制御弁13は、ソレノイドバ
ルブ14とダイヤフラム15により開閉可能に構成さ
れ、該スワール制御弁13の第1吸気ポート12aに面
した側には切欠き13aが設けられており、閉弁時に
は、第1吸気ポート12a側には切欠き13aを介して
十分な吸気が供給されるが、第2吸気ポート12b側へ
の吸気の供給は制限されるようになっている。
The swirl control valve 13 is constructed so that it can be opened and closed by a solenoid valve 14 and a diaphragm 15. A notch 13a is provided on the side of the swirl control valve 13 facing the first intake port 12a, and it is closed. When the valve is open, sufficient intake air is supplied to the first intake port 12a side through the notch 13a, but intake air supply to the second intake port 12b side is restricted.

【0017】そして、吸気口12へ通じる吸気管16の
上壁部16aに燃料噴射弁17が装着されており、該燃
料噴射弁17は、コントロールユニット(図示せず。)
から出力される駆動パルス信号により電磁コイルに通電
されて開弁し、通電停止されて閉弁する電磁式燃料噴射
弁で、その先端部の噴孔17aから吸気ポート12a,
12bへ向けて燃料を噴射供給するようになっている。
A fuel injection valve 17 is mounted on the upper wall portion 16a of the intake pipe 16 leading to the intake port 12, and the fuel injection valve 17 is a control unit (not shown).
An electromagnetic fuel injection valve is energized by a drive pulse signal output from the electromagnetic coil to open the valve, and deenergized to close the electromagnetic coil from the injection hole 17a at the tip to the intake port 12a.
Fuel is injected and supplied toward 12b.

【0018】また、スワール制御弁13の上流から第2
吸気ポート12bのバルブシート部近傍に連通する空気
導入通路18が設けられており、該空気導入通路18の
空気取入口18aは、図4に示すように、上流と下流で
充分な圧力差を確保して第2吸気ポート12bのバルブ
シート部へ充分な空気を噴射供給することができるよう
に、第2吸気ポート12b側に面するスワール制御弁1
3の上流側に開口している。
Also, from the upstream of the swirl control valve 13 to the second
An air introduction passage 18 communicating with the vicinity of the valve seat portion of the intake port 12b is provided, and the air intake 18a of the air introduction passage 18 ensures a sufficient pressure difference between the upstream side and the downstream side as shown in FIG. The swirl control valve 1 facing the second intake port 12b side so that sufficient air can be injected and supplied to the valve seat portion of the second intake port 12b.
3 is open on the upstream side.

【0019】そして、第2吸気ポート12b下流端内壁
のバルブシート部近傍に下流側に向って下向きの段差2
0を設け、該段差20の直下位置には前記空気導入通路
18の空気を噴射供給する噴孔18bが開口している。
この噴孔部は、図5に示すように、空気導入通路18か
ら流入した空気が一旦圧力室18cに入って脈動を低減
した後、通路幅を狭められた噴孔18bより圧力を高め
られて充分な流速で噴出するようになっている。
Then, a step 2 is formed in the vicinity of the valve seat portion on the inner wall of the downstream end of the second intake port 12b and faces downward toward the downstream side.
0 is provided, and an injection hole 18b for injecting and supplying the air in the air introduction passage 18 is opened immediately below the step 20.
As shown in FIG. 5, after the air that has flowed in from the air introduction passage 18 once enters the pressure chamber 18c to reduce pulsation, the injection hole portion is increased in pressure from the injection hole 18b whose passage width is narrowed. It is designed to eject at a sufficient flow rate.

【0020】次に、図2及び図3により本発明の作用を
説明する。機関の低速・低負荷運転時には、スワール制
御弁13が閉に制御される。これにより、前記したよう
に第2吸気ポート12bへの吸気の供給は制限され、一
方第1吸気ポート12aにはスワール制御弁13の切欠
き13aを介して流速が早められて吸気が供給されるの
で、燃焼室11内には、強いスワールが発生する。
Next, the operation of the present invention will be described with reference to FIGS. During low speed / low load operation of the engine, the swirl control valve 13 is controlled to be closed. As a result, as described above, the supply of intake air to the second intake port 12b is limited, while the intake air is supplied to the first intake port 12a via the notch 13a of the swirl control valve 13 with an increased flow velocity. Therefore, a strong swirl is generated in the combustion chamber 11.

【0021】そして、図2に示すように、燃料噴射弁1
7からの燃料噴射量Bは両ポートで同じであるが、切欠
き13aに面した第1吸気ポート12aの空気量Aに比
べその反対側の第2吸気ポート12bの空気量aは少な
くなるために、該吸気ポートでは燃料が壁流Cとなって
生じやすくなる。しかし、前記第2吸気ポート12bに
面するスワール制御弁13の上流と下流とでは差圧が発
生するために、空気取入口18aより空気導入通路18
に空気が流入してバルブシート部に空気が噴射供給され
る。そして、第2吸気ポート12bに設けられた段差2
0により壁流Cは該ポートより剥離すると共に、空気導
入通路18の噴孔18bより噴射供給された空気により
微粒化され燃焼室11内に導入される。
Then, as shown in FIG. 2, the fuel injection valve 1
The fuel injection amount B from 7 is the same in both ports, but the air amount a of the second intake port 12b on the opposite side is smaller than the air amount A of the first intake port 12a facing the notch 13a. In addition, the fuel easily becomes the wall flow C in the intake port. However, since a pressure difference is generated between the upstream side and the downstream side of the swirl control valve 13 facing the second intake port 12b, the air intake passage 18 is introduced from the air intake port 18a.
The air flows into the valve seat, and the air is jetted and supplied to the valve seat portion. Then, the step 2 provided in the second intake port 12b
When 0, the wall flow C is separated from the port and atomized by the air injected and supplied from the injection holes 18b of the air introduction passage 18 and introduced into the combustion chamber 11.

【0022】これにより、HCが低減され、排気浄化性
能を向上させることができると共に、燃焼が安定して燃
費が向上する。また、機関の高速・高負荷運低時には、
スワール制御弁13が開に制御される。この場合は、第
1吸気ポート12a及び第2吸気ポート12b共に全開
となり、吸入空気流量が多いので両ポート共に吸気の流
れは十分強く、燃料が壁流となることはなく空気との混
合性も十分に確保されて高出力性能を満たしつつ排気浄
化性能も良好に維持できる。
As a result, HC is reduced, exhaust gas purification performance can be improved, and combustion is stabilized to improve fuel efficiency. Also, when the engine is operating at high speed and high load,
The swirl control valve 13 is controlled to open. In this case, both the first intake port 12a and the second intake port 12b are fully opened, and the intake air flow rate is large, so the flow of intake air is sufficiently strong in both ports, and the fuel does not become a wall flow and mixes with air. Exhaust gas purification performance can be maintained satisfactorily while being sufficiently secured and satisfying high output performance.

【0023】尚、空気導入通路18の噴孔18bより供
給される空気の噴射方向Dは、図3に示すように、燃焼
室内に発生したスワールEの中心部に向かう方向に設定
されているので、スワールEの効果を妨げることなく壁
流Cをポートより剥離させて微粒化することにより、H
Cの低減が可能となる。次に、図6により、他の実施例
について説明する。
The injection direction D of the air supplied from the injection hole 18b of the air introduction passage 18 is set to the direction toward the center of the swirl E generated in the combustion chamber as shown in FIG. , H is obtained by separating the wall flow C from the port and atomizing it without disturbing the effect of the swirl E.
It is possible to reduce C. Next, another embodiment will be described with reference to FIG.

【0024】このものは、基本的な構成は図1に示す実
施例と同じもので、噴孔18bの直上流部に位置する第
2吸気ポート12b内壁に、該吸気ポートに付着した壁
流を集めるガイド部12dを設けたものである。これに
より、より多くの壁流を集めて該集めた壁流を吸気ポー
トより剥離させて微粒化することにより、HCの低減が
可能となる。
This has the same basic structure as that of the embodiment shown in FIG. 1, and the wall flow adhering to the intake port is formed on the inner wall of the second intake port 12b located immediately upstream of the injection hole 18b. A collecting guide portion 12d is provided. This makes it possible to reduce HC by collecting a larger amount of the wall flow and separating the collected wall flow from the intake port to atomize the wall flow.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
スワール制御弁の切欠きに面しない吸気ポート下流端内
壁下側のバルブシート部近傍に段差を設けると共に、ス
ワール制御弁の上流より導入して段差の直下位置に開口
する噴孔より空気を噴射供給する空気導入通路を設ける
ように構成したので、吸気ポートに設けられた段差によ
り壁流はポートより剥離しつつ、空気導入通路の開口部
より噴射供給された空気を受けて微粒化が促進されるた
め、HCの低減化と燃焼性の向上を図ることができる。
As described above, according to the present invention,
A step is provided in the vicinity of the valve seat below the inner wall of the downstream end of the intake port that does not face the notch of the swirl control valve, and air is injected and supplied from a nozzle hole that is introduced upstream of the swirl control valve and opens immediately below the step. Since the air introduction passage is provided so that the wall flow is separated from the port by the step provided in the intake port, the atomization is promoted by receiving the air injected and supplied from the opening of the air introduction passage. Therefore, it is possible to reduce HC and improve combustibility.

【0026】しかも、スワール制御弁の上流と下流の差
圧を利用して吸気ポート下流部に空気を導入するように
しているので、ソレノイドバルブ等の部品は不要であ
り、低コストでHCの低減化と燃焼性の向上を図ること
ができる。また、噴孔を、空気の噴射方向が、燃焼室内
の略中心部へ向かうように形成した場合には、噴射され
た空気は、燃焼室内に発生したスワールの中心部に向か
うので、スワールの効果を妨げることなく壁流を吸気ポ
ートより剥離させて微粒化することができ、HCの低減
が可能となる。
Moreover, since the air is introduced to the downstream portion of the intake port by utilizing the differential pressure between the upstream and downstream of the swirl control valve, parts such as a solenoid valve are unnecessary, and HC can be reduced at low cost. And combustibility can be improved. Further, when the injection hole is formed so that the air injection direction is toward the substantially central portion of the combustion chamber, the injected air is directed toward the central portion of the swirl generated in the combustion chamber, so the effect of the swirl It is possible to separate the wall flow from the intake port and atomize it without interfering with the above, and to reduce HC.

【0027】また、空気導入通路が設けられた吸気ポー
トの前記噴孔直上流部に、吸気ポートに付着した壁流を
集めるガイド部を設けた場合には、より多くの壁流を集
めて吸気ポートより剥離させて微粒化することにより、
一層のHC低減化が可能となる。また、空気導入通路の
空気取入口を、切欠きに面しない位置のスワール制御弁
の直上流に設けた場合には、スワール制御弁の上流と下
流とで発生する差圧が大きくなるので、より多くの空気
を空気導入通路に導入でき、以て、剥離させた壁流の微
粒化を促進することが可能となる。
Further, when a guide portion for collecting the wall flow adhering to the intake port is provided immediately upstream of the injection hole of the intake port provided with the air introduction passage, more wall flow is collected and intake is performed. By peeling from the port and atomizing,
It is possible to further reduce HC. Further, when the air intake port of the air introduction passage is provided immediately upstream of the swirl control valve at a position not facing the notch, the differential pressure generated between the upstream and downstream of the swirl control valve becomes large, so A large amount of air can be introduced into the air introduction passage, which makes it possible to promote atomization of the separated wall flow.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る内燃機関の吸気装置
の構成を示す横断面図。
FIG. 1 is a cross-sectional view showing a configuration of an intake device for an internal combustion engine according to an embodiment of the present invention.

【図2】 本発明に係る吸気装置の作用を説明するため
の説明図。
FIG. 2 is an explanatory diagram for explaining the operation of the intake device according to the present invention.

【図3】 本発明に係る吸気装置の作用を説明するため
の説明図。
FIG. 3 is an explanatory diagram for explaining the operation of the intake device according to the present invention.

【図4】 本発明に係る吸気装置の作用を説明するため
の説明図。
FIG. 4 is an explanatory diagram for explaining the operation of the intake device according to the present invention.

【図5】 本発明に係る吸気装置の噴孔部を示す部分拡
大図。
FIG. 5 is a partially enlarged view showing a nozzle hole portion of the intake device according to the present invention.

【図6】 (a)は、本発明の他の実施例に係る吸気装
置の構成を示す横断面図、(b)は、(a)のA−A断
面図、(c)は、(a)のB−B断面図。
6A is a cross-sectional view showing the structure of an intake device according to another embodiment of the present invention, FIG. 6B is a cross-sectional view taken along the line AA of FIG. 6A, and FIG. ) BB sectional drawing.

【図7】 従来の吸気装置の構成を示す平面図。FIG. 7 is a plan view showing the configuration of a conventional intake device.

【図8】 従来例のスワール制御弁を開いた状態の作用
を説明するための説明図。
FIG. 8 is an explanatory diagram for explaining an operation of a conventional example in a state where a swirl control valve is opened.

【図9】 従来例のスワール制御弁を閉じた状態の作用
を説明するための説明図。
FIG. 9 is an explanatory diagram for explaining the operation of the conventional example in the state where the swirl control valve is closed.

【図10】 従来の吸気装置の構成を示す横断面図。FIG. 10 is a cross-sectional view showing the configuration of a conventional intake device.

【符号の説明】[Explanation of symbols]

11 燃焼室 12a 第1吸気ポート 12b 第2吸気ポート 12d ガイド部 13 スワール制御弁 13a 切欠き 16 吸気管 17 燃料噴射弁 17a 噴孔 18 空気導入通路 18a 空気取入口 18b 噴孔 20 段差 11 Combustion chamber 12a 1st intake port 12b 2nd intake port 12d Guide part 13 Swirl control valve 13a Notch 16 Intake pipe 17 Fuel injection valve 17a Injection hole 18 Air introduction passage 18a Air intake 18b Injection hole 20 Step

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】気筒毎に複数の吸気ポートを有し、これら
吸気ポートの分岐点より上流の吸気通路に、何れかの吸
気ポートに面する位置に切欠きを有したスワール制御弁
を備え、所定の運転条件で該スワール制御弁を閉じるこ
とにより前記切欠きに面した吸気ポートを介して吸気を
流通させてスワールを生成させる一方、少なくとも切欠
きに面しない吸気ポートに燃料を供給するようにした内
燃機関の吸気装置において、 前記スワール制御弁の切欠きに面しない吸気ポート下流
端内壁下側のバルブシート部近傍に段差を設けると共
に、 前記スワール制御弁の上流より導入して前記段差の直下
位置に開口する噴孔より空気を噴射供給する空気導入通
路を設けたことを特徴とする内燃機関の吸気装置。
1. A swirl control valve having a plurality of intake ports for each cylinder, the intake passage upstream of a branch point of the intake ports having a notch at a position facing any of the intake ports, By closing the swirl control valve under a predetermined operating condition, the intake air is circulated through the intake port facing the notch to generate swirl, and at least the fuel is supplied to the intake port not facing the notch. In the intake device for an internal combustion engine, a step is provided near the valve seat portion on the lower side of the inner wall of the intake port downstream end that does not face the notch of the swirl control valve, and is introduced from upstream of the swirl control valve to directly below the step. An intake device for an internal combustion engine, comprising an air introduction passage for injecting and supplying air from an injection hole opened at a position.
【請求項2】前記噴孔を、空気の噴射方向が燃焼室内の
略中心部へ向かうように形成したことを特徴とする請求
項1記載の内燃機関の吸気装置。
2. The intake system for an internal combustion engine according to claim 1, wherein the injection hole is formed so that an air injection direction is directed toward a substantially central portion in the combustion chamber.
【請求項3】前記空気導入通路が設けられた吸気ポート
の前記噴孔直上流部に、吸気ポートに付着した壁流を集
めるガイド部を設けたことを特徴とする請求項1または
2記載の内燃機関の吸気装置。
3. A guide part for collecting a wall flow adhering to the intake port is provided immediately upstream of the injection hole of the intake port provided with the air introduction passage. Intake device for internal combustion engine.
【請求項4】前記空気導入通路の空気取入口を、前記切
欠きに面しない位置のスワール制御弁の直上流に設けた
ことを特徴とする請求項1〜3のいずれか1つに記載の
内燃機関の吸気装置。
4. The air intake port of the air introduction passage is provided immediately upstream of the swirl control valve at a position not facing the notch, according to any one of claims 1 to 3. Intake device for internal combustion engine.
JP5046877A 1993-03-08 1993-03-08 Intake device of internal combustion engine Pending JPH06257448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5046877A JPH06257448A (en) 1993-03-08 1993-03-08 Intake device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5046877A JPH06257448A (en) 1993-03-08 1993-03-08 Intake device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06257448A true JPH06257448A (en) 1994-09-13

Family

ID=12759589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5046877A Pending JPH06257448A (en) 1993-03-08 1993-03-08 Intake device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06257448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106270A1 (en) 2013-05-14 2014-11-20 Denso Corporation Intake system of an internal combustion engine
CN104989528A (en) * 2015-08-03 2015-10-21 张银贵 Device for inhibiting carbon deposit generation of air intake pipeline of direct injection engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106270A1 (en) 2013-05-14 2014-11-20 Denso Corporation Intake system of an internal combustion engine
CN104989528A (en) * 2015-08-03 2015-10-21 张银贵 Device for inhibiting carbon deposit generation of air intake pipeline of direct injection engine

Similar Documents

Publication Publication Date Title
JPH076395B2 (en) Internal combustion engine intake system
JPH04362272A (en) Fuel injection device for internal combustion engine
JP2762848B2 (en) Fuel supply device for internal combustion engine
JPH06257448A (en) Intake device of internal combustion engine
JPH0610804A (en) Intake air device of internal combustion engine
JPH05272437A (en) Fuel injector for engine
JPS62139971A (en) Fuel injection device
JP4983508B2 (en) Intake control device for internal combustion engine
JP3036118B2 (en) Fuel supply device for internal combustion engine
JPS59147866A (en) Fuel injector of engine
JPH0666226A (en) Fuel injector for internal combustion engine
JPS62298646A (en) Fuel injection equipment of engine
JPH07166926A (en) Air intake device of internal combustion engine
JPS58119966A (en) Fuel feeding device of internal-combustion engine
JP2530953Y2 (en) Diesel engine exhaust recirculation system
JP2906895B2 (en) Fuel supply device for internal combustion engine
JPH11270444A (en) Air-assisted injector
JPH0914101A (en) Fuel supply device for internal combustion engine
JPH04140472A (en) Fuel supply device of engine
JP2004183593A (en) Air intake device for internal combustion engine
JPH051390B2 (en)
JPH03199668A (en) Fuel supply device of internal combustion engine
JPH05133233A (en) Air intake system of internal combustion engine
JPH1089200A (en) Intake device of internal combustion engine
JPH07332206A (en) Intake device of internal combustion engine