JPH06256506A - Resin composition having biodegradation and its production - Google Patents

Resin composition having biodegradation and its production

Info

Publication number
JPH06256506A
JPH06256506A JP4105193A JP4105193A JPH06256506A JP H06256506 A JPH06256506 A JP H06256506A JP 4105193 A JP4105193 A JP 4105193A JP 4105193 A JP4105193 A JP 4105193A JP H06256506 A JPH06256506 A JP H06256506A
Authority
JP
Japan
Prior art keywords
resin
cyclic
molecular weight
repeating unit
amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4105193A
Other languages
Japanese (ja)
Other versions
JP3345631B2 (en
Inventor
Yutaka Tokiwa
豊 常盤
Shinji Komatsu
慎司 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Oil and Fats Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP04105193A priority Critical patent/JP3345631B2/en
Publication of JPH06256506A publication Critical patent/JPH06256506A/en
Application granted granted Critical
Publication of JP3345631B2 publication Critical patent/JP3345631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To obtain a composition synthesized by reacting a specified biodegradable resin, a cyclic amide and a cyclic lactone in the presence of a catalyst under a reduced pressure, having a repeating unit suitably containing ester units and amide units and exhibiting practical physical properties. CONSTITUTION:This resin has a repeating unit represented by formula I or II [R<1> and R<2> are each a group composed of a 2 to 12C straight chain methylene bonded to a 1 to 3C alkyl: (x) is 1 to 20: (y) is 1 to 200: (z) is 1 to 500], 5000 to 100000 molecular weight and 100 to 160 deg.C melting point. The resin is synthesized by reacting a cyclic amide of formula III with a cyclic lactone of formula IV in the presence of a catalyst under a reduced pressure. As the cyclic amide and the cyclic lactone, 5 to 80mol% epsilon-caprolactam, etc., and 20 to 95mol% beta-propiolactone, etc., are respectively used. As the catalyst, a metal-containing alkaline catalyst, etc., is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な生分解性を有す
る樹脂及びその製法に関し、更に詳細には生分解性を有
するエステル部分とアミド部分とで構成される生分解性
を有する樹脂及びその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel biodegradable resin and a process for producing the same, and more specifically to a biodegradable resin composed of a biodegradable ester moiety and an amide moiety. Regarding the manufacturing method.

【0002】[0002]

【従来の技術】合成高分子は広く生活に用いられてい
る。近年、医療材料や農業用材料として、更にはその廃
棄物処理に関連して生分解性という新しい性質を有する
高分子が注目され、研究開発が行われている。
2. Description of the Related Art Synthetic polymers are widely used in daily life. In recent years, as medical materials and agricultural materials, polymers having a new property of biodegradability have been attracting attention, and research and development have been conducted in connection with the waste treatment.

【0003】従来からポリエステルが生分解性を示すこ
とが知られており、例えば種々のコポリアミドエステル
が提案されている。具体的には例えば、環状ラクタム及
び環状ラクトンの開環共重合によって調製されるコポリ
アミドエステルが知られている。該コポリアミドエステ
ルは、常圧下、100℃前後で反応させて製造されてい
るが、分子量が小さく、融点も室温で液状のものから高
くても80℃前後であり、実用性に乏しいという欠点が
ある。更に、ナイロンとポリエステルとのアミドエステ
ル交換反応によって、コポリアミドエステルを調製する
ことも種々提案されている(特公昭56−38115号
公報、特公昭55−18489号公報、特公昭55−3
1207号公報、特公昭54−44749号公報、特公
昭59−8365号公報等)。しかしながら、これらの
コポリアミドエステルも分子量が低く、また製造時の反
応温度が270℃と非常に高いので危険を伴い、更には
一度ポリマーを合成してから交換反応を行うため、コス
ト高となるという欠点がある。
It has been conventionally known that polyester exhibits biodegradability, and for example, various copolyamide esters have been proposed. Specifically, for example, a copolyamide ester prepared by ring-opening copolymerization of a cyclic lactam and a cyclic lactone is known. The copolyamide ester is produced by reacting at about 100 ° C. under normal pressure, but has a drawback that it has a small molecular weight and a melting point of about 80 ° C. at room temperature even if it is liquid, and it is poor in practicality. is there. Further, various proposals have been made to prepare a copolyamide ester by an amide transesterification reaction between nylon and polyester (Japanese Patent Publication No. 56-38115, Japanese Patent Publication No. 55-18489, and Japanese Patent Publication No. 55-3).
No. 1207, Japanese Patent Publication No. 54-44749, Japanese Patent Publication No. 59-8365). However, these copolyamide esters are also low in molecular weight, and the reaction temperature during production is as high as 270 ° C., which is dangerous, and the cost is high because the polymer is once synthesized and then the exchange reaction is performed. There are drawbacks.

【0004】また脂肪族ポリエステルとポリアミドとを
単に混合したブレンド体あるいはポリエステルとポリア
ミドとを高分子量のまま結合させた重合体では、そのポ
リエステル部分は生分解されるが、ポリアミド部分は、
低分子のオリゴマーでないと全く生分解されず、完全生
分解性の高分子材料とは言えない。また、従来の生分解
性合成高分子は生分解性を高めるにつれて合成高分子本
来の性質の低下は免れず、適当な妥協点で合成が行われ
ているのが実状である。
Further, in a blended product in which an aliphatic polyester and a polyamide are simply mixed or a polymer in which a polyester and a polyamide are combined in a high molecular weight, the polyester part is biodegraded, but the polyamide part is
Unless it is a low molecular weight oligomer, it is not biodegraded at all, and cannot be said to be a completely biodegradable polymer material. In addition, the conventional biodegradable synthetic polymer is unavoidably deteriorated in its original properties as the biodegradability is increased, and it is the fact that the synthesis is performed at an appropriate compromise.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の目的
は、高い生分解性と、分子量が高く汎用樹脂としての実
用性との両特性を備え、各種成形用材料として利用可能
な生分解性を有する樹脂及びその製法を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a biodegradable material which has both high biodegradability and practicality as a general-purpose resin having a high molecular weight and which can be used as various molding materials. It is to provide a resin and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明によれば、下記一
般式化5で示される繰返し単位(以下繰返し単位Aと称
す)又は下記一般式化6で示される繰返し単位(以下繰
返し単位Bと称す)を有し、分子量5000〜1000
00、融点100〜160℃であることを特徴とする生
分解性を有する樹脂が提供される。
According to the present invention, the repeating unit represented by the following general formula 5 (hereinafter referred to as repeating unit A) or the repeating unit represented by the following general formula 6 (hereinafter referred to as repeating unit B and Have a molecular weight of 5,000 to 1,000.
And a melting point of 100 to 160 ° C., a biodegradable resin is provided.

【0007】[0007]

【化5】 [Chemical 5]

【0008】[0008]

【化6】 [Chemical 6]

【0009】また本発明によれば、下記一般式化7で示
される環状アミド(以下環状アミドCと称す)と、下記
一般式化8で示される環状ラクトン(以下環状ラクトン
Dと称す)とを、減圧下で触媒を用いて反応させること
を特徴とする前記生分解性を有する樹脂の製法が提供さ
れる。
Further, according to the present invention, a cyclic amide represented by the following general formula 7 (hereinafter referred to as cyclic amide C) and a cyclic lactone represented by the following general formula 8 (hereinafter referred to as cyclic lactone D) are prepared. A method for producing the biodegradable resin is provided, which comprises reacting with a catalyst under reduced pressure.

【0010】[0010]

【化7】 [Chemical 7]

【0011】[0011]

【化8】 [Chemical 8]

【0012】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0013】本発明の生分解性を有する樹脂は、前記一
般式化5で表わされる繰返し単位A又は前記一般式化6
で表わされる繰返し単位Bを有し、分子量5000〜1
00000、融点100〜160℃の樹脂である。分子
量が5000未満の場合には、強度や伸び等の物性が低
下し、100000を超える場合には、合成が困難で収
率が著しく低下するため前記範囲とする必要がある。ま
た融点が100℃未満のものは、強度や耐熱性が低下
し、160℃を超えるものは合成が困難であるため前記
範囲とする必要がある。更に前記繰返し単位A及びBに
おいて、R1、R2が炭素数13以上の直鎖状メチレンで
ある場合、該直鎖状メチレンに結合するアルキル基の炭
素数が4以上の場合には製造が困難である。更にまたx
が20を超える場合には、生分解性が著しく低下し、y
が200を超える場合には、実用性に富んだ樹脂が得ら
れない。また式中R1、R2の直鎖状メチレン基に結合す
る炭素数1〜3のアルキル基の導入率は、所望の用途に
応じて種々選択することができる。
The biodegradable resin of the present invention has the repeating unit A represented by the general formula 5 or the general formula 6
Having a repeating unit B represented by
It is a resin of 00000 and a melting point of 100 to 160 ° C. When the molecular weight is less than 5,000, the physical properties such as strength and elongation deteriorate, and when it exceeds 100,000, the synthesis is difficult and the yield remarkably decreases, so the above range is required. Further, if the melting point is less than 100 ° C, the strength and heat resistance are lowered, and if the melting point is more than 160 ° C, it is difficult to synthesize, and therefore the above range is required. Further, in the repeating units A and B, when R 1 and R 2 are linear methylenes having 13 or more carbon atoms, and when the alkyl group bonded to the linear methylene has 4 or more carbon atoms, the production is Have difficulty. Furthermore x
When it exceeds 20, the biodegradability is remarkably reduced and y
When the value exceeds 200, a resin having high practical utility cannot be obtained. In addition, the introduction ratio of the alkyl group having 1 to 3 carbon atoms which is bonded to the linear methylene group of R 1 and R 2 in the formula can be variously selected according to the desired application.

【0014】本発明の生分解性を有する樹脂は、繰返し
単位A又はBを有するエステル部分とアミド部分とがラ
ンダム共重合した樹脂であるので、優れた生分解性と実
用性とを併せ持ち、特に繰返し単位Aを有する樹脂は、
リパーゼ、エステラーゼ等ににより容易に分解し、また
繰返し単位Bを有する樹脂は、リパーゼ、エステラー
ゼ、PHBデポリメラーゼ等により容易に分解する。
The biodegradable resin of the present invention is a resin in which an ester moiety having a repeating unit A or B and an amide moiety are randomly copolymerized, and therefore has both excellent biodegradability and practicality. The resin having the repeating unit A is
It is easily decomposed by lipase, esterase and the like, and the resin having the repeating unit B is easily decomposed by lipase, esterase, PHB depolymerase and the like.

【0015】本発明の生分解性を有する樹脂の製法で
は、前記一般式化7で表わされる環状アミドCと、前記
一般式化8で表わされる環状ラクトンDとを原料成分と
して、減圧下で触媒を用いて反応させることを特徴とす
る。
In the method for producing a biodegradable resin of the present invention, the cyclic amide C represented by the general formula 7 and the cyclic lactone D represented by the general formula 8 are used as raw material components and the catalyst is decompressed under reduced pressure. Is characterized in that the reaction is carried out.

【0016】本発明の製法に用いる前記環状アミドC
は、分子量71〜449の化合物であり、具体的には例
えばε−カプロラクタム、δ−バレロラクタム、γ−ブ
チロラクタム、β−プロピオラクタム等を好ましく挙げ
ることができる。また前記環状ラクトンDは、分子量8
6〜450の化合物であり、具体的には例えばε−カプ
ロラクトン、δ−バレロラクトン、β−プロピオラクト
ン、γ−ブチロラクトン、α−メチル−ε−カプロラク
トン、α−メチル−δ−バレロラクトン、α−メチル−
β−プロピオラクトン、α−メチル−γ−ブチロラクト
ン等を好ましく挙げることができる。この際環状ラクト
ンDとしてβ−プロピオラクトンを使用する場合には、
前記繰返し単位Bで表わされる生分解性を有する樹脂を
得ることができる。
The cyclic amide C used in the production method of the present invention
Is a compound having a molecular weight of 71 to 449, and specific examples thereof include ε-caprolactam, δ-valerolactam, γ-butyrolactam, β-propiolactam and the like. The cyclic lactone D has a molecular weight of 8
6 to 450 compounds, specifically, for example, ε-caprolactone, δ-valerolactone, β-propiolactone, γ-butyrolactone, α-methyl-ε-caprolactone, α-methyl-δ-valerolactone, α -Methyl-
Preferable examples include β-propiolactone and α-methyl-γ-butyrolactone. At this time, when β-propiolactone is used as the cyclic lactone D,
A biodegradable resin represented by the repeating unit B can be obtained.

【0017】前記環状アミドCと環状ラクトンDとの仕
込み量は、好ましくは得られる樹脂中に環状アミドC単
位が5〜80mol%、環状ラクトンD単位が20〜9
5mol%となるように仕込むのが望ましい。環状アミ
ドCの仕込み量が80mol%となるような量を超える
場合、即ち環状ラクトンDの仕込み量が20mol%と
なるような量未満の場合には、生分解性が著しく低下す
るので好ましくない。また環状アミドCの仕込み量が5
mol%となるような量未満の場合、即ち環状ラクトン
Dの仕込み量が95mol%となるような量を超える場
合には、実用性のある物性が得られないので好ましくな
い。
The amount of cyclic amide C and cyclic lactone D charged is preferably 5 to 80 mol% of cyclic amide C unit and 20 to 9 of cyclic lactone D unit in the obtained resin.
It is desirable that the content be 5 mol%. When the charged amount of cyclic amide C exceeds 80 mol%, that is, when the charged amount of cyclic lactone D is less than 20 mol%, the biodegradability is remarkably lowered, which is not preferable. Further, the charged amount of cyclic amide C is 5
When the amount is less than the mol%, that is, when the charged amount of the cyclic lactone D is more than 95 mol%, practical physical properties cannot be obtained, which is not preferable.

【0018】本発明の製法において、前記環状アミドC
と環状ラクトンDとを反応させる際に用いる触媒として
は、含金属アルカリ触媒または含金属アルキル触媒等を
挙げることができ、具体的には含金属アルカリ触媒とし
ては、ナトリウム、カリウム、リチウム、マグネシウ
ム、カルシウム、水酸化ナトリウム、水酸化カリウム、
水酸化リチウム、水酸化マグネシウム、水酸化カルシウ
ム、ナトリウムメトキシド、カリウムメトキシド、リチ
ウムメトキシド、マグネシウムメトキシド、カルシウム
メトキシド、ナトリウムエトキシド、カリウムエトキシ
ド、リチウムエトキシド、マグネシウムエトキシド、カ
ルシウムエトキシド、ナトリウム−t−ブトキシド、カ
リウム−t−ブトキシド、リチウム−t−ブトキシド、
マグネシウム−t−ブトキシド、カルシウム−t−ブト
キシド等を挙げることができる。また含金属アルキル触
媒としては、メチルリチウム、エチルリチウム、プロピ
ルリチウム、ブチルリチウム等のアルキルリチウム;ジ
メチルスズオキシド、ジエチルスズオキシド、ジプロピ
ルスズオキシド、ジブチルスズオキシド等のジアルキル
スズオキシド;ジメチル亜鉛、ジエチル亜鉛、ジプロピ
ル亜鉛、ジブチル亜鉛等のジアルキル亜鉛、その他活性
なアルキル金属等を挙げることができる。前記触媒の使
用量は、原料成分に対して、0.1〜30mol%であ
るのが好ましい。
In the production method of the present invention, the cyclic amide C is used.
Examples of the catalyst used when reacting the lactone D with the cyclic lactone D include metal-containing alkali catalysts and metal-containing alkyl catalysts. Specifically, the metal-containing alkali catalysts include sodium, potassium, lithium, magnesium, Calcium, sodium hydroxide, potassium hydroxide,
Lithium hydroxide, magnesium hydroxide, calcium hydroxide, sodium methoxide, potassium methoxide, lithium methoxide, magnesium methoxide, calcium methoxide, sodium ethoxide, potassium ethoxide, lithium ethoxide, magnesium ethoxide, calcium ethoxy. , Sodium-t-butoxide, potassium-t-butoxide, lithium-t-butoxide,
Magnesium-t-butoxide, calcium-t-butoxide, etc. can be mentioned. Examples of metal-containing alkyl catalysts include alkyllithium such as methyllithium, ethyllithium, propyllithium and butyllithium; dialkyltin oxides such as dimethyltin oxide, diethyltin oxide, dipropyltin oxide and dibutyltin oxide; dimethylzinc and diethylzinc. , Dipropyl zinc such as dipropyl zinc and dibutyl zinc, and other active alkyl metals. The amount of the catalyst used is preferably 0.1 to 30 mol% with respect to the raw material components.

【0019】本発明の製法において反応を行なうには、
例えば前記原料成分を混合溶融等した後、前記触媒の存
在下、真空ポンプ等を用いて、好ましくは1mmHg以
下、特に好ましくは0.01〜0.5mmHgの減圧下
として、不活性ガス(窒素、アルゴン等)で反応系内を
置換し、反応温度0〜260℃、特に0〜160℃で、
1〜72時間反応させる方法等により行なうのが望まし
い。前記反応を減圧下で行なわない場合には、得られる
樹脂の融点及び分子量が低く、実用的な樹脂とすること
ができないので好ましくない。また反応温度が0℃未満
の場合には、反応に長時間を要し、260℃を超える場
合には、作業性が低下し、副反応として分解反応が起こ
るので好ましくない。
To carry out the reaction in the production method of the present invention,
For example, after mixing and melting the raw material components, in the presence of the catalyst, using a vacuum pump or the like, preferably under a reduced pressure of 1 mmHg or less, particularly preferably 0.01 to 0.5 mmHg, an inert gas (nitrogen, The inside of the reaction system is replaced with argon, etc., and the reaction temperature is 0 to 260 ° C., especially 0 to 160 ° C.
It is desirable to carry out the reaction for 1 to 72 hours. If the above reaction is not carried out under reduced pressure, the melting point and molecular weight of the obtained resin are low, and a practical resin cannot be obtained, which is not preferable. When the reaction temperature is lower than 0 ° C, the reaction takes a long time, and when it exceeds 260 ° C, workability is deteriorated and a decomposition reaction occurs as a side reaction, which is not preferable.

【0020】本発明の生分解性を有する樹脂は、前記反
応終了後、再沈澱等の公知の精製法で精製することによ
り得ることができる。
The biodegradable resin of the present invention can be obtained by purification by a known purification method such as reprecipitation after the completion of the above reaction.

【0021】[0021]

【発明の効果】本発明の生分解性を有する樹脂は、エス
テル部分単位とオリゴマー程度のアミド部分単位とを最
適に配合した特定の繰返し単位を有し、且つ特定の分子
量及び融点を有するので、土壌などの自然環境中で完全
に生分解させることができ、また都市ゴミや、下水処理
上の余剰汚泥、廃棄物の処理法として知られる好気的条
件下での急速堆肥化装置においても速やかに生分解(コ
ンボスト化)させることができ、更にはリパーゼ生産
菌、リパーゼ含有物等によっても分解させることができ
る。特に、環状アミドとβ−プロピオラクトンを原料成
分として反応させた本発明の生分解性を有する樹脂は、
PHBデポリメラーゼ生産菌、PHBデポリメラーゼ含有物等
によっても分解できるため、非常に早く生分解される。
従って分解速度をより広範囲で選択することが可能であ
り、非分解性プラスチックに見られるような公害問題を
生ずることもない。
The biodegradable resin of the present invention has a specific repeating unit in which an ester partial unit and an amide partial unit of an oligomer degree are optimally blended, and has a specific molecular weight and melting point. It can be completely biodegraded in the natural environment such as soil, and can be rapidly used in rapid composting equipment under aerobic conditions known as a method for treating municipal waste, surplus sludge in sewage treatment, and waste. It can be biodegraded (combost), and can also be decomposed by lipase-producing bacteria, lipase-containing substances and the like. In particular, the biodegradable resin of the present invention obtained by reacting a cyclic amide with β-propiolactone as a raw material component is
Since it can be decomposed by PHB depolymerase-producing bacteria, PHB depolymerase-containing substances, etc., it is biodegraded very quickly.
Therefore, it is possible to select the decomposition rate in a wider range without causing the pollution problem as seen in non-degradable plastics.

【0022】また、本発明の生分解性を有する樹脂は、
100〜160℃の成形温度で生分解性の繊維、フィル
ムに加工することができるので、農林業分野におけるマ
ルチフィルム、植林用の鉢や紐、農薬や肥料用の袋等に
利用可能であり、更に医療分野においては、手術用の糸
や体内において薬品を徐々に放出する薬品支持体等とし
て利用することもできる。
The biodegradable resin of the present invention is
Since it can be processed into biodegradable fibers and films at a molding temperature of 100 to 160 ° C., it can be used for mulch films in the field of agriculture and forestry, pots and strings for planting trees, bags for pesticides and fertilizers, etc. Further, in the medical field, it can also be used as a surgical thread or a drug support that gradually releases drugs in the body.

【0023】[0023]

【実施例】以下本発明を実施例及び比較例に基づいて具
体的に説明するが、本発明はこれらに限定されるもので
はない。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples, but the present invention is not limited thereto.

【0024】[0024]

【実施例1】ε−カプロラクタム5.56gに、ε−カ
プロラクトン5.71gとカリウム−t−ブトキシド
1.12gとを添加し、窒素雰囲気中、0.5mmHg
の減圧下、160℃で3時間共重合反応を行い樹脂を得
た。得られた樹脂の精製はメチルアルコールによる再沈
により行い、収率は84%であった。また示差走査熱量
計による融点は約120℃で、極限粘度(メタクレゾー
ル中、25℃)は1.17であり、分子量Mnは200
00であった。また得られた樹脂の1H−NMRスペク
トル及び13C−NMRスペクトルを測定した。その結果
をそれぞれ図1及び図2に示す。
Example 1 To 5.56 g of ε-caprolactam, 5.71 g of ε-caprolactone and 1.12 g of potassium-t-butoxide were added, and 0.5 mmHg in a nitrogen atmosphere.
A resin was obtained by carrying out a copolymerization reaction at 160 ° C. for 3 hours under reduced pressure. The obtained resin was purified by reprecipitation with methyl alcohol, and the yield was 84%. Further, the melting point measured by a differential scanning calorimeter is about 120 ° C., the intrinsic viscosity (in metacresol, 25 ° C.) is 1.17, and the molecular weight Mn is 200.
It was 00. The 1 H-NMR spectrum and 13 C-NMR spectrum of the obtained resin were measured. The results are shown in FIGS. 1 and 2, respectively.

【0025】図1の1H−NMRスペクトルの結果よ
り、得られた樹脂は、前記繰返し単位AにおいてR1
(CH23、R2=(CH23、x=1〜10、y=1
〜10、z=5〜50であり、ε−カプロラクタムとε
−カプロラクトンのランダム共重合体であることが判っ
た。また、図2の13C−NMRスペクトルの結果より、
エステル単位及びアミド単位のカルボニル炭素のシグナ
ルが173ppmと174ppmに分裂しており幅広く
なっていることから、両単位のランダムな結合が認めら
れた。
From the result of 1 H-NMR spectrum shown in FIG. 1, the obtained resin shows that in the repeating unit A, R 1 =
(CH 2 ) 3 , R 2 = (CH 2 ) 3 , x = 1 to 10, y = 1
-10, z = 5-50, ε-caprolactam and ε
It was found to be a random copolymer of -caprolactone. In addition, from the result of 13 C-NMR spectrum of FIG. 2,
Since the carbonyl carbon signals of the ester unit and the amide unit were split into 173 ppm and 174 ppm, which were broad, a random bond between both units was observed.

【0026】更にε−カプロラクタムとε−カプロラク
トンとの配合割合を表1に示すとおり代えた以外は前記
共重合反応と同様の条件で樹脂を調製し、収率、融点、
極限粘度及び分子量を測定した。結果を表1に示す。
Further, a resin was prepared under the same conditions as in the above copolymerization reaction except that the mixing ratio of ε-caprolactam and ε-caprolactone was changed as shown in Table 1, and the yield, melting point,
Intrinsic viscosity and molecular weight were measured. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【比較例1】ε−カプロラクタム5.56gに、ε−カ
プロラクトン5.71gとカリウム−t−ブトキシド
1.12gとを添加し、窒素雰囲気中、常圧下、160
℃で3時間共重合反応を行い樹脂を得た。得られた樹脂
の精製はメチルアルコールによる再沈により行い、収率
は58%であった。また融点は約60℃で、極限粘度
(メタクレゾール中、25℃)は0.03、分子量は5
00であった。
COMPARATIVE EXAMPLE 1 To 5.56 g of ε-caprolactam, 5.71 g of ε-caprolactone and 1.12 g of potassium-t-butoxide were added, and the mixture was stirred at 160 ° C. in a nitrogen atmosphere under normal pressure.
A copolymerization reaction was carried out at ℃ for 3 hours to obtain a resin. The obtained resin was purified by reprecipitation with methyl alcohol, and the yield was 58%. The melting point is about 60 ° C, the intrinsic viscosity (in metacresol, 25 ° C) is 0.03, and the molecular weight is 5
It was 00.

【0029】[0029]

【実施例2】実施例1と同様に反応を行った後、更に反
応温度270℃で2時間、次に200℃で5時間反応を
行い樹脂を得た。得られた樹脂の精製はメチルアルコー
ルによる再沈により行い、収率は69%であった。また
融点は約153℃で、極限粘度(メタクレゾール中、2
5℃)は2.40、分子量は60000であった。
Example 2 After the reaction was carried out in the same manner as in Example 1, the reaction was further carried out at a reaction temperature of 270 ° C. for 2 hours and then at 200 ° C. for 5 hours to obtain a resin. The obtained resin was purified by reprecipitation with methyl alcohol, and the yield was 69%. The melting point is about 153 ° C and the intrinsic viscosity (in metacresol, 2
5 ° C.) was 2.40 and the molecular weight was 60,000.

【0030】更に実施例1と同様にNMRスペクトルを
測定したところ、得られた樹脂は所望のランダム共重合
体であることが判った。
Further, the NMR spectrum was measured in the same manner as in Example 1, and it was found that the obtained resin was a desired random copolymer.

【0031】[0031]

【実施例3】ε−カプロラクトンをδ−バレロラクトン
5.01gに代えた以外は、実施例1と同様の条件で反
応を行った。その結果収率は75%、融点は110℃、
極限粘度(メタクレゾール中、25℃)は1.12、分
子量は19000であった。
Example 3 The reaction was carried out under the same conditions as in Example 1 except that ε-caprolactone was replaced with 5.01 g of δ-valerolactone. As a result, the yield is 75%, the melting point is 110 ° C,
The intrinsic viscosity (in meta-cresol, 25 ° C.) was 1.12 and the molecular weight was 19000.

【0032】また実施例1と同様にNMRスペクトルを
測定したところ、得られた樹脂は所望のランダム共重合
体であることが判った。
When the NMR spectrum was measured in the same manner as in Example 1, it was found that the obtained resin was a desired random copolymer.

【0033】更にε−カプロラクタムとδ−バレロラク
トンの配合割合を表2に示すとおり代えた以外は同様の
条件で樹脂を調製し、収率、融点、極限粘度及び分子量
を測定した。結果を表2に示す。
Further, a resin was prepared under the same conditions except that the mixing ratios of ε-caprolactam and δ-valerolactone were changed as shown in Table 2, and the yield, melting point, intrinsic viscosity and molecular weight were measured. The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【比較例2】ε−カプロラクトンをδ−バレロラクトン
5.01gに代えた以外は比較例1と同様の条件で反応
を行った。得られた樹脂の収率は37%、融点は約45
℃、極限粘度(メタクレゾール中、25℃)は0.0
2、分子量は400であった。
Comparative Example 2 The reaction was carried out under the same conditions as in Comparative Example 1 except that ε-caprolactone was replaced with 5.01 g of δ-valerolactone. The obtained resin has a yield of 37% and a melting point of about 45.
℃, intrinsic viscosity (in meta-cresol, 25 ℃) is 0.0
2, the molecular weight was 400.

【0036】[0036]

【実施例4】ε−カプロラクタム5.56gにβ−プロ
ピオラクトン3.60gとカリウム−t−ブトキシド
1.12gとを添加し、窒素雰囲気中、0.5mmHg
の減圧下、0℃で24時間共重合反応を行い樹脂を得
た。得られた樹脂の精製はメチルアルコールによる再沈
により行い、収率は75%であった。また融点は110
℃、極限粘度(メタクレゾール中、25℃)は1.1
0、分子量は18000であった。
Example 4 To 5.56 g of ε-caprolactam was added 3.60 g of β-propiolactone and 1.12 g of potassium-t-butoxide, and 0.5 mmHg was added in a nitrogen atmosphere.
The resin was obtained by carrying out a copolymerization reaction at 0 ° C. for 24 hours under reduced pressure. The obtained resin was purified by reprecipitation with methyl alcohol, and the yield was 75%. The melting point is 110
℃, intrinsic viscosity (in meta-cresol, 25 ℃) 1.1
0, the molecular weight was 18,000.

【0037】更に実施例1と同様にNMRスペクトルを
測定したところ、得られた樹脂は所望のランダム共重合
体であることが判った。
Further, when the NMR spectrum was measured in the same manner as in Example 1, it was found that the obtained resin was a desired random copolymer.

【0038】[0038]

【実施例5及び比較例3】各種酵素を用いて、実施例
1、3及び4で合成した樹脂の生分解性(実施例5)並
びに比較として、表3に示す既存の樹脂の生分解性(比
較例3)を調べた。酵素としては、R.arrhizusのリパー
ゼ、豚肝臓のエステラーゼ(商品名「ベーリンガー・マ
ンハイム」、山之内製薬株式会社製の部分精製標品)及
びPseudomonas lemoigneの生産したRHBデポリメラーゼ
を用いた。
[Example 5 and Comparative Example 3] Biodegradability of the resins synthesized in Examples 1, 3 and 4 using various enzymes (Example 5) and as a comparison, the biodegradability of existing resins shown in Table 3 (Comparative Example 3) was examined. As the enzyme, R. arrhizus lipase, pig liver esterase (trade name "Boehringer Mannheim", partially purified preparation by Yamanouchi Pharmaceutical Co., Ltd.) and RHB depolymerase produced by Pseudomonas lemoigne were used.

【0039】樹脂の生分解性は、30℃の反応によって
生成してくる水溶性の全有機炭素(TOC)濃度を島津
製作所製のTOC分析装置で測定することによって求め
た。具体的には、100ml容三角フラスコにエステル
成分の含量が100mgとなるようにポリマーを加え、
リン酸緩衝液(pH7.0)400μmol、及び酵素液
を加えて全量を10mlとし、ロータリーシェーカー
(180rpm)を用い、30℃で16時間反応させた。
反応液中のリパーゼとエステラーゼの量はオリーブ油に
対する加水分解活性が同じになるように調製した。結果
を表3に示す。
The biodegradability of the resin was determined by measuring the water-soluble total organic carbon (TOC) concentration produced by the reaction at 30 ° C. with a TOC analyzer manufactured by Shimadzu Corporation. Specifically, the polymer was added to a 100 ml Erlenmeyer flask so that the content of the ester component was 100 mg,
A phosphate buffer (pH 7.0) (400 μmol) and an enzyme solution were added to adjust the total amount to 10 ml, and the mixture was reacted at 30 ° C. for 16 hours using a rotary shaker (180 rpm).
The amounts of lipase and esterase in the reaction solution were adjusted so that the hydrolysis activity against olive oil was the same. The results are shown in Table 3.

【0040】表3の結果より、PLC、PPLは生分解
性に優れるが、融点が95℃以下で耐熱性、加工性が悪
く、実用性が低い。これに対し、本発明の両者を共重合
させた樹脂は、融点が95℃以上と物性が良くなり、し
かも生分解性を有していることが判る。
From the results of Table 3, PLC and PPL are excellent in biodegradability, but their melting point is 95 ° C. or less, heat resistance and workability are poor, and practicability is low. On the other hand, it can be seen that the resin obtained by copolymerizing both of the present invention has a good melting point of 95 ° C. or higher and has biodegradability.

【0041】[0041]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1で調製した樹脂の1H−NM
Rスペクトルを示す図である。
FIG. 1 is the 1 H-NM of the resin prepared in Example 1.
It is a figure which shows R spectrum.

【図2】図2は、実施例1で調製した樹脂の13C−NM
Rスペクトルを示す図である。
FIG. 2 shows 13 C-NM of the resin prepared in Example 1.
It is a figure which shows R spectrum.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式化1で示される繰返し単位を
有し、分子量5000〜100000、融点100〜1
60℃であることを特徴とする生分解性を有する樹脂。 【化1】
1. A repeating unit represented by the following general formula 1, having a molecular weight of 5,000 to 100,000 and a melting point of 100 to 1
A resin having biodegradability, which is 60 ° C. [Chemical 1]
【請求項2】 下記一般式化2で示される繰返し単位を
有し、分子量5000〜100000、融点100〜1
60℃であることを特徴とする生分解性を有する樹脂。 【化2】
2. A repeating unit represented by the following general formula 2, having a molecular weight of 5,000 to 100,000 and a melting point of 100 to 1
A resin having biodegradability, which is 60 ° C. [Chemical 2]
【請求項3】 下記一般式化3で示される環状アミド
と、下記一般式化4で示される環状ラクトンとを、減圧
下で触媒を用いて反応させることを特徴とする請求項1
又は2記載の生分解性を有する樹脂の製法。 【化3】 【化4】
3. A cyclic amide represented by the following general formula 3 and a cyclic lactone represented by the following general formula 4 are reacted under reduced pressure using a catalyst.
Alternatively, the method for producing a biodegradable resin according to 2 above. [Chemical 3] [Chemical 4]
JP04105193A 1993-03-02 1993-03-02 Method for producing biodegradable resin Expired - Lifetime JP3345631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04105193A JP3345631B2 (en) 1993-03-02 1993-03-02 Method for producing biodegradable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04105193A JP3345631B2 (en) 1993-03-02 1993-03-02 Method for producing biodegradable resin

Publications (2)

Publication Number Publication Date
JPH06256506A true JPH06256506A (en) 1994-09-13
JP3345631B2 JP3345631B2 (en) 2002-11-18

Family

ID=12597611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04105193A Expired - Lifetime JP3345631B2 (en) 1993-03-02 1993-03-02 Method for producing biodegradable resin

Country Status (1)

Country Link
JP (1) JP3345631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025971A (en) * 1999-01-18 2012-02-09 Quadrant Polypenco Japan Ltd Antistatic molded article comprising polyesteramide resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025971A (en) * 1999-01-18 2012-02-09 Quadrant Polypenco Japan Ltd Antistatic molded article comprising polyesteramide resin

Also Published As

Publication number Publication date
JP3345631B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JP3263710B2 (en) Biodegradable optically active polymer and method for producing the same
EP0802942B1 (en) Biologically degradable polymers, process for manufacturing the same and the use thereof for producing biodegradable moulded articles
Sharma et al. Polyhydroxybutyrate, its copolymers and blends
US5990266A (en) Degradable polyesters, a mixed culture of microorganisms for degrading these polyesters, and methods for making these substances
JP3241505B2 (en) Biodegradable optically active copolymer and method for producing the same
US5824751A (en) Biodegradable high molecular composition
KR20020070643A (en) Polyhydroxyalkanoate polyester having vinyl phenyl structure in the side chain and its production method
KR100548943B1 (en) Method of producing polyhydroxyalkanoate from alkane having residue containing aromatic ring in its molecule
EP0601885B1 (en) Biodegradable optically active polymer of lactones and process for production thereof
US5840811A (en) Optically active block polyester copolymer and method for production thereof
JPH03180186A (en) Copolymer and production thereof
CN1304457C (en) Diamine modified poly-latic acid, method for preparing same and use thereof
WO2009156950A2 (en) Methods for producing medium chain polyhydroxyalkanoates (pha) using vegetable oils as carbon source
JPH05320326A (en) Biodegradable aliphatic polyester polymer and its production
JP3345631B2 (en) Method for producing biodegradable resin
JP3142658B2 (en) Biodegradable optically active polyester and method for producing the same
JPH05132549A (en) New biodegradable polymer and composition compounded with the same
EP0682054A2 (en) A biodegradable copolymer, a biodegradable polymer composition, a biodegradable article, and a preparation process thereof
JP4104932B2 (en) Biodegradable polymer and novel microorganism producing the same, method for producing biodegradable polymer, biodegradable random copolymer and method for isolating the same
JPS598365B2 (en) Biodegradable agricultural mulch film
JPH0920857A (en) Biodegradable polymer composition
KR20020051580A (en) Preparation method of melt extrusion coated paper using aliphatic polyester resin
JPH06192417A (en) Biodegradable plastic
Arcana et al. Biodegradation of Poly (R, S)-β-hydroxybutyrate and its copolymer with δ-Valerolactone Synthesized by Aluminoxane Catalyst
JPH0873574A (en) Aliphatic polyester and/or copolymer thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term