JPH06256276A - Production of n-long-chain acylamino acid salt - Google Patents

Production of n-long-chain acylamino acid salt

Info

Publication number
JPH06256276A
JPH06256276A JP4095793A JP4095793A JPH06256276A JP H06256276 A JPH06256276 A JP H06256276A JP 4095793 A JP4095793 A JP 4095793A JP 4095793 A JP4095793 A JP 4095793A JP H06256276 A JPH06256276 A JP H06256276A
Authority
JP
Japan
Prior art keywords
acid salt
reaction
amino acid
fatty acid
chain acylamino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4095793A
Other languages
Japanese (ja)
Inventor
Koji Oka
広史 岡
Kiyoshi Aimono
清 四十物
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP4095793A priority Critical patent/JPH06256276A/en
Publication of JPH06256276A publication Critical patent/JPH06256276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To simply obtain an N-long-chain acylamino acid salt capable of manifesting excellent surface-active and antimicrobial actions at a low cost. CONSTITUTION:This method for producing an N-long-chain acylamino acid salt is characterized by reacting an amino acid salt with a fatty acid halide at 40-60 deg.C maximum reactional temperature in a tubular type reactor having the mixing function in a method for producing the N-long-chain acylamino acid salt having the first step for reacting an amino acid with an alkaline substance and providing the amino acid salt and the second step for reacting the resultant amino acid salt with the fatty acid halide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、N−長鎖アシルアミノ
酸塩の製造方法に関し、更に詳しくは優れた界面活性作
用、抗菌作用等を示す高純度のN−長鎖アシルアミノ酸
塩を簡便かつ安価に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an N-long chain acylamino acid salt, and more particularly, to a highly pure N-long chain acylamino acid salt which exhibits excellent surfactant activity and antibacterial activity. It relates to a method of manufacturing at low cost.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】N−長
鎖アシルアミノ酸の各種無機塩及び有機塩は優れた界面
活性作用、抗菌作用等を有し、しかも低刺激性であるこ
とから、さまざまな分野に応用されている。
BACKGROUND OF THE INVENTION Various inorganic and organic salts of N-long-chain acylamino acids have excellent surface-active effects, antibacterial effects, etc. Applied to various fields.

【0003】従来、N−長鎖アシルアミノ酸は、アミノ
酸のアルカリ水溶液に脂肪酸ハライドを反応させる、い
わゆるショッテン−バウマン法により得られるN−長鎖
アシルアミノ酸塩溶液のpHを1〜5に調整した後晶析分
離することにより製造するのが一般的であった。
Conventionally, N-long-chain acylamino acids have been prepared by reacting a fatty acid halide with an alkaline aqueous solution of amino acids, which is obtained by the so-called Schotten-Baumann method, after adjusting the pH of the N-long-chain acylamino acid salt solution to 1 to 5. It was generally produced by crystallization separation.

【0004】しかし、上記反応においては、反応系の粘
度がアシル化反応の進行に伴ない著しく増大し、また、
塩の種類によっては結晶が析出してしまう。この粘度の
増大や結晶の析出は、系内の攪拌効率を悪化させ、アシ
ル化率(反応に使用される脂肪酸ハライド量に対するN
−長鎖アシルアミノ酸塩に転化する脂肪酸ハライド量の
割合)の低下を招来する。反応温度を上げれば、系の粘
度が低下し、かつ塩の結晶析出も抑制されるが、この場
合には、脂肪酸ハライドと水又はアルカリとが反応して
脂肪酸を形成することとなり、やはりアシル化率は低下
する。また、通常の攪拌槽にてショッテン−バウマン反
応を行わせる場合には、反応系が不均一とならないよ
う、更に、反応熱により反応系の温度が上りすぎないよ
う、アミノ酸のアルカリ水溶液に脂肪酸ハライドを徐々
に滴下する必要があることから、生産性が悪化する。
However, in the above reaction, the viscosity of the reaction system remarkably increases with the progress of the acylation reaction, and
Crystals may precipitate depending on the type of salt. This increase in viscosity and precipitation of crystals deteriorates the stirring efficiency in the system, and the acylation ratio (N with respect to the amount of fatty acid halide used in the reaction)
-The ratio of fatty acid halides converted into long-chain acylamino acid salts) is decreased. Increasing the reaction temperature lowers the viscosity of the system and also suppresses the precipitation of salts, but in this case, the fatty acid halide reacts with water or alkali to form a fatty acid, and the acylation The rate drops. When the Schotten-Baumann reaction is carried out in an ordinary stirring tank, the reaction system does not become heterogeneous, and further, the temperature of the reaction system does not rise too much due to the heat of reaction, so that the fatty acid halide is added to the alkaline aqueous solution of the amino acid. Since it is necessary to gradually drip, the productivity deteriorates.

【0005】一方、特公昭46−8685号公報、特公
昭51−38681号公報等には、従来法の改良として
親水性有機溶媒中のアミノ酸に、アルカリ物質の存在
下、脂肪酸ハライドを反応させる方法が開示されてい
る。この方法によれば、反応溶媒への脂肪酸ハライドの
溶解性が向上するためにアシル化率を著しく改善するこ
とが出来る。
On the other hand, JP-B-46-8685, JP-B-51-38681 and the like improve the conventional method by reacting an amino acid in a hydrophilic organic solvent with a fatty acid halide in the presence of an alkaline substance. Is disclosed. According to this method, the solubility of the fatty acid halide in the reaction solvent is improved, so that the acylation rate can be significantly improved.

【0006】しかし、上記方法によっても、N−長鎖ア
シルアミノ酸塩の反応溶媒への溶解性は向上しないた
め、反応系はスラリー状となり、十分な攪拌を行うこと
ができない。これを回避するため有機溶媒を使用する場
合には、該有機溶媒の除去工程が必要となり、設備費が
かさむことになる。
However, even by the above method, the solubility of the N-long chain acylamino acid salt in the reaction solvent is not improved, so that the reaction system is in a slurry state and cannot be sufficiently stirred. In order to avoid this, when an organic solvent is used, a step of removing the organic solvent is required, which increases the equipment cost.

【0007】そこで、高アシル化率で、高純度のN−長
鎖アシルアミノ酸塩を簡便かつ安価に製造する方法の開
発が望まれていた。
Therefore, there has been a demand for the development of a method for producing a high-purity N-long-chain acylamino acid salt with a high acylation rate simply and inexpensively.

【0008】[0008]

【課題を解決するための手段】本発明者らは、かかる実
情に鑑み鋭意検討した結果、アミノ酸塩と脂肪酸ハライ
ドとの反応を、特定温度条件下に混合機能を有する管型
反応器中で行えば、アシル化率が飛躍的に向上し、高純
度のN−長鎖アシルアミノ酸塩が簡便に得られることを
見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies in view of such circumstances, the present inventors have conducted a reaction between an amino acid salt and a fatty acid halide in a tubular reactor having a mixing function under specific temperature conditions. Then, it was found that the acylation rate was dramatically improved, and a high-purity N-long chain acylamino acid salt could be easily obtained, and the present invention was completed.

【0009】すなわち、本発明は、アミノ酸とアルカリ
物質とを反応せしめてアミノ酸塩を得る第一工程及び該
アミノ酸塩と脂肪酸ハライドとを反応せしめる第二工程
を有するN−長鎖アシルアミノ酸塩の製造方法におい
て、アミノ酸塩と脂肪酸ハライドとを、混合機能を有す
る管型反応器中で、最高反応温度が40〜60℃にて、
反応せしめることを特徴とするN−長鎖アシルアミノ酸
塩の製造方法を提供するものである。
That is, the present invention is a process for producing an N-long chain acylamino acid salt having a first step of reacting an amino acid with an alkaline substance to obtain an amino acid salt and a second step of reacting the amino acid salt with a fatty acid halide. In the method, the amino acid salt and the fatty acid halide are mixed at a maximum reaction temperature of 40 to 60 ° C. in a tubular reactor having a mixing function,
The present invention provides a method for producing an N-long chain acylamino acid salt, which comprises reacting.

【0010】本発明に使用されるアミノ酸は、天然に、
あるいは合成により得られるいずれのものでもよいが、
例えばグリシン、β−アラニン、N−メチル−β−アラ
ニン等が挙げられる。
The amino acids used in the present invention are naturally
Alternatively, any of those obtained by synthesis may be used,
Examples thereof include glycine, β-alanine, N-methyl-β-alanine and the like.

【0011】本発明に使用されるアルカリ物質として
は、例えば水酸化ナトリウム、水酸化カリウム、水酸化
カルシウム、水酸化バリウム等の無機の塩基、トリエチ
ルアミン、ピリジン等の有機の塩基などが挙げられる。
Examples of the alkaline substance used in the present invention include inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide, and organic bases such as triethylamine and pyridine.

【0012】本発明に使用される脂肪酸ハライドとして
は、炭素数6〜22の飽和又は不飽和のものであり、例
えばラウロイルハライド、パルミトイルハライド、ステ
アロイルハライド、オレオイルハライド等の単一組成の
脂肪酸ハライド;椰子油脂肪酸ハライド、牛脂脂肪酸ハ
ライド等の混合脂肪酸ハライド等が挙げられる。
The fatty acid halide used in the present invention is a saturated or unsaturated one having 6 to 22 carbon atoms, and for example, a fatty acid halide having a single composition such as lauroyl halide, palmitoyl halide, stearoyl halide and oleoyl halide. And mixed fatty acid halides such as coconut oil fatty acid halides and beef tallow fatty acid halides.

【0013】本発明に使用される混合機能を有する管型
反応器としては、(イ)静止型混合器、(ロ)ラインミ
キサー、(ハ)振動式液体混合装置、(ニ)ループ式反
応器等が挙げられる。いずれの反応器も、反応器中の高
い混合作用を有する部位が大きいため、高粘度液をも十
分に混合し得るものであり、また、反応器に対し伝熱面
積を大きくとることができるため、効果的に除熱を行う
ことができるものである。以下に上記各反応器について
説明する。
The tubular reactor having a mixing function used in the present invention includes (a) a static mixer, (b) a line mixer, (c) a vibrating liquid mixing device, and (d) a loop reactor. Etc. Since any of the reactors has a large portion having a high mixing action in the reactor, it is possible to sufficiently mix even a highly viscous liquid, and a large heat transfer area can be taken for the reactor. The heat can be effectively removed. The above reactors will be described below.

【0014】(イ)静止型混合器 機械的可動部を有するものではないが、互に交差する多
数のエレメントからなる流体通路の構成により、レイノ
ルズ数の広範囲にわたり流体の混合が可能なものであ
り、例えばスタティックミキサー〔(株)ノリタケ製〕
が挙げられる。
(A) Static Mixer Although it does not have a mechanically movable part, it is possible to mix fluids over a wide range of Reynolds numbers by the construction of a fluid passage consisting of a large number of elements intersecting with each other. , For example, static mixer [made by Noritake Co., Ltd.]
Is mentioned.

【0015】(ロ)ラインミキサー 管路内に設けた攪拌羽根によって管路内を流れる液体を
効率的に混合し得るものであり、例えばパイプラインホ
モミキサー〔特殊機化工業(株)製〕が挙げられる。
(B) Line Mixer A liquid that flows in the pipeline can be efficiently mixed by a stirring blade provided in the pipeline. For example, a pipeline homomixer [made by Tokushu Kika Kogyo Co., Ltd.] is available. Can be mentioned.

【0016】(ハ)振動式液体混合装置 管路内に設けた攪拌板を振動させることにより管路内を
通過する液体を効率的に混合し得るものであり、例えば
バイブロミキサー〔冷化工業(株)製〕が挙げられる。
(C) Vibratory Liquid Mixing Device This is a device which can efficiently mix the liquid passing through the inside of the pipe by vibrating the stirring plate provided inside the pipe. Co., Ltd.].

【0017】(ニ)ループ式反応器 管路に循環路を設け、循環路内に液体を高速で循環せし
めることにより液体を効率的に混合し得るものである。
(D) Loop type reactor A liquid can be efficiently mixed by providing a circulation path in the pipe and allowing the liquid to circulate in the circulation path at a high speed.

【0018】本発明のアミノ酸とアルカリ物質とを反応
させてアミノ酸塩を得る第一工程においては、反応モル
比はアミノ酸1当量に対しアルカリ物質が1.5〜2.
0当量であることが好ましい。上記反応は常温及び常圧
にて行うことが好ましく、また、反応終了後の系中のア
ミノ酸塩濃度は、特に限定されないが、10〜30重量
%が好ましい。
In the first step of reacting the amino acid with an alkaline substance of the present invention to obtain an amino acid salt, the reaction molar ratio is 1.5 to 2.
It is preferably 0 equivalent. The above reaction is preferably carried out at room temperature and atmospheric pressure, and the concentration of the amino acid salt in the system after completion of the reaction is not particularly limited, but is preferably 10 to 30% by weight.

【0019】本発明のアミノ酸塩と脂肪酸ハライドとを
反応せしめてN−長鎖アシルアミノ酸塩を得る第二工程
(アシル化反応工程)においては、反応時の最高温度
(最高反応温度)を40〜60℃、好ましくは45〜5
5℃とする。ここで、最高反応温度とは、管型反応器内
の反応系の最高温度をいう。最高反応温度が40℃未満
では、著しい増粘によりアシル化率が低下し、一方、6
0℃を超えると、脂肪酸ハライドと水又はアルカリとの
反応が進行して脂肪酸が多量に生成されることから、同
様にアシル化率が低下する。
In the second step (acylation reaction step) of reacting the amino acid salt of the present invention with a fatty acid halide to obtain an N-long chain acylamino acid salt, the maximum temperature (maximum reaction temperature) during the reaction is 40 to 60 ° C, preferably 45-5
Set to 5 ° C. Here, the maximum reaction temperature refers to the maximum temperature of the reaction system in the tubular reactor. If the maximum reaction temperature is lower than 40 ° C, the acylation rate will decrease due to the remarkable increase in viscosity, while
If the temperature exceeds 0 ° C, the reaction between the fatty acid halide and water or alkali proceeds to produce a large amount of fatty acid, and thus the acylation rate similarly decreases.

【0020】上記反応時の圧力は常圧であることが好ま
しい。
The pressure during the above reaction is preferably normal pressure.

【0021】反応時の増粘による系の不均一化を抑制す
るために溶媒を使用する。この場合には、上記反応後に
溶媒の除去が必要となるため、溶媒は水であることが好
ましい。
A solvent is used in order to suppress the non-uniformity of the system due to thickening during the reaction. In this case, the solvent is preferably water because it is necessary to remove the solvent after the above reaction.

【0022】反応モル比は、脂肪酸ハライド1当量に対
しアミノ酸塩が1〜2当量であることが好ましい。アミ
ノ酸塩が1当量未満の場合にはアシル化率が低下し(9
0%以下)、一方、2当量を超える場合には、反応終了
後に未反応アミノ酸塩が系内に多量残存することとな
る。
The reaction molar ratio is preferably 1 to 2 equivalents of amino acid salt to 1 equivalent of fatty acid halide. When the amount of amino acid salt is less than 1 equivalent, the acylation rate is lowered (9
On the other hand, when it exceeds 2 equivalents, a large amount of unreacted amino acid salt remains in the system after completion of the reaction.

【0023】第二工程において全く除熱が行われないと
すると、反応系の温度は35〜65℃上昇する。すなわ
ち、本発明の第二工程における反応は発熱反応であるこ
と、また、上述の如く反応の進行とともに粘度が上昇す
ることから、前記混合機能を有する管型反応器が好適に
使用される。
If no heat is removed in the second step, the temperature of the reaction system rises by 35 to 65 ° C. That is, since the reaction in the second step of the present invention is an exothermic reaction and the viscosity increases as the reaction progresses as described above, the tubular reactor having the mixing function is preferably used.

【0024】[0024]

【発明の効果】本発明の製造方法により、優れた界面活
性作用、抗菌作用等をもたらす高純度のN−長鎖アシル
アミノ酸塩が簡便かつ安価に得られる。
Industrial Applicability According to the production method of the present invention, a high-purity N-long-chain acylamino acid salt that exhibits excellent surfactant activity, antibacterial activity, etc. can be obtained simply and inexpensively.

【0025】[0025]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0026】実施例1 17.3重量%のβ−アラニン水溶液にβ−アラニン:
水酸化カリウムがモル比で1.1:2.1になるように
48重量%の水酸化カリウム水溶液を加え、β−アラニ
ンカリウム水溶液を得た。このβ−アラニンカリウム水
溶液(25℃)を滴下速度185.7g/min 、更にラ
ウリン酸クロライド(25℃)を供給速度50g/min
にてそれぞれ電磁定量ポンプを用いて静止型混合器
〔(株)ノリタケ製、エレメント数17、内径0.34
cm、長さ10cm〕に導入し、最高反応温度50℃、常圧
にて反応せしめ、反応生成物を含む水溶液を得た。反応
生成物水溶液中のN−ラウロイル−β−アラニンカリウ
ム塩の濃度は28重量%であり、アシル化率は94%で
あった。また、反応生成物中の有機物の組成は、N−ラ
ウロイル−β−アラニンカリウム塩94重量%、ラウリ
ン酸カリウム塩2重量%、その他4重量%であった。
Example 1 A 17.3 wt% β-alanine aqueous solution was treated with β-alanine:
A 48 wt% potassium hydroxide aqueous solution was added so that the potassium hydroxide had a molar ratio of 1.1: 2.1 to obtain a β-alanine potassium aqueous solution. This β-alanine potassium aqueous solution (25 ° C.) was added dropwise at a rate of 185.7 g / min, and lauric chloride (25 ° C.) was supplied at a rate of 50 g / min.
In each case, a static mixer (manufactured by Noritake Co., Ltd., number of elements: 17, inner diameter: 0.34)
cm, length 10 cm] and allowed to react at a maximum reaction temperature of 50 ° C. and atmospheric pressure to obtain an aqueous solution containing a reaction product. The concentration of N-lauroyl-β-alanine potassium salt in the reaction product aqueous solution was 28% by weight, and the acylation rate was 94%. The composition of organic substances in the reaction product was 94% by weight of N-lauroyl-β-alanine potassium salt, 2% by weight of potassium laurate, and 4% by weight.

【0027】実施例2 実施例1と同様の方法で得たβ−アラニンカリウム水溶
液(25℃)を滴下速度3.7kg/min 、ラウリン酸ク
ロライド(25℃)を供給速度1.0kg/minにてそれ
ぞれ電磁定量ポンプを用いてバイブロミキサー〔冷化工
業(株)製、口径1.5cm、長さ10cm、振動数25H
z〕に導入し、最高反応温度53℃、常圧にて反応せし
め反応生成物を含む水溶液を得た。反応生成物水溶液中
のN−ラウロイル−β−アラニンカリウム塩の濃度は2
8重量%であり、アシル化率は93.5%であった。ま
た、反応生成物中の有機物の組成は、N−ラウロイル−
β−アラニンカリウム塩93.5重量%、ラウリン酸カ
リウム塩3重量%、その他4.5重量%であった。
Example 2 An aqueous β-alanine potassium solution (25 ° C.) obtained by the same method as in Example 1 was added at a dropping rate of 3.7 kg / min, and lauric chloride (25 ° C.) was supplied at a rate of 1.0 kg / min. Vibro mixer [manufactured by Cryogenic Industry Co., Ltd., caliber 1.5cm, length 10cm, frequency 25H]
z] and reacted at a maximum reaction temperature of 53 ° C. under normal pressure to obtain an aqueous solution containing a reaction product. The concentration of N-lauroyl-β-alanine potassium salt in the aqueous reaction product solution was 2
It was 8% by weight and the acylation rate was 93.5%. The composition of the organic matter in the reaction product is N-lauroyl-
β-alanine potassium salt was 93.5% by weight, potassium lauric acid salt was 3% by weight, and other was 4.5% by weight.

【0028】比較例1 3リットルガラス製丸底フラスコを用い、β−アラニン
212.6gを水1021.5gに溶解させ、これに4
8%水酸化カリウム水溶液522.3gを加えてβ−ア
ラニンカリウム水溶液を得た。この水溶液の温度は、2
5℃であった。ついでこれに翼径10cm、翼高2.5cm
の平型羽根を用い回転数400rpm で攪拌しながらラウ
リン酸クロライド471.7gを約1.5時間かけて滴
下し、N−ラウロイル−β−アラニンカリウム塩を含む
水溶液2228gを得た。滴下終了時の反応液の温度は
60℃であった。この水溶液中のN−ラウロイル−β−
アラニンカリウム塩の濃度は27.2重量%であり、ア
シル化率は90%であった。また、反応生成物中の有機
物の組成は、N−ラウロイル−β−アラニンカリウム塩
90重量%、ラウリン酸カリウム塩5重量%、その他5
重量%であった。
Comparative Example 1 Using a 3 liter glass round bottom flask, 212.6 g of β-alanine was dissolved in 1021.5 g of water, and 4
522.3 g of 8% potassium hydroxide aqueous solution was added to obtain a β-alanine potassium aqueous solution. The temperature of this aqueous solution is 2
It was 5 ° C. Then the blade diameter is 10 cm and the blade height is 2.5 cm.
471.7 g of lauric acid chloride was added dropwise over about 1.5 hours with stirring using a flat blade at 400 rpm to obtain 2228 g of an aqueous solution containing N-lauroyl-β-alanine potassium salt. The temperature of the reaction solution at the end of dropping was 60 ° C. N-lauroyl-β-in this aqueous solution
The concentration of alanine potassium salt was 27.2% by weight, and the acylation rate was 90%. The composition of the organic substances in the reaction product is 90% by weight of N-lauroyl-β-alanine potassium salt, 5% by weight of potassium laurate and other 5
% By weight.

【0029】以上の実施例1、2及び比較例1の反応条
件及び結果をまとめて下記表1に示す。
The reaction conditions and results of Examples 1 and 2 and Comparative Example 1 described above are summarized in Table 1 below.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示す結果より、明らかなように、実
施例1、2はともに、比較例1に比し、アシル化率が向
上しており、また、1リットルかつ1分あたりの生産性
に著しく優れることがわかる。
As is clear from the results shown in Table 1, in both Examples 1 and 2, the acylation rate was higher than that of Comparative Example 1, and the productivity per liter and per minute was higher. It turns out that it is remarkably excellent.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月2日[Submission date] April 2, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】しかし、上記反応においては、反応系の粘
度がアシル化反応の進行に伴ない著しく増大し、また、
塩の種類によっては結晶が析出してしまう。この粘度の
増大や結晶の析出は、系内の攪拌効率を悪化させ、アシ
ル化率(反応に使用される脂肪酸ハライド量に対するN
−長鎖アシルアミノ酸塩に転化する脂肪酸ハライド量の
割合)の低下を招来する。反応温度を上げれば、系の粘
度が低下し、かつ塩の結晶析出も抑制されるが、この場
合には、脂肪酸ハライドと水又はアルカリとが反応して
脂肪酸を形成することとなり、やはりアシル化率は低下
する。また、通常の攪拌槽にてショッテン−バウマン反
応を行わせる場合には、反応系が不均一とならないよ
う、更に、反応熱により反応系の温度が上りすぎないよ
う、アミノ酸のアルカリ水溶液に脂肪酸ハライドを徐々
に滴下する必要があることから、生産性が低下する。
However, in the above reaction, the viscosity of the reaction system remarkably increases with the progress of the acylation reaction, and
Crystals may precipitate depending on the type of salt. This increase in viscosity and precipitation of crystals deteriorates the stirring efficiency in the system, and the acylation ratio (N with respect to the amount of fatty acid halide used in the reaction)
-The ratio of fatty acid halides converted into long-chain acylamino acid salts) is decreased. Increasing the reaction temperature lowers the viscosity of the system and also suppresses the precipitation of salts, but in this case, the fatty acid halide reacts with water or alkali to form a fatty acid, and the acylation The rate drops. When the Schotten-Baumann reaction is carried out in an ordinary stirring tank, the reaction system does not become heterogeneous, and further, the temperature of the reaction system does not rise too much due to the heat of reaction, so that the fatty acid halide is added to the alkaline aqueous solution of the amino acid. Since it is necessary to gradually drip, the productivity decreases.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】本発明者らは、かかる実
情に鑑み鋭意検討した結果、アミノ酸塩と脂肪酸ハライ
ドとの反応を、特定温度条件下に混合機能を有する管型
反応器中で行えば、アシル化率が向上し、かつ高い生産
性で高純度のN−長鎖アシルアミノ酸塩が簡便に得られ
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies in view of such circumstances, the present inventors have conducted a reaction between an amino acid salt and a fatty acid halide in a tubular reactor having a mixing function under specific temperature conditions. Then, they have found that the N-long chain acylamino acid salt having a high acylation rate and high productivity and high purity can be easily obtained, and thus completed the present invention.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】実施例1 17.3重量%のβ−アラニン水溶液にβ−アラニン:
水酸化カリウムがモル比で1.1:2.1になるように
48重量%の水酸化カリウム水溶液を加え、β−アラニ
ンカリウム水溶液を得た。このβ−アラニンカリウム水
溶液(25℃)を供給速度185.7g/min、更に
ラウリン酸クロライド(25℃)を供給速度50g/m
inにてそれぞれ電磁定量ポンプを用いて静止型混合器
〔(株)ノリタケ製、エレメント数17、内径0.34
cm、長さ10cm〕に導入し、最高反応温度50℃、
常圧にて反応せしめ、反応生成物を含む水溶液を得た。
反応生成物水溶液中のN−ラウロイル−β−アラニンカ
リウム塩の濃度は28重量%であり、アシル化率は94
%であった。また、反応生成物中の有機物の組成は、N
−ラウロイル−β−アラニンカリウム塩94重量%、ラ
ウリン酸カリウム塩2重量%、その他4重量%であっ
た。
Example 1 A 17.3 wt% β-alanine aqueous solution was treated with β-alanine:
A 48 wt% potassium hydroxide aqueous solution was added so that the potassium hydroxide had a molar ratio of 1.1: 2.1 to obtain a β-alanine potassium aqueous solution. This β-alanine potassium aqueous solution (25 ° C) was supplied at a rate of 185.7 g / min, and lauric chloride (25 ° C) was supplied at a rate of 50 g / m.
Each of the static mixers is a static mixer (manufactured by Noritake Co., Ltd., with 17 elements and an inner diameter of 0.34).
cm, length 10 cm], the maximum reaction temperature is 50 ° C.,
The reaction was carried out under normal pressure to obtain an aqueous solution containing the reaction product.
The concentration of N-lauroyl-β-alanine potassium salt in the reaction product aqueous solution was 28% by weight, and the acylation rate was 94.
%Met. The composition of the organic matter in the reaction product is N
Lauroyl-β-alanine potassium salt 94% by weight, potassium laurate salt 2% by weight, and other 4% by weight.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】実施例2 実施例1と同様の方法で得たβ−アラニンカリウム水溶
液(25℃)を供給速度3.7kg/min、ラウリン
酸クロライド(25℃)を供給速度1.0kg/min
にてそれぞれ電磁定量ポンプを用いてバイブロミキサー
〔冷化工業(株)製、口径1.5cm、長さ10cm、
振動数25Hz〕に導入し、最高反応温度53℃、常圧
にて反応せしめ反応生成物を含む水溶液を得た。反応生
成物水溶液中のN−ラウロイル−β−アラニンカリウム
塩の濃度は28重量%であり、アシル化率は93.5%
であった。また、反応生成物中の有機物の組成は、N−
ラウロイル−β−アラニンカリウム塩93.5重量%、
ラウリン酸カリウム塩3重量%、その他4.5重量%で
あった。
Example 2 An aqueous β-alanine potassium solution (25 ° C.) obtained by the same method as in Example 1 was supplied at a rate of 3.7 kg / min, and lauric chloride (25 ° C.) was supplied at a rate of 1.0 kg / min.
In each case, a vibro mixer [manufactured by Cryogenic Industry Co., Ltd., caliber 1.5 cm, length 10 cm,
At a frequency of 25 Hz] and reacted at a maximum reaction temperature of 53 ° C. under normal pressure to obtain an aqueous solution containing a reaction product. The concentration of N-lauroyl-β-alanine potassium salt in the reaction product aqueous solution was 28% by weight, and the acylation rate was 93.5%.
Met. The composition of the organic matter in the reaction product is N-
Lauroyl-β-alanine potassium salt 93.5% by weight,
Lauric acid potassium salt was 3% by weight and the other was 4.5% by weight.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】[0030]

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アミノ酸とアルカリ物質とを反応せしめ
てアミノ酸塩を得る第一工程及び該アミノ酸塩と脂肪酸
ハライドとを反応せしめる第二工程を有するN−長鎖ア
シルアミノ酸塩の製造方法において、アミノ酸塩と脂肪
酸ハライドとを、混合機能を有する管型反応器中で、最
高反応温度が40〜60℃にて、反応せしめることを特
徴とするN−長鎖アシルアミノ酸塩の製造方法。
1. A method for producing an N-long chain acylamino acid salt, which comprises a first step of reacting an amino acid with an alkaline substance to obtain an amino acid salt and a second step of reacting the amino acid salt with a fatty acid halide. A method for producing an N-long chain acylamino acid salt, which comprises reacting a salt and a fatty acid halide in a tubular reactor having a mixing function at a maximum reaction temperature of 40 to 60 ° C.
JP4095793A 1993-03-02 1993-03-02 Production of n-long-chain acylamino acid salt Pending JPH06256276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4095793A JPH06256276A (en) 1993-03-02 1993-03-02 Production of n-long-chain acylamino acid salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4095793A JPH06256276A (en) 1993-03-02 1993-03-02 Production of n-long-chain acylamino acid salt

Publications (1)

Publication Number Publication Date
JPH06256276A true JPH06256276A (en) 1994-09-13

Family

ID=12594974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4095793A Pending JPH06256276A (en) 1993-03-02 1993-03-02 Production of n-long-chain acylamino acid salt

Country Status (1)

Country Link
JP (1) JPH06256276A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016409A1 (en) * 1995-10-31 1997-05-09 Basf Aktiengesellschaft Process and device for the continuous preparation of n-acylaminocarboxylic acids and n-acylaminosulphonic acids and their alkali metal salts
WO2002032853A1 (en) * 2000-10-18 2002-04-25 Ajinomoto Co.,Inc. Process for the preparation of acylphenylalanines
FR2929275A1 (en) * 2008-03-28 2009-10-02 Seppic Sa PROCESS FOR THE CONTINUOUS SYNTHESIS OF AN N-ACYL COMPOUND INSTALLATION FOR IMPLEMENTING THE METHOD
CN115160189A (en) * 2022-08-11 2022-10-11 广州天赐高新材料股份有限公司 Continuous preparation method of N-acyl methyl sodium taurate with high active matter content

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016409A1 (en) * 1995-10-31 1997-05-09 Basf Aktiengesellschaft Process and device for the continuous preparation of n-acylaminocarboxylic acids and n-acylaminosulphonic acids and their alkali metal salts
WO2002032853A1 (en) * 2000-10-18 2002-04-25 Ajinomoto Co.,Inc. Process for the preparation of acylphenylalanines
US7030268B2 (en) 2000-10-18 2006-04-18 Ajinomoto Co., Inc. Methods for producing acylphenylalanine
US7659428B2 (en) 2000-10-18 2010-02-09 Ajinomoto Co., Inc. Methods for producing acylphenylalanine
FR2929275A1 (en) * 2008-03-28 2009-10-02 Seppic Sa PROCESS FOR THE CONTINUOUS SYNTHESIS OF AN N-ACYL COMPOUND INSTALLATION FOR IMPLEMENTING THE METHOD
WO2009118493A3 (en) * 2008-03-28 2009-11-26 Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic Method for the continuous synthesis of an n-acylated compound, and equipment for implementing said method
CN115160189A (en) * 2022-08-11 2022-10-11 广州天赐高新材料股份有限公司 Continuous preparation method of N-acyl methyl sodium taurate with high active matter content

Similar Documents

Publication Publication Date Title
JPH0273051A (en) Production of internal olefin sulfonate
JPH06256276A (en) Production of n-long-chain acylamino acid salt
US3752841A (en) Process for the preparation of carbamates of alkylthiolhydroxamates and intermediates
US4432959A (en) Process of producing sodium cyanuarate
US3248423A (en) Process for preparing alkyl sulfonyl chlorides
JP7388647B2 (en) Additives used in the methionine production process and methionine production method
JPS61200103A (en) Production of acrylamide polymer decomposed by hofmann decomposition
JPH0570418A (en) Production of n-long-chain acyl-beta-alanine
US4670594A (en) Continuous process for the preparation of dimethyldiallylammonium chloride
JPWO2003011886A1 (en) Method for producing mixed crystal of disodium 5'-guanylate and disodium 5'-inosinate
US2316847A (en) Production of organic compounds containing inorganic groups
EP1154955B1 (en) Method of producing sodium dicyanamide
US3987077A (en) Composition useful for reducing the caking tendency of particulate sodium chloride
JPH0211539A (en) Aldol bond of nitroparaffin
US2444023A (en) Preparation of dimethyl urea
EP0232869B1 (en) Method for solidifying triglycidyl isocyanurate
RU2189355C2 (en) Method of synthesis of aluminium oxychlorosulfate
JPH03505086A (en) Method for producing 2,4,6-triiodo-5-amino-N-alkylisophthalamic acid
CN1051073C (en) Direct neutralization of N-acyl sarcosines
WO2020254403A1 (en) Process for the preparation of d,l-methionine
US4521397A (en) Process for producing calcium hypochlorite hydrate crystals
JPH04154756A (en) Production of surfactant
US20190367360A1 (en) Sodium hypochlorite pentahydrate crystal grains having high bulk density and method for producing same
JPH054952A (en) Production of n-long-chain acyl acidic amino acid monoalkali salt
JPH0491052A (en) Production of 1,3-phenylenedioxydiacetic acid