JPH06255840A - Skew correcting method - Google Patents

Skew correcting method

Info

Publication number
JPH06255840A
JPH06255840A JP4774593A JP4774593A JPH06255840A JP H06255840 A JPH06255840 A JP H06255840A JP 4774593 A JP4774593 A JP 4774593A JP 4774593 A JP4774593 A JP 4774593A JP H06255840 A JPH06255840 A JP H06255840A
Authority
JP
Japan
Prior art keywords
skew
optical sensor
corrected
mounting position
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4774593A
Other languages
Japanese (ja)
Inventor
Kimio Baba
貴光生 馬場
Satoshi Mizukami
聰 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Asahi Electronics Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Asahi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Asahi Electronics Co Ltd filed Critical Hitachi Ltd
Priority to JP4774593A priority Critical patent/JPH06255840A/en
Publication of JPH06255840A publication Critical patent/JPH06255840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a skew correcting method wherein high accurate skew decision can be performed even when generated an error of a mounting position in an optical sensor of a skew detecting mechanism. CONSTITUTION:In a skew detecting mechanism, three optical sensors are arranged on a straight line in a vertical direction to a direction of conveying a cutform in a conveying path, to detect a skew amount by a detecting time difference of the optical sensors. Amounting position error of the optical sensor, detecting this skew amount, is measured and corrected, to decide a skew, and it is corrected. A time difference of each optical sensor is held (202) and corrected (203) by a previously measured registered optical sensor mounting position error. Here, a skew amount corrected in accordance with a skew with the right up or down is compared with a decision reference value (204) and corrected. Accordingly, skew detection of higher accuracy can be embodied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単票に印字を行なう装
置のスキュー(斜行)補正方法に関し、特にスキュー検
知センサ取付位置の誤差を考慮してスキュー有無判定を
行なうスキュー補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a skew (skew) correction method for an apparatus for printing on a single-cut sheet, and more particularly to a skew correction method for determining the presence / absence of a skew in consideration of an error in a skew detection sensor mounting position.

【0002】[0002]

【従来の技術】従来、単票類を自動的に給紙し搬送を行
ない印字を行なう装置では、単票の所定の位置への印字
を行なうため、搬送中に単票類のスキューを検知し補正
を行っている。例えば、特開昭60−229185号公
報に記載されてる方法では、光学センサで読み取った値
そのものとスキュー判定基準値を比較してスキュー判定
を行なっていたが、光学センサそのものの取付け位置誤
差に対しては考慮されていなかった。
2. Description of the Related Art Conventionally, in an apparatus for automatically printing and feeding cut sheets, printing is performed at a predetermined position of the cut sheets, and therefore skew of the cut sheets is detected during conveyance. We are making corrections. For example, in the method disclosed in Japanese Patent Laid-Open No. 60-229185, the skew determination is performed by comparing the value itself read by the optical sensor with the skew determination reference value. Was not considered.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、ス
キュー検知は光学センサが読み取った情報をスキュー判
定基準値と比較して行なわれていたが、この方法だと同
じスキュー量であっても装置によってスキュー判定が異
なる可能性があった。本発明の目的は、このような問題
点を改善し、スキュー検知機構の光学センサの取付け位
置に誤差が生じていても、高精度でスキュー検知・補正
を行うことが可能なスキュー補正方法を提供することに
ある。
In the above-mentioned prior art, the skew detection is performed by comparing the information read by the optical sensor with the skew judgment reference value. There is a possibility that the skew judgment may differ depending on the An object of the present invention is to solve the above problems and provide a skew correction method capable of performing skew detection / correction with high accuracy even if an error occurs in the mounting position of the optical sensor of the skew detection mechanism. To do.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明のスキュー補正方法は、単票を自動的にホッ
パより繰り出し、搬送ローラによって印字部への搬送を
行なう手段(図2のパルスモータ1等)と、搬送中の単
票のスキューを検知する手段(スキュー検知機構4)
と、検知結果を記憶してスキューの有無を判断する手段
(制御部)と、スキュー補正を行なう手段(スキュー補
正機構3等)とを有する単票印刷装置において、実動作
前に、前記スキュー検知機構により、搬送路にスキュー
無しの状態でセットされた定形用紙のスキュー量を測定
し、これをスキュー検知機構の光学センサの取付け位置
誤差として不揮発性メモリに記憶しておき、その取付け
位置誤差によって、実動作時に得られたスキュー量を補
正し、補正後のスキュー量とスキュー判定基準値を比較
してスキュー有無の判定を行なうことを特徴とするスキ
ュー補正方法。
In order to achieve the above object, the skew correction method of the present invention is a means for automatically feeding a single-cut sheet from a hopper and carrying it by a carrying roller to a printing section (the pulse shown in FIG. 2). (Motor 1 etc.) and means for detecting the skew of a single sheet being conveyed (skew detection mechanism 4)
In a single-cut printing apparatus having a means for storing the detection result and determining the presence or absence of skew (control section), and means for performing skew correction (skew correction mechanism 3 etc.), the skew detection is performed before actual operation. The mechanism measures the amount of skew of the standard paper that is set in the transport path without skew, and stores this in the nonvolatile memory as the mounting position error of the optical sensor of the skew detection mechanism. A skew correction method characterized by correcting the skew amount obtained during actual operation, and comparing the corrected skew amount with a skew determination reference value to determine the presence or absence of skew.

【0005】[0005]

【作用】本発明においては、スキュー検知機構の光学セ
ンサの取付け位置に誤差が生じていても、スキュー判定
時に光学センサの取付け位置誤差分を補正したスキュー
量によりスキュー判定を行なうので、より高い精度のス
キュー検知・補正を行うことが可能となる。
According to the present invention, even if an error occurs in the mounting position of the optical sensor of the skew detecting mechanism, the skew determination is performed by the skew amount corrected for the error in the mounting position of the optical sensor at the time of skew determination. Skew detection and correction can be performed.

【0006】[0006]

【実施例】以下、本発明の一実施例を図面により説明す
る。図2は、本発明の一実施例におけるスキュー補正機
構を持つ単票印刷装置のメカ構成図である。図2におい
て、1,2はパルスモータ、3はスキュー補正機構、4
はスキュー検知機構、5は印字部、6は単票を収納して
おくホッパ、7はクラッチである。このパルスモータ1
を駆動させ搬送路のローラを回転させることにより、単
票をホッパ6より繰り出す。また、パルスモータ2によ
り横搬送路のローラを駆動して、単票を縦搬送路からス
キュー補正機構3、スキュー検知機構(光学センサ)
4、印字部5まで搬送する。また、スキュー補正機構3
は、クラッチ7をOFFすることにより、補正機構3よ
り手前のローラを回転させずに、スキュー補正機構3の
ローラのみを搬送方向と逆方向に回転させ、単票の先端
のずれ(スキュー)の補正を行なう。また、スキュー検
知機構4は、搬送路に単票搬送方向Aと垂直方向に、光
学センサを3個一直線上に並べたものであり、この光学
センサの検出時間差によりスキューを検出する。なお、
検出・補正されたスキュー量によるスキュー有無の判定
は、図示していない制御部により行なう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a mechanical configuration diagram of a single-cut sheet printing apparatus having a skew correction mechanism according to an embodiment of the present invention. In FIG. 2, 1 and 2 are pulse motors, 3 is a skew correction mechanism, and 4
Is a skew detecting mechanism, 5 is a printing unit, 6 is a hopper for storing cut sheets, and 7 is a clutch. This pulse motor 1
Is driven to rotate the roller of the conveying path, so that the single-cut sheet is fed from the hopper 6. In addition, the pulse motor 2 drives the rollers of the horizontal conveyance path to move the single sheet from the vertical conveyance path to the skew correction mechanism 3 and skew detection mechanism (optical sensor)
4. Transport to printing unit 5. In addition, the skew correction mechanism 3
When the clutch 7 is turned off, only the roller of the skew correction mechanism 3 is rotated in the direction opposite to the transport direction without rotating the roller in front of the correction mechanism 3 and the deviation (skew) of the leading edge of the cut sheet is detected. Make a correction. Further, the skew detection mechanism 4 has three optical sensors arranged in a straight line in the transport path in a direction perpendicular to the single-sheet transport direction A, and detects the skew by the detection time difference of the optical sensors. In addition,
The presence / absence of skew is determined by the detected / corrected skew amount by a control unit (not shown).

【0007】図3は、本発明の一実施例におけるスキュ
ー補正機構を持つ単票印刷装置のエレキ構成を示すブロ
ック図である。本実施例では、光学センサ4の検知情報
は、センサ読み取り回路11を通してマイクロプロセッ
サ(上記制御部)8に読み取られる。またクラッチ7は
クラッチ制御回路10で、パルスモータ1,2はそれぞ
れパルスモータ制御回路9,12によってマイクロプロ
セッサ8の命令を実行する。
FIG. 3 is a block diagram showing the electric construction of a single-cut sheet printing apparatus having a skew correction mechanism according to an embodiment of the present invention. In the present embodiment, the detection information of the optical sensor 4 is read by the microprocessor (the control unit) 8 through the sensor reading circuit 11. The clutch 7 is a clutch control circuit 10, and the pulse motors 1 and 2 execute instructions of the microprocessor 8 by the pulse motor control circuits 9 and 12, respectively.

【0008】ここで、本実施例のスキュー検知方法につ
いて述べる。図4は、本発明の一実施例におけるスキュ
ー検知方法を示す図である。図4において、S1〜S3
は光学センサ、a1〜a3はそれぞれS1〜S3の検知時
間差格納エリア、t1はS2とS3の検知時間差、t2
S1とS3の検知時間差を示す。本実施例のスキュー検
知機構は、3個の光学センサを搬送方向Aと垂直方向に
一直線上に並べて各々の光学センサ検出の時間差をスキ
ュー量とする機構である。そして、3個の光学センサそ
れぞれに検知時間差格納エリアを設定し、このエリア
に”FF”を初期値として格納する。3個の光学センサ
の内、最初に単票を検知したセンサの格納エリアに”0
0”を格納し基準センサとする。そして、時間のカウン
トをこの時点で始め、その後他の2個の光学センサが単
票を検出した時点でカウントしている時間をそのセンサ
の格納エリアに格納する。図4のような右上がりのスキ
ューが発生した場合、スキュー基準となるのはS3であ
り、S1,S2のエリアa1,a2にはS3との検知時間
差t2,t1がそれぞれ格納される。ここでS1〜S3の
全てが単票を検出している場合、S1とS3の検出時間
差を単票のスキュー量とする。従って、図4の場合には
2がスキュー量となる。
Now, the skew detection method of this embodiment will be described. FIG. 4 is a diagram showing a skew detection method according to an embodiment of the present invention. In FIG. 4, S1 to S3
Optical sensor, a 1 ~a 3 is detection time difference storage area of each S1 to S3, the detection time difference t 1 is S2 and S3, t 2 denotes the detection time difference between S1 and S3. The skew detection mechanism of the present embodiment is a mechanism in which three optical sensors are arranged in a straight line in the direction perpendicular to the transport direction A and the time difference between the optical sensor detections is used as the skew amount. Then, a detection time difference storage area is set for each of the three optical sensors, and "FF" is stored as an initial value in this area. Of the three optical sensors, "0" appears in the storage area of the sensor that detects the first cut sheet.
0 "is stored and used as a reference sensor. Then, the counting of time is started at this point, and then the time counted when the other two optical sensors detect a single slip is stored in the storage area of that sensor. to. If upward-sloping skew as shown in FIG. 4 is generated, become a skew reference is S3, S1, S2 area a 1, detection time difference t 2 between S3. a 2, t 1 each is stored. all where S1~S3 cases are detected noncontinuous, the skew amount of noncontinuous the detection time difference between S1 and S3. Accordingly, and t 2 is a skew amount in the case of FIG. 4 Become.

【0009】最後に、前記光学センサの取付け位置誤差
の測定方法およびスキュー有無の判定方法について述べ
る。図1は、本発明の一実施例におけるスキュー補正方
法を示すフローチャートである。図1において、(a)
は、スキュー検出機構の光学センサ取付け位置誤差の測
定方法を示し、(b)は、その取付け位置誤差を補正し
てスキュー判定を行ない、スキュー補正する方法を示す
ものである。本実施例では、光学センサの取付け位置誤
差を測定する場合、(a)のように、実動作前に定形用
紙を搬送路へ送り出し、スキュー無しの状態を保ったま
まスキュー検知機構まで搬送する(ステップ101)。
そして、スキュー検知機構でその用紙が検出されると
(ステップ102)、図4に示した各光センサの検出時
間差を不揮発メモリに登録し(ステップ103)、用紙
を排出する(ステップ104)。また、こうして登録し
た検出時間差(光学センサ取付位置誤差)を利用してス
キュー判定および補正を行なう場合には、(b)のよう
に、実動作時、スキュー検知機構が単票を検出すると
(ステップ201)、図4に示した各光学センサの検出
時間差を保持し(ステップ202)、これを(a)の手
順で予め測定・登録した光学センサ取付け位置誤差で補
正する(ステップ203)。この際、今回検知したスキ
ューの基準センサと光学センサ取付け位置誤差測定時の
基準センサとが一致するかを調べる。その結果、両者の
基準センサが一致する場合は、ステップ202で得られ
た光学センサ検知時間差から取付け位置誤差を減算す
る。また、基準センサが一致しない場合は、ステップ2
02で得られた光学センサ検知時間差に取付け位置誤差
を加算する補正を行なう。これは、右上がりあるいは右
下がりのスキューに応じて検出時間差(スキュー量)を
補正するためである。こうして補正したスキュー量をス
キュー判定基準値と比較し、スキューの有無を判定する
(ステップ204)。その結果、スキュー有りと判定さ
れれば(ステップ205)、スキュー補正機構により用
紙の搬送方向を補正する(ステップ206)。
Finally, a method for measuring the mounting position error of the optical sensor and a method for determining the presence / absence of skew will be described. FIG. 1 is a flowchart showing a skew correction method according to an embodiment of the present invention. In FIG. 1, (a)
Shows a method of measuring an optical sensor mounting position error of the skew detecting mechanism, and FIG. 9B shows a method of skew correction by correcting the mounting position error to perform skew determination. In this embodiment, when measuring the mounting position error of the optical sensor, as shown in (a), the fixed form sheet is sent out to the conveying path before the actual operation and conveyed to the skew detecting mechanism while keeping the skew-free state ( Step 101).
When the sheet is detected by the skew detection mechanism (step 102), the detection time difference of each optical sensor shown in FIG. 4 is registered in the nonvolatile memory (step 103), and the sheet is ejected (step 104). Further, in the case of performing skew determination and correction by utilizing the detection time difference (optical sensor mounting position error) registered in this way, when the skew detection mechanism detects a single slip during actual operation, as shown in (b), 201), the detection time difference of each optical sensor shown in FIG. 4 is held (step 202), and this is corrected by the optical sensor mounting position error measured and registered in advance in the procedure of (a) (step 203). At this time, it is checked whether or not the reference sensor for the skew detected this time and the reference sensor for measuring the optical sensor mounting position error match. As a result, when both reference sensors match, the mounting position error is subtracted from the optical sensor detection time difference obtained in step 202. If the reference sensors do not match, step 2
Correction is performed by adding the mounting position error to the optical sensor detection time difference obtained in 02. This is to correct the detection time difference (skew amount) according to the skew to the right or to the bottom. The skew amount thus corrected is compared with the skew determination reference value to determine the presence or absence of skew (step 204). As a result, when it is determined that there is skew (step 205), the skew correction mechanism corrects the sheet conveyance direction (step 206).

【0010】[0010]

【発明の効果】本発明によれば、スキュー検知機構の光
学センサに取付け誤差が生じていても、実動作前に測定
したセンサ取付け位置誤差を考慮してスキュー判定を行
うことができるため、より高い精度のスキュー検知を行
うことができる。
According to the present invention, even if the optical sensor of the skew detecting mechanism has a mounting error, the skew can be determined in consideration of the sensor mounting position error measured before the actual operation. Highly accurate skew detection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるスキュー補正方法を
示すフローチャートである。
FIG. 1 is a flowchart showing a skew correction method according to an embodiment of the present invention.

【図2】本発明の一実施例におけるスキュー補正機構を
持つ単票印刷装置のメカ構成図である。
FIG. 2 is a mechanical configuration diagram of a single-cut sheet printing apparatus having a skew correction mechanism according to an embodiment of the present invention.

【図3】本発明の一実施例におけるスキュー補正機構を
持つ単票印刷装置のエレキ構成を示すブロック図であ
る。
FIG. 3 is a block diagram showing an electric configuration of a single-cut sheet printing apparatus having a skew correction mechanism in one embodiment of the present invention.

【図4】本発明の一実施例におけるスキュー検知方法を
示す図である。
FIG. 4 is a diagram showing a skew detection method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 パルスモータ 2 パルスモータ 3 スキュー補正機構 4 スキュー検知機構(光学センサ) 5 印字部 6 ホッパ 7 クラッチ 8 マイクロプロセッサ 9 パルスモータ制御回路 10 クラッチ制御回路 11 センサ読み取り回路 12 パルスモータ制御回路 1 pulse motor 2 pulse motor 3 skew correction mechanism 4 skew detection mechanism (optical sensor) 5 printing unit 6 hopper 7 clutch 8 microprocessor 9 pulse motor control circuit 10 clutch control circuit 11 sensor reading circuit 12 pulse motor control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単票を自動的にホッパより繰り出し、搬
送ローラによって印字部への搬送を行なう手段と、搬送
中の単票のスキューを検知する手段と、検知結果を記憶
してスキューの有無を判断する手段と、スキュー補正を
行なう手段とを有する単票印刷装置のスキュー補正方法
において、実動作前に、前記スキュー検知手段を用い、
スキュー検知センサの取付け位置誤差を測定・記憶して
おき、該取付け位置誤差によって、実動作時に得られた
スキュー量を補正し、補正後のスキュー量からスキュー
の有無を判定することを特徴とするスキュー補正方法。
1. A means for automatically feeding out a single-cut sheet from a hopper and conveying it to a printing unit by a conveying roller, a means for detecting a skew of the single-cut sheet being conveyed, and a presence / absence of skew by storing the detection result. In a skew correction method for a single-cut sheet printing apparatus having a means for determining the skew and a means for performing skew correction, the skew detecting means is used before actual operation,
It is characterized in that the mounting position error of the skew detection sensor is measured and stored, the skew amount obtained during actual operation is corrected by the mounting position error, and the presence or absence of skew is determined from the corrected skew amount. Skew correction method.
JP4774593A 1993-03-09 1993-03-09 Skew correcting method Pending JPH06255840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4774593A JPH06255840A (en) 1993-03-09 1993-03-09 Skew correcting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4774593A JPH06255840A (en) 1993-03-09 1993-03-09 Skew correcting method

Publications (1)

Publication Number Publication Date
JPH06255840A true JPH06255840A (en) 1994-09-13

Family

ID=12783889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4774593A Pending JPH06255840A (en) 1993-03-09 1993-03-09 Skew correcting method

Country Status (1)

Country Link
JP (1) JPH06255840A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301484A (en) * 1995-04-28 1996-11-19 Seikosha Co Ltd Printer device
JP2002087643A (en) * 2000-09-14 2002-03-27 Fuji Xerox Co Ltd Paper aligning device and image forming device
KR100467558B1 (en) * 1997-06-05 2005-03-16 삼성전자주식회사 Method for sensing incline of paper in multi function printer of shuttle scanning type
WO2008149527A1 (en) * 2007-05-31 2008-12-11 Nidec Sankyo Corporation Image reading device, and medium treating device
JP2010042885A (en) * 2008-08-11 2010-02-25 Konica Minolta Business Technologies Inc Sheet conveying apparatus, and method for adjusting the same
JP2010168132A (en) * 2009-01-20 2010-08-05 Nec Computertechno Ltd Skew sensing device, skew preventing printing system, skew sensing method, skew preventing printing method and program
JP2012162334A (en) * 2011-02-03 2012-08-30 Seiko Epson Corp Distance calculating method, printing device, and program
JP2018065660A (en) * 2016-10-20 2018-04-26 コニカミノルタ株式会社 Image forming apparatus
JP2018145009A (en) * 2017-03-02 2018-09-20 株式会社リコー Transport device, image formation device and post-processing device
JP2021011343A (en) * 2019-07-05 2021-02-04 コニカミノルタ株式会社 Sheet conveyance device and image formation apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301484A (en) * 1995-04-28 1996-11-19 Seikosha Co Ltd Printer device
KR100467558B1 (en) * 1997-06-05 2005-03-16 삼성전자주식회사 Method for sensing incline of paper in multi function printer of shuttle scanning type
JP2002087643A (en) * 2000-09-14 2002-03-27 Fuji Xerox Co Ltd Paper aligning device and image forming device
WO2008149527A1 (en) * 2007-05-31 2008-12-11 Nidec Sankyo Corporation Image reading device, and medium treating device
US8351092B2 (en) 2007-05-31 2013-01-08 Nidec Sankyo Corporation Image reader and medium processor
JP2010042885A (en) * 2008-08-11 2010-02-25 Konica Minolta Business Technologies Inc Sheet conveying apparatus, and method for adjusting the same
JP2010168132A (en) * 2009-01-20 2010-08-05 Nec Computertechno Ltd Skew sensing device, skew preventing printing system, skew sensing method, skew preventing printing method and program
JP2012162334A (en) * 2011-02-03 2012-08-30 Seiko Epson Corp Distance calculating method, printing device, and program
JP2018065660A (en) * 2016-10-20 2018-04-26 コニカミノルタ株式会社 Image forming apparatus
JP2018145009A (en) * 2017-03-02 2018-09-20 株式会社リコー Transport device, image formation device and post-processing device
JP2021011343A (en) * 2019-07-05 2021-02-04 コニカミノルタ株式会社 Sheet conveyance device and image formation apparatus

Similar Documents

Publication Publication Date Title
JPH06255840A (en) Skew correcting method
JP4019833B2 (en) Sheet misalignment correction apparatus and image forming apparatus
JP3270258B2 (en) Time recorder with card transport amount adjustment function
JPH09142699A (en) Document double feed detecting device and method for image reading device
JP2000038238A (en) Paper sheet conveying mechanism
JPH0640098A (en) Paper feeding device
JP3745546B2 (en) Data correction device
JPH0388659A (en) Sheet conveyer
JP2003312895A (en) Double feed detector
JP2002037484A (en) Printer
JPH08295437A (en) Abnormal sheet detection device for printer, and abnormal sheet detection method
JPH04327445A (en) Bias feed correcting device
JPH0755560Y2 (en) Automatic document feeder for copiers
JPH1081432A (en) Image processing device
JPH0797133A (en) Detecting method for printing-position in long paper printing device
JP3332976B2 (en) Sheet feeder
JPH03216065A (en) Original reader
JP2005035756A (en) Sheet handling device and image reading device
JPH0325456A (en) Method for preventing paper misdetecting operation in automatic document feeder
JPS6317747A (en) Method of conveying paper sheet and the like
KR0135849B1 (en) Method & device sensing sheet feeding skew for a printer
JPH11236148A (en) Paper sheet carrying method
JP2013001535A (en) Paper conveying device and image forming apparatus
JP3068974B2 (en) Method of improving sheet feeding accuracy in image reading device
JPH04223182A (en) Recording medium-positioning device