JPH062553A - Exhaust energy recovery device - Google Patents

Exhaust energy recovery device

Info

Publication number
JPH062553A
JPH062553A JP4186170A JP18617092A JPH062553A JP H062553 A JPH062553 A JP H062553A JP 4186170 A JP4186170 A JP 4186170A JP 18617092 A JP18617092 A JP 18617092A JP H062553 A JPH062553 A JP H062553A
Authority
JP
Japan
Prior art keywords
engine
electric machine
exhaust energy
energy recovery
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4186170A
Other languages
Japanese (ja)
Inventor
Kazuo Miyajima
宮島和夫
Yoshihiro Nishi
芳弘 西
Shigeki Fujita
藤田茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP4186170A priority Critical patent/JPH062553A/en
Publication of JPH062553A publication Critical patent/JPH062553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To improve efficiency of recovering exhaust energy by mounting a plurality of turbochargers with dynamo-electric machine, and switching a connected flow path. CONSTITUTION:Turbine side flow paths of turbochargers with dynamo-electric machine (TCG) 10, 20 are connected in parallel, to join exhaust gas, after driving, guided to a turbine generator 30 to generate power. Supercharge side flow paths of both the TCG10, 20 are switched to be connected to series connection in a low speed region and to parallel connection in a high speed region, of an engine 2, and both actuated in a region of high pressure efficiency, and also power generation-actuating the dynamo-electric machine to collect exhaust energy as power in the case of an overboost in a high speed region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンに接続したター
ボチャージャに回転電機を取付け、排気エネルギーを回
収して吸気圧を上昇させるとともに回転電機に発電させ
てエネルギー回収を、エンジンの低速から高速に至る広
範囲の間にて効率化を図る排気エネルギー回収装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mounts a rotary electric machine on a turbocharger connected to an engine, recovers exhaust energy to raise intake pressure, and causes the rotary electric machine to generate power to recover energy from a low engine speed to a high speed. The present invention relates to an exhaust energy recovery device that improves efficiency over a wide range.

【0002】[0002]

【従来の技術】近年、エンジンに接続したターボチャー
ジャに電動/発電機となる回転電機を取付け、ターボチ
ャージャ本来の過給作動を行わせるとともに、エンジン
の運転状態に応じて回転電機を電動または発電駆動さ
せ、過給作動の助勢やバッテリの充電などを行わせるエ
ネルギー回収システムが開発されている。
2. Description of the Related Art In recent years, a turbocharger connected to an engine is equipped with a rotating electric machine which serves as an electric motor / generator to perform a supercharging operation which is the original purpose of the turbocharger. An energy recovery system has been developed that is driven to assist the supercharging operation and charge the battery.

【0003】一方、エンジンの低負荷域から高負荷域の
広範囲の間にて過給作動の効率化を図るため、特開昭6
1−291727号公報には小容量と大容量の2基のタ
ーボチャージャを制御する2段式過給装置が開示されて
おり、また、いわゆるシーケンシャル・ターボとして、
小容量と大容量とのターボを備えて低速域では小容量
を、高速域では大容量ターボをともに用いることが行わ
れている。
On the other hand, in order to improve the efficiency of supercharging operation in a wide range of the engine from a low load region to a high load region, Japanese Patent Laid-Open Publication No.
Japanese Patent Laid-Open No. 1-291727 discloses a two-stage type supercharger for controlling two turbochargers of a small capacity and a large capacity, and as a so-called sequential turbo,
With a turbo having a small capacity and a large capacity, a small capacity is used in a low speed range and a large capacity turbo is used in a high speed range.

【0004】[0004]

【発明が解決しようとする課題】上述のようにエンジン
の広範囲な運転に応じて2基のターボチャージャを用い
て切換えるシステムでは、タービンの切換時に過給圧が
一時低下するのを防ぐため、タービン側流路とコンプレ
ッサ側流路とを同時に切換制御する必要がある。
As described above, in a system in which two turbochargers are used for switching in response to a wide range of engine operations, in order to prevent the boost pressure from temporarily lowering when switching turbines, It is necessary to control the switching of the side flow passage and the compressor side flow passage at the same time.

【0005】また、エンジンの高速域にて過給圧の適正
な制限を行う場合には、その高速域の間は過ブースト圧
を防ぐためウエストゲートを開き、排気エネルギーの一
部を開放せねばならないという欠点がある。
Further, when the supercharging pressure is appropriately restricted in the high speed range of the engine, the waste gate must be opened to prevent a part of the exhaust energy during the high speed range in order to prevent the over boost pressure. It has the drawback of not becoming.

【0006】本発明はこのような従来の問題に鑑みてな
されたものであり、その目的は排気エネルギーの回収に
際し、エンジンの広範囲な運転領域で効率よくエネルギ
ー回収を行おうとする排気エネルギー回収装置を提供す
ることにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide an exhaust energy recovery system that efficiently recovers the exhaust energy in a wide operating region of the engine. To provide.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに本発明によれば、エンジンの排気流路に複数の回転
電機付ターボチャージャを取付けて排気エネルギーの回
収の効率化を図る排気エネルギー回収装置において、前
記の複数の回転電機付ターボチャージャに至るエンジン
からの排気流路は並列接続に関連するとともに、過給気
流路にはエンジンの運転状態に応じて直列/並列接続に
切換える流路切換手段を設けた排気エネルギー回収装置
が提供される。
In order to achieve the above-mentioned object, according to the present invention, a plurality of turbochargers with a rotating electric machine are attached to an exhaust passage of an engine to improve the efficiency of exhaust energy recovery. In the recovery device, the exhaust flow paths from the engine to the plurality of turbochargers with rotating electrical machines are related to the parallel connection, and the supercharging flow paths are the flow paths that are switched to the series / parallel connection according to the operating state of the engine. An exhaust energy recovery device provided with a switching means is provided.

【0008】[0008]

【作用】ターボチャージャへの排気流路は並列接続と
し、過給気流路はエンジンの低速域では直列接続、高速
域では並列接続に切換えるので、広範囲な運転領域の間
にてコンプレッサが効率よく作動し、また過ブーストの
防止には回転電機の発電駆動により、排気エネルギーを
電力として回収できる。
[Operation] The exhaust passage to the turbocharger is connected in parallel, and the supercharging passage is switched to series connection in the low speed range of the engine and parallel connection in the high speed range, so the compressor operates efficiently over a wide operating range. Moreover, in order to prevent overboost, the exhaust energy can be recovered as electric power by driving the rotating electric machine to generate electricity.

【0009】[0009]

【実施例】つぎに本発明の実施例について図面を用いて
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1は本発明にかかる排気エネルギー回収
装置の一実施例を示す構成ブロック図で、図2は本実施
例に用いる回転電機付ターボチャージャを示す説明図で
ある。
FIG. 1 is a configuration block diagram showing an embodiment of an exhaust energy recovery system according to the present invention, and FIG. 2 is an explanatory view showing a turbocharger with a rotating electric machine used in this embodiment.

【0011】まず図2によりターボチャージャと回転電
機との関係を説明すると、1はターボチャージャ、2は
エンジン、3は電動発電機となる回転電機であり、エン
ジン2からの排気ガスは排気管21を介してターボチャ
ージャ1に送気され、タービン11を駆動して放出され
る。
First, referring to FIG. 2, the relationship between the turbocharger and the rotary electric machine will be described. 1 is a turbocharger, 2 is an engine, and 3 is a rotary electric machine that serves as a motor generator, and exhaust gas from the engine 2 is exhaust pipe 21. The gas is sent to the turbocharger 1 via the air and is discharged by driving the turbine 11.

【0012】タービン軸12には回転電機3とコンプレ
ッサ13とが同軸に取付けられ、タービントルクにより
駆動されるコンプレッサ13は空気を圧縮して吸気管2
2を介してエンジン2に過給気を圧送する。また回転電
機3はエンジン2からの排気エネルギーが大きい場合は
発電を行い、電力変換器4を介してバッテリ5を充電す
る。そして、エンジン2が低回転で高負荷を要する場合
には、バッテリ5を電源とした電力が電力変換器4によ
り回転電機3に供給されて電動機作動し、コンプレッサ
13の圧気作動を助勢して過給気圧を高めることにな
る。なお、このような作動の制御はエンジン回転センサ
23、ブースト圧センサ14や負荷の検出手段となるア
クセルペダルセンサ61などからの信号を入力するコン
トローラ6の指令により行われている。
A rotary electric machine 3 and a compressor 13 are coaxially attached to the turbine shaft 12, and the compressor 13 driven by turbine torque compresses air to intake pipe 2.
The supercharged air is pressure-fed to the engine 2 via 2. When the exhaust energy from the engine 2 is large, the rotary electric machine 3 generates electricity and charges the battery 5 via the power converter 4. When the engine 2 rotates at a low speed and requires a high load, electric power supplied from the battery 5 is supplied to the rotary electric machine 3 by the power converter 4 to operate the electric motor, and assists the pneumatic operation of the compressor 13 to prevent excessive operation. It will increase the supply pressure. It should be noted that such operation control is performed by a command from the controller 6 that inputs signals from the engine rotation sensor 23, the boost pressure sensor 14, the accelerator pedal sensor 61 serving as a load detection unit, and the like.

【0013】図1の構成ブロック図はこのような回転電
機付ターボチャージャ(TCG)10と20との2基
と、タービン発電機30とを備えたシステムで、エンジ
ン2の排気流路は図示のようにTCG10と20とが常
に並列に接続され、それぞれの2基のタービンtを駆動
後の排出ガスは合流されてタービン発電機30を駆動し
て電力として回収されるように接続されている。
The configuration block diagram of FIG. 1 shows a system including two turbochargers (TCG) 10 and 20 with a rotating electric machine and a turbine generator 30. The exhaust passage of the engine 2 is shown in the drawing. As described above, the TCGs 10 and 20 are always connected in parallel, and the exhaust gases after driving the respective two turbines t are connected to drive the turbine generator 30 to be recovered as electric power.

【0014】つぎに吸気流路を説明すると、Sは取入口
で、A,B,CおよびDはそれぞれが所定方向への開閉
自在なバルブを有する分岐路または合流路であり、エン
ジン2が低回転時にはTCG10と20とのコンプレッ
サcが直列接続され、高回転時には2基のコンプレッサ
が並列接続されるものである。なお、Dの分岐路には一
時的に圧気をW方向に開放するバルブが設けられてい
る。
Next, the intake passage will be explained. S is an intake passage, and A, B, C and D are branch passages or joint passages each having an openable / closable valve in a predetermined direction, and the engine 2 is low. At the time of rotation, the compressors c of TCG 10 and 20 are connected in series, and at the time of high rotation, two compressors are connected in parallel. A valve that temporarily releases the compressed air in the W direction is provided in the D branch passage.

【0015】図3は本実施例の作動の一例を示す処理フ
ロー図であり、同図に基づいてその作動を説明する。
FIG. 3 is a process flow chart showing an example of the operation of this embodiment, and the operation will be described based on the figure.

【0016】まずステップ1にてエンジン回転数および
エンジン負荷を入力し、これらの信号に基づいて吸気流
路の直・並列の切換を行うか否かをステップ2にて判断
する。
First, in step 1, the engine speed and engine load are input, and based on these signals, it is determined in step 2 whether or not the intake passage is switched between direct and parallel.

【0017】ステップ2で切換の準備を行う場合はステ
ップ3に進み、ここではDの分岐路におけるW方向の流
路のバルブの一時開放を行う。このことはTCG10,
20のコンプレッサtの流路を直列から並列に切換を行
うと図4に示すように圧力が変化するので、切換開始か
らC=Dとなるまでの時間を短縮させる必要があり、こ
のため切換える少し前よりDからWに至る流路を過渡的
に開放してその圧力を一定に保持するようにTCG10
を電動駆動し、切換えるエンジン回転数となったら開放
した流路を閉じるとともに電動駆動を中止するものであ
る。
When the preparation for switching is made in step 2, the process proceeds to step 3, in which the valve of the flow passage in the W direction in the D branch is temporarily opened. This is TCG10,
When the passages of 20 compressors t are switched from serial to parallel, the pressure changes as shown in FIG. 4, so it is necessary to shorten the time from the start of switching until C = D. The TCG 10 is designed to transiently open the flow path from D to W to maintain the pressure constant.
Is electrically driven, and when the engine speed to be switched is reached, the opened flow path is closed and the electrically driven is stopped.

【0018】したがってステップ3からステップ4に進
んでDの圧力が一定になるようにTCG10のgを電動
駆動し、ついで、直・並列の切換えの場合はステップ
5,6,7と進んで、W側流路閉鎖とTCG10の電動
を中止してステップ8にて並列流路に変更する。
Therefore, the process proceeds from step 3 to step 4 and the g of the TCG 10 is electrically driven so that the pressure of D becomes constant. Then, in the case of serial / parallel switching, the process proceeds to steps 5, 6 and 7, where W The side flow path is closed and the TCG 10 is stopped from being electrically operated, and the parallel flow path is changed in step 8.

【0019】なお、ステップ2にて流路の切換準備を行
わない場合はステップ9にてブースト圧のチェックを行
い、所定の適正圧の場合はフローを終るが、過ブースト
の場合はステップ10に進んでTCGに発電作動させ、
排気エネルギーの過大分を電力に変換させて回収するこ
とになる。
If the preparation for switching the flow path is not made in step 2, the boost pressure is checked in step 9, and the flow ends if the pressure is a predetermined appropriate pressure, but to step 10 if the boost is excessive. Go ahead and let the TCG generate electricity,
Excessive amount of exhaust energy will be converted to electric power and recovered.

【0020】図5、図6はコンプレッサ空気流量と圧力
比との関係を示す曲線図でコンプレッサ効率ηを示すも
のであり、図5の低速域にては過給流路の直列接続によ
り効率ηが増大し、図6の高速域では従来のようなウエ
ストゲートの開放による無駄がなく、また回転電機の発
電により電力として回収される。
FIGS. 5 and 6 show the compressor efficiency η in a curve diagram showing the relationship between the compressor air flow rate and the pressure ratio. In the low speed region of FIG. In the high-speed range of FIG. 6, there is no waste due to opening of the waste gate as in the conventional case, and the electric power is recovered by the power generation of the rotating electric machine.

【0021】[0021]

【発明の効果】上述の実施例のように本発明によれば、
エンジンの排気流路に2基の回転電機付ターボチャージ
ャのタービン流路を並列に常に接続し、コンプレッサか
らの過給気流路はエンジンの運転状態に応じ、低速域で
は直列接続、高速域では並列接続に切換えを行うので、
広範囲な運転領域でコンプレッサが高効率に圧縮作動を
行うとともに、タービンを駆動後の排出ガスはまとめら
れてタービン発電機により電気エネルギーとして回収さ
れ、さらに高速域では過ブーストを防ぐため回転電機に
発電させ、従来はウエストゲートにより排出させていた
排気エネルギーを電力として回収できるという効果が得
られる。
According to the present invention as in the above embodiments,
The two turbine flow paths of the turbocharger with rotating electric machine are always connected in parallel to the exhaust flow path of the engine, and the supercharged air flow path from the compressor is connected in series at low speed range and parallel at high speed range according to the operating condition of the engine. Because it switches to connection,
The compressor performs highly efficient compression operation in a wide range of operating areas, the exhaust gas after driving the turbine is collected and collected as electric energy by the turbine generator, and in the high speed range, it is generated by the rotating electric machine to prevent overboost. Then, the effect that the exhaust energy that has been conventionally discharged by the waste gate can be recovered as electric power is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる排気エネルギー回収装置の一実
施例を示す構成ブロック図である。
FIG. 1 is a configuration block diagram showing an embodiment of an exhaust energy recovery system according to the present invention.

【図2】本実施例に用いる回転電機付ターボチャージャ
を示す説明図である。
FIG. 2 is an explanatory diagram showing a turbocharger with a rotating electric machine used in this embodiment.

【図3】本実施例の作動の一例を示す処理フロー図であ
る。
FIG. 3 is a process flow chart showing an example of the operation of the present embodiment.

【図4】本実施例における直・並列切換時の説明図であ
る。
FIG. 4 is an explanatory diagram at the time of serial / parallel switching in the present embodiment.

【図5】本実施例によるコンプレッサ効率の一例を示す
曲線図である。
FIG. 5 is a curve diagram showing an example of compressor efficiency according to the present embodiment.

【図6】本実施例によるコンプレッサ効率の一例を示す
曲線図である。
FIG. 6 is a curve diagram showing an example of compressor efficiency according to the present embodiment.

【符号の説明】[Explanation of symbols]

1…ターボチャージャ 2…エンジン 3…回転電機 10,20…回転電機付ターボチャージャ 30…タービン発電機 DESCRIPTION OF SYMBOLS 1 ... Turbocharger 2 ... Engine 3 ... Rotating electric machine 10, 20 ... Turbocharger with rotating electric machine 30 ... Turbine generator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】エンジンの排気流路に複数の回転電機付タ
ーボチャージャを取付けて排気エネルギーの回収の効率
化を図る排気エネルギー回収装置において、前記の複数
の回転電機付ターボチャージャに至るエンジンからの排
気流路は並列接続に連結するとともに、過給気流路には
エンジンの運転状態に応じて直列/並列接続に切換える
流路切換手段を設けたことを特徴とする排気エネルギー
回収装置。
1. An exhaust energy recovery apparatus for mounting a plurality of turbochargers with a rotating electric machine in an exhaust passage of an engine to improve the efficiency of exhaust energy recovery, wherein the turbocharger with a rotating electric machine is connected to a plurality of turbochargers from the engine. An exhaust energy recovery system characterized in that the exhaust passages are connected in parallel, and the supercharging passages are provided with passage switching means for switching between series / parallel connection according to the operating state of the engine.
【請求項2】前記の流路切換手段はエンジンの低速域で
は過給気流路を直列接続、高速域では並列接続に切換え
ることを特徴とする請求項1記載の排気エネルギー回収
装置。
2. The exhaust energy recovery system according to claim 1, wherein the flow passage switching means switches the supercharging flow passages in series in a low speed region of the engine and in parallel in a high speed region.
【請求項3】前記エンジンの高速域にての過大過給圧の
制御は前記回転電機を発電作動させることを特徴とする
請求項1記載の排気エネルギー回収装置。
3. The exhaust energy recovery system according to claim 1, wherein the control of the excessive supercharging pressure in the high speed range of the engine causes the rotary electric machine to generate electric power.
【請求項4】前記の複数の回転電機付ターボチャージャ
の排出ガス流路を纏めるとともに、該流路にタービン発
電機を接続したことを特徴とする請求項1記載の排気エ
ネルギー回収装置。
4. The exhaust energy recovery system according to claim 1, wherein exhaust gas passages of the plurality of turbochargers with rotating electric machines are collected and a turbine generator is connected to the passages.
JP4186170A 1992-06-19 1992-06-19 Exhaust energy recovery device Pending JPH062553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4186170A JPH062553A (en) 1992-06-19 1992-06-19 Exhaust energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4186170A JPH062553A (en) 1992-06-19 1992-06-19 Exhaust energy recovery device

Publications (1)

Publication Number Publication Date
JPH062553A true JPH062553A (en) 1994-01-11

Family

ID=16183622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4186170A Pending JPH062553A (en) 1992-06-19 1992-06-19 Exhaust energy recovery device

Country Status (1)

Country Link
JP (1) JPH062553A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038172A1 (en) * 2004-08-06 2006-02-23 Daimlerchrysler Ag Internal combustion engine
DE102004061023A1 (en) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Internal combustion engine e.g. diesel engine, has two exhaust gas turbo-chargers connected with each other such that supercharged air compressed by one turbo-charger is repressed intermittently with other turbo-charger
US7571608B2 (en) * 2005-11-28 2009-08-11 General Electric Company Turbocharged engine system and method of operation
US8584459B2 (en) 2006-12-09 2013-11-19 Aeristech Limited Engine induction system
JP2020197167A (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Supercharging system
WO2020246106A1 (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Supercharging system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038172A1 (en) * 2004-08-06 2006-02-23 Daimlerchrysler Ag Internal combustion engine
DE102004061023A1 (en) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Internal combustion engine e.g. diesel engine, has two exhaust gas turbo-chargers connected with each other such that supercharged air compressed by one turbo-charger is repressed intermittently with other turbo-charger
US7571608B2 (en) * 2005-11-28 2009-08-11 General Electric Company Turbocharged engine system and method of operation
US8584459B2 (en) 2006-12-09 2013-11-19 Aeristech Limited Engine induction system
JP2020197167A (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Supercharging system
WO2020246105A1 (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Supercharging system
WO2020246106A1 (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Supercharging system
JP2020197166A (en) * 2019-06-03 2020-12-10 株式会社豊田自動織機 Supercharging system

Similar Documents

Publication Publication Date Title
JP2526100B2 (en) Supercharger control device
JP2640757B2 (en) Control device for turbocharger
JPH08121183A (en) Control system for turbo charger with electrically driven power generator
EP0385622B1 (en) Energy recovery system for motor vehicle
JPH055419A (en) Controller for turbo-charger with rotary electric machine
JP2884725B2 (en) Control device for twin turbocharger
CN113202639A (en) Power system of electric supercharging Miller cycle engine
JPH062553A (en) Exhaust energy recovery device
JP2005009315A (en) Two-stage supercharger for engine
JP3160822B2 (en) Exhaust energy recovery device
EP0349211B1 (en) Exhaust-driven electric generator system for internal combustion engines
JPH06229250A (en) Exhaust energy recovery device
JP3094604B2 (en) Exhaust energy recovery device
JP3185478B2 (en) Vehicle power supply
JP3500782B2 (en) Control device for turbocharger with motor / generator
JPH08177507A (en) Supercharger of internal combustion engine and its operation method
JP3136857B2 (en) Twin turbocharger control device
JPH0412131A (en) Turbocharger with electric rotary machine
JPH0650061B2 (en) Supercharger control device
JPH04276134A (en) Controller for turbo charger with electric rotating device
JPH05179972A (en) Energy recovery system
JPH0233413A (en) Driving device for turbo-charger with electric rotating machine
JPH0771241A (en) Exhaust energy recovery device for engine
JPH05141254A (en) Braking force control device
JPS6327060Y2 (en)