JPH06254433A - Air filter - Google Patents

Air filter

Info

Publication number
JPH06254433A
JPH06254433A JP21517592A JP21517592A JPH06254433A JP H06254433 A JPH06254433 A JP H06254433A JP 21517592 A JP21517592 A JP 21517592A JP 21517592 A JP21517592 A JP 21517592A JP H06254433 A JPH06254433 A JP H06254433A
Authority
JP
Japan
Prior art keywords
conductive
filter
conductive porous
air
porous layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21517592A
Other languages
Japanese (ja)
Inventor
Isao Ebihara
功 海老原
Takashi Yamazaki
岳志 山崎
Kenji Hyodo
建二 兵頭
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Tamio Saito
民雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP21517592A priority Critical patent/JPH06254433A/en
Publication of JPH06254433A publication Critical patent/JPH06254433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To reduce the load of a blower motor by applying voltage across a plurality of conductive porous layers laminated by interposing permeable non-conductive layers in an air filter for an air cleaner for air conditioning or the like. CONSTITUTION:Two conductive porous layers 1 or more are laminated by interposing air permeable non-conductive layers 2 composed of a non-woven cloth or the like used as a filter medium to constitute a filter. For the conductive porous layers 2, wet and dry non-woven cloth containing conductive fibers or the like is used mostly, although not particularly specified. A non-woven cloth sheet into which metallic fibers are contained is used for the purpose. Power source terminals 5 connected with cathodes or anodes of a power source are disposed respectively on the conductive porous layers 1, 1, connected with the power source and voltage is applied among the conductive porous layers 1, 1. Also folding work can be carried out to increase the filter area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、家庭用空気清浄器や半
導体製造、医薬品製造、食品、病院等の分野で使用され
るエアフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air filter used in household air purifiers, semiconductor manufacturing, pharmaceutical manufacturing, foods, hospitals and the like.

【0002】[0002]

【従来の技術】粒径が5ミクロン以下の浮遊微粒子の補
足には電気集じん器やメカニカルフィルタ等が使われて
いる。電気集じん器は粒子に電荷を与えて電界により集
じん極板上に粒子を補集する方法であり、これに対して
メカニカルフィルタでは粒子をふるい効果と付着効果に
より補集するものである。従来中性能、高性能のエアフ
ィルタにはマイクロガラス繊維を用いた瀘材が一般的に
用いられている。 また、近年エレクトレットフィルタ
と呼ばれる有機繊維に永久帯電した繊維で構成されたフ
ィルターも用いられるようになった。エアフィルタ及び
浮遊微粒子の除去の詳細については「クリーンルームハ
ンドブック」(社団法人日本空気清浄協会編、(株)オ
ーム社発行、1989年1月)に詳細に述べられてい
る。
2. Description of the Related Art An electrostatic precipitator, a mechanical filter or the like is used to supplement suspended particles having a particle size of 5 microns or less. The electrostatic precipitator is a method in which an electric field is applied to the particles to collect the particles on the collecting electrode plate by an electric field, whereas the mechanical filter collects the particles by a sieving effect and an adhesion effect. Conventionally, a filter material using micro glass fiber is generally used for a medium-performance and high-performance air filter. Further, in recent years, a filter called an electret filter made of a fiber in which an organic fiber is permanently charged has been used. Details of the air filter and the removal of airborne particles are described in detail in "Clean Room Handbook" (edited by Japan Air Cleaning Association, published by Ohm Co., Ltd., January 1989).

【0003】導電性層に電圧を印加したフィルタとして
は、これまでに特開昭61−174954号公報に導電
性スポンジを利用した空気浄化装置が、また、特開平2
−253867号公報に導電性フィルタと誘電性フィル
タとを組み合わせたフィルタが示されている。
As a filter for applying a voltage to a conductive layer, an air purifying device using a conductive sponge has been disclosed in Japanese Patent Laid-Open No. 174954/1986, and Japanese Laid-Open Patent Publication No. Hei 2 (1999) -31945.
Japanese Patent No. 253867 discloses a filter in which a conductive filter and a dielectric filter are combined.

【0004】[0004]

【発明が解決しようとする課題】マイクロガラス繊維を
用いたエアフィルタは捕集効率が高く、また難燃性を有
することから、工業用、産業用、及び公共施設での利用
を目的として広範囲で用いられているが、圧力損失が高
く、送風の負荷が大きいため大型の送風機を必要とし、
そのため電力コストが高いのみならず、騒音も大きい等
の問題が有った。
Since an air filter using micro glass fiber has high collection efficiency and flame retardancy, it is widely used for industrial, industrial and public facilities. Although it is used, it requires a large blower because the pressure loss is high and the wind load is large.
Therefore, there is a problem that not only the power cost is high but also the noise is large.

【0005】エレクトレット繊維を用いたエレクトレッ
トフィルタはマイクロガラス繊維を用いたフィルタに比
べて圧力損失が低く、送風の負荷が低い事から近年注目
を浴びているものの、その瀘過抵抗はいまだ満足できる
程低くない。またタバコのヤニ等の液状微粒子では繊維
表面の粒子による被覆に起因する捕集効率の低下が避け
られない。
The electret filter using the electret fiber has been attracting attention in recent years because it has a lower pressure loss than the filter using the micro glass fiber and a low load of air flow, but its filtration resistance is still satisfactory. Not low. Further, liquid fine particles such as tobacco tar are inevitably accompanied by a decrease in the collection efficiency due to the coating of the fiber surface with the particles.

【0006】また、特開昭61−174954号公報、
特開平2−253867号公報に示されている空気浄化
装置及びフィルタでは基本的にコロナ放電により空気中
の微粒子を帯電させて静電力作用により吸着補集するも
ので4〜10kVの高電圧が必要であり、その発生装置
及び取扱等に問題があった。
Further, Japanese Patent Laid-Open No. 61-174954,
The air purifying device and filter disclosed in Japanese Patent Laid-Open No. 2-253867 basically charge fine particles in the air by corona discharge and adsorb and collect them by electrostatic force action, which requires a high voltage of 4 to 10 kV. There was a problem with the generator and handling.

【0007】本発明は、上記フィルタの欠点である送風
の負荷が極端に低く、送風モータの負荷を低減しうるエ
アフィルタを提供するものである。
The present invention provides an air filter capable of reducing the load of the blower motor, which is a drawback of the above-described filter and has an extremely low load of blown air.

【0008】[0008]

【課題を解決するための手段】本発明者らは前記の課題
を解決するため鋭意研究を行なった結果、通気性非導電
性層を介して積層された導電性多孔質体からなる瀘材間
に比較的低い電圧を印加することで非常に圧力損失が低
い瀘材で、高い捕集効率が得られることを見出し本発明
を完成した。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a space between filter materials made of a conductive porous material laminated with a breathable non-conductive layer interposed therebetween. The present invention has been completed by finding that high filtration efficiency can be obtained with a filter material having a very low pressure loss by applying a relatively low voltage to the filter.

【0009】すなわち、本発明は通気性非導電性層を介
在させて積層された、少なくとも2層の導電性多孔質層
と前記導電性多孔質層間に電圧を印加する手段を備えて
いる事を特徴とするエアフィルタである。
That is, the present invention comprises at least two conductive porous layers laminated with a breathable non-conductive layer interposed and a means for applying a voltage between the conductive porous layers. It is a featured air filter.

【0010】導電性多孔質体層としては特に限定は無
く、シートとして導電性を有していればいずれでもよい
が、導電性繊維を含有する湿式及び乾式の不織布や、導
電性繊維を含有する編布、織布、ネット、メッシュ、さ
らには非導電性繊維からなる編布、織布、ネット、メッ
シュおよび不織布に導電性被覆を設けたもの等が例示さ
れる。
The conductive porous material layer is not particularly limited and may be any as long as it has conductivity as a sheet, but it contains wet and dry non-woven fabrics containing conductive fibers and conductive fibers. Examples thereof include knitted fabrics, woven fabrics, nets, meshes, and knitted fabrics, woven fabrics, nets, meshes and non-woven fabrics made of non-conductive fibers, which are provided with a conductive coating.

【0011】更に具体的には、例えば金属繊維、ワイヤ
ーからなるメッシュや、金属繊維、または金属被覆繊維
を混抄してなる不織布シート、有機繊維や無機繊維の編
布、織布、メッシュ、および不織布に金属被覆をした繊
維構造体、発泡金属等が使用できる。これらのうち金属
メッキされた不織布が導電性が高く、軽量である点から
最も好ましく用いられる。
More specifically, for example, a mesh made of metal fibers or wires, a non-woven sheet made by mixing metal fibers or metal-coated fibers, a knitted cloth, a woven cloth, a mesh, and a non-woven cloth of organic fibers or inorganic fibers. A fiber structure having a metal coating on it, a foam metal, or the like can be used. Among these, the metal-plated nonwoven fabric is most preferably used because it has high conductivity and is lightweight.

【0012】金属メッキされた不織布としては例えば、
ガラス繊維等の無機繊維、アクリル繊維、ポリエステル
繊維、ビニロン繊維等の有機合成繊維、アセテート繊
維、トリアセテート繊維等の半合成繊維、レーヨン繊維
等の再生繊維、木綿、木材パルプ等の天然繊維等を単独
もしくは2種以上混用して製造した乾式不織布や湿式不
織布に無電解メッキ等の方法で不織布の繊維表面に銅、
ニッケル、銀等の金属の被覆を設けた物が挙げられる。
Examples of the metal-plated nonwoven fabric include:
Inorganic fiber such as glass fiber, organic fiber such as acrylic fiber, polyester fiber, vinylon fiber, semi-synthetic fiber such as acetate fiber and triacetate fiber, recycled fiber such as rayon fiber, natural fiber such as cotton and wood pulp, etc. Alternatively, dry non-woven fabric or wet non-woven fabric prepared by mixing two or more kinds of copper with copper on the fiber surface of non-woven fabric by a method such as electroless plating
The thing which provided the coating of metals, such as nickel and silver, is mentioned.

【0013】通気性非導電性層としては、導電性多孔質
体間の絶縁を確保できる多孔質素材がその代表的なもの
であり、例えばフィルタ用瀘材その他に用いられる各種
不織布、紙や発泡プラスチック等の素材が好ましく利用
できる。さらに高い補集効率が要求されるときはマイク
ロガラス繊維不織布を用いることが好ましい。
A typical example of the breathable non-conductive layer is a porous material capable of ensuring insulation between conductive porous bodies. For example, various non-woven fabrics used for filter materials and other materials, paper and foam. Materials such as plastic can be preferably used. When higher collection efficiency is required, it is preferable to use a micro glass fiber nonwoven fabric.

【0014】導電性多孔質層間に電圧を印加する手段と
しては例えば同導電性多孔質にそれぞれ電源の陰極又は
陽極を結合させる電源端子を常法により設ければよい。
As a means for applying a voltage between the conductive porous layers, for example, a power source terminal for connecting a cathode or an anode of a power source to the conductive porous layer may be provided by a conventional method.

【0015】印加する電圧は特に制限は無いが、好まし
くは100vから1.0kvの範囲が好ましい。100
v未満では電圧印加による粉塵捕集効率向上の効果が小
さく、また1.0kvを越えると放電による非導電性多
孔質層の破壊の危険が有るので好ましくない。
The voltage to be applied is not particularly limited, but is preferably in the range of 100v to 1.0kv. 100
If it is less than v, the effect of improving the dust collection efficiency by applying a voltage is small, and if it exceeds 1.0 kv, there is a risk of destruction of the non-conductive porous layer due to discharge, which is not preferable.

【0016】積層したフィルター瀘材の構成としては例
えば、図1のように2層の導電性多孔体層とその間に設
けられた非導電性多孔体層からなるもの、図2の様に3
層以上の導電性多孔体層と非導電性多孔体層からなるも
のが例示される。
As the constitution of the laminated filter filter material, for example, as shown in FIG. 1, one composed of two conductive porous material layers and a non-conductive porous material layer provided therebetween, and as shown in FIG.
An example is one composed of a conductive porous body layer and a non-conductive porous body layer having a number of layers or more.

【0017】又、これら積層体を例えば図3の様に従来
のエアフィルタと同様に襞折加工して瀘過面積を増加さ
せて用いることも可能であり、また好ましい。
Further, it is also possible and preferable to use such a laminated body by folding it like a conventional air filter as shown in FIG. 3 to increase the filtration area.

【0018】導電性多孔質層と通気性非導電性層は単に
重ねられているだけでも良く、またバインダー等により
一体に接合されていても良く、また例えば非導電性不織
布の表面層のみに導電化処理を行ない導電性層を形成し
たものを用いても良い。
The conductive porous layer and the air-permeable non-conductive layer may be simply laminated, or may be integrally joined with a binder or the like. Further, for example, only the surface layer of the non-conductive nonwoven fabric is electrically conductive. You may use what formed the electroconductive layer by performing the chemical conversion treatment.

【0019】[0019]

【作用】本発明のエアフィルタは圧力損失が低いにもか
かわらず、電界の作用により非常に高い捕集効率を有し
ている。
The air filter of the present invention has a very high trapping efficiency due to the action of the electric field, although the pressure loss is low.

【0020】[0020]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明は本実施例に限定されるものではない。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0021】なお、実施例及び比較例における圧力損失
及び粉塵捕集効率は以下の方法で測定した。 圧力損失:積層した瀘材に空気を流速5.3cm/秒で
通気させた時の通気抵抗を水柱マノメーターにより求め
た。 粉塵捕集効率:平均粒径0.3μmのジオクチルフタレ
ート粒子を発生させ、この粒子を含有する空気を用い流
速5.3cm/秒で積層した瀘材を通過させ、瀘材の前
後でサンプリングした空気中の粒子数を光散乱式粒子計
数器(KC−11,リオン株式会社製)を用いて測定
し、下記の式を用いて算出した。
The pressure loss and dust collection efficiency in Examples and Comparative Examples were measured by the following methods. Pressure loss: The ventilation resistance when air was passed through the laminated filter materials at a flow rate of 5.3 cm / sec was determined by a water column manometer. Dust collection efficiency: Dioctyl phthalate particles having an average particle size of 0.3 μm are generated, and air containing these particles is passed through a laminated filter material at a flow rate of 5.3 cm / sec, and air is sampled before and after the filter material. The number of particles therein was measured using a light scattering type particle counter (KC-11, manufactured by Rion Co., Ltd.) and calculated using the following formula.

【数1】 [Equation 1]

【0022】比較例1 マイクロガラス繊維を用いた通常の中性能エアフィルタ
用瀘材を比較例1として、その圧力損失及び捕集効率を
表1に示す。
COMPARATIVE EXAMPLE 1 Table 1 shows the pressure loss and collection efficiency of a conventional medium-performance filter material for air filters using micro glass fiber as Comparative Example 1.

【0023】比較例2及び実施例1〜3 通気性非導電性層としてガラス繊維不織布(ガラス繊維
径9μm、坪量80g/m2)1枚、導電性多孔体層とし
て35メッシュステンレス網1枚、通気性非導電性層と
してガラス繊維不織布(ガラス繊維径9μm、坪量75
g/m2)2枚、導電性多孔体層として35メッシュのス
テンレスメッシュ1枚、通気性非導電性層としてガラス
繊維不織布(ガラス繊維径9μm、坪量75g/m2)1
枚を順次積層し、ステンレスメッシュ間にそれぞれ、0
v、250v、500v、1kvの電圧を印加しそれぞ
れ比較例2、実施例1、実施例2、及び実施例3とし
た。それぞれの圧力損失、捕集効率を表1に示す。
Comparative Example 2 and Examples 1 to 3 One glass fiber nonwoven fabric (glass fiber diameter 9 μm, basis weight 80 g / m 2 ) was used as the breathable non-conductive layer, and one 35 mesh stainless mesh was used as the conductive porous layer. , A glass fiber non-woven fabric as a breathable non-conductive layer (glass fiber diameter 9 μm, basis weight 75
g / m 2 ) 2 pieces, 35 mesh stainless mesh 1 piece as conductive porous body layer, glass fiber nonwoven fabric (glass fiber diameter 9 μm, basis weight 75 g / m 2 ) as breathable non-conductive layer 1
Laminate the sheets one by one, and place 0 between the stainless meshes.
The voltages of v, 250v, 500v, and 1kv were applied to obtain Comparative Example 2, Example 1, Example 2, and Example 3, respectively. Table 1 shows each pressure loss and collection efficiency.

【0024】実施例から電圧を印加することにより非常
に高い捕集効率が圧力損失の増加なしに達成されること
がわかる。 また、ほぼ同一の捕集効率の中性能フィル
タである比較例1と実施例3を比べるとほぼ同一の捕集
効率で圧力損失を1/6以下と大幅に改善することが可
能であることがわかる。また、印加する電圧を高くする
ことで捕集効率が向上することがわかる。
From the examples it can be seen that by applying a voltage a very high collection efficiency is achieved without an increase in pressure loss. Further, when comparing Comparative Example 1 and Example 3 which are medium performance filters having substantially the same collection efficiency, it is possible to significantly improve the pressure loss to 1/6 or less with substantially the same collection efficiency. Recognize. Further, it can be seen that the collection efficiency is improved by increasing the applied voltage.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例3及び実施例4〜6 実施例1の積層体の導電性多孔質層をガラス繊維不織布
(ガラス繊維径9μm、坪量75g/m2)にメッキ厚
0.15μmの無電解銅メッキした不織布を用いた他は
実施例1と同じ構成で積層し、導電性多孔質層間にそれ
ぞれ、0v、500v、1kvの電圧を印加しそれぞれ
比較例3、実施例4、及び実施例5とした。それぞれの
圧力損失、捕集効率を表2に示す。
Comparative Example 3 and Examples 4 to 6 The electroconductive porous layer of the laminate of Example 1 was applied to a glass fiber non-woven fabric (glass fiber diameter 9 μm, basis weight 75 g / m 2 ) with electroless thickness of 0.15 μm. Laminates having the same configuration as in Example 1 except that a copper-plated nonwoven fabric was used, and voltages of 0 v, 500 v, and 1 kv were applied between the conductive porous layers, respectively, and Comparative Example 3, Example 4, and Example 5 respectively. And Table 2 shows each pressure loss and collection efficiency.

【0027】[0027]

【表2】 [Table 2]

【0028】比較例4及び実施例6、7 実施例1の積層体の導電性多孔質層をニッケル発泡体
(住友電工社製、セルメット、品番#7、厚み1.6m
m)を用いた他は実施例1と同じ構成で積層し、導電性
多孔質層間にそれぞれ、0v、500v、1kvの電圧
を印加しそれぞれ比較例4、実施例6、及び実施例7と
した。それぞれの圧力損失、捕集効率を表3に示す。
Comparative Example 4 and Examples 6 and 7 The conductive porous layer of the laminate of Example 1 was replaced with a nickel foam (Sumitomo Electric Co., Celmet, product number # 7, thickness 1.6 m).
m) was used and laminated with the same configuration as in Example 1, and voltages of 0 v, 500 v, and 1 kv were applied between the conductive porous layers, to form Comparative Example 4, Example 6, and Example 7, respectively. . Table 3 shows each pressure loss and collection efficiency.

【0029】比較例5及び実施例8、9 実施例1の積層体の導電性多孔質層をアクリル繊維(繊
度3デニール、繊維長5mm)80部とポリエステル熱
融着性繊維20部を混合し湿式抄紙した坪量80g/m2
の不織布に無電解メッキで20g/m2のニッケル被覆を
して得られたニッケルメッキ不織布を用いた他は実施例
1と同じ構成で積層し導電性多孔質層間にそれぞれ、0
v、500v、1kvの電圧を印加しそれぞれ比較例
5、実施例8、及び実施例9とした。それぞれの圧力損
失、捕集効率を表3に示す。
Comparative Example 5 and Examples 8 and 9 The conductive porous layer of the laminate of Example 1 was mixed with 80 parts of acrylic fiber (fineness 3 denier, fiber length 5 mm) and 20 parts of polyester heat-fusible fiber. Wet papermaking basis weight 80 g / m 2
The same non-woven fabric as in Example 1 was used except that the non-woven fabric was coated with nickel at 20 g / m 2 by electroless plating.
Voltages of v, 500 v, and 1 kv were applied to obtain Comparative Example 5, Example 8, and Example 9, respectively. Table 3 shows each pressure loss and collection efficiency.

【0030】比較例6及び実施例10 通気性非導電性層としてガラス繊維不織布(ガラス繊維
径9μm、坪量75g/m2)、導電性多孔質層としてガ
ラス繊維不織布(ガラス繊維径9μm、坪量75g/
m2)にメッキ厚0.15μmの無電解銅メッキした不織
布を用い、通気性非道電性層合計5枚のそれぞれのシー
ト間に、導電性多孔質層4枚を挿入積層し、通気性非道
電性層を介して隣合う導電性多孔質層間にそれぞれ、0
v、500vの電圧を印加しそれぞれ比較例6、実施例
10とした。それぞれの圧力損失、捕集効率を表3に示
す。
Comparative Example 6 and Example 10 A glass fiber nonwoven fabric (glass fiber diameter 9 μm, basis weight 75 g / m 2 ) was used as the breathable non-conductive layer, and a glass fiber nonwoven fabric (glass fiber diameter 9 μm, basis weight) was used as the conductive porous layer. Amount 75g /
m 2) in a plating thickness 0.15μm electroless copper plated nonwoven, between each of five total breathability nefarious conductive layer of the sheet, to insert stacked four conductive porous layer, breathable cruel 0 between the conductive porous layers adjacent to each other via the conductive layer
A voltage of v and a voltage of 500 v were applied to Comparative Example 6 and Example 10, respectively. Table 3 shows each pressure loss and collection efficiency.

【0031】[0031]

【表3】 [Table 3]

【0032】比較例7 マイクロガラス繊維を用いた市販の準高性能エアフィル
タ用瀘材を比較例7として、その圧力損失及び捕集効率
を表4に示す。
Comparative Example 7 As a comparative example 7, a commercially available filter material for semi-high performance air filters using micro glass fibers is shown in Table 4 for its pressure loss and collection efficiency.

【0033】比較例8及び実施例11 実施例8の導電性多孔質層間の非導電性多孔質層を市販
のマイクロガラス繊維を用いた中性能エアフィルタ瀘材
に置き換えたほかは実施例8と同じ構成に積層し導電性
多孔質層間にそれぞれ、0v、1kvの電圧を印加しそ
れぞれ比較例8、及び実施例11とした。それぞれの圧
力損失、捕集効率を表4に示す。
Comparative Example 8 and Example 11 As Example 8 except that the non-conductive porous layer between the conductive porous layers of Example 8 was replaced with a medium performance air filter filter material using commercially available micro glass fiber. Comparative examples 8 and 11 were prepared by stacking layers with the same structure and applying voltages of 0 v and 1 kv between the conductive porous layers. Table 4 shows each pressure loss and collection efficiency.

【0034】[0034]

【表4】 [Table 4]

【0035】実施例11では、ほぼ同一の捕集効率の準
高性能エアフィルタ瀘材である比較例7と比べるとほぼ
同一の捕集効率で圧力損失が約1/3であり、低圧力損
失で高効率なエアフィルタであることがわかる。
In Example 11, as compared with Comparative Example 7 which is a semi-high performance air filter filter material having substantially the same collection efficiency, the pressure loss is about 1/3 with substantially the same collection efficiency, and the low pressure loss. It can be seen that it is a highly efficient air filter.

【0036】[0036]

【発明の効果】本発明のエアフィルタは従来のエアフィ
ルタに比べ飛躍的に圧力損失の低いエアフィルタであ
り、本発明のエアフィルタを用いることにより、送風フ
ァンモーターの負荷を低減し、電力消費量を低減し、か
つ騒音も低減させることが可能となるばかりでなく、瀘
材面積を低減させた超薄型、軽量のフィルタユニットと
することができる、等の利点を有する優れたエアフィル
タである。
The air filter of the present invention is an air filter with dramatically lower pressure loss than the conventional air filter. By using the air filter of the present invention, the load of the blower fan motor is reduced and the power consumption is reduced. It is an excellent air filter that has the advantages that not only the volume and noise can be reduced, but also the filter area can be reduced to an ultra-thin and lightweight filter unit. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフィルタの構成例の断面を示した図FIG. 1 is a diagram showing a cross section of a configuration example of a filter of the present invention.

【図2】本発明のフィルタの構成例の断面を示した図FIG. 2 is a diagram showing a cross section of a configuration example of a filter of the present invention.

【図3】本発明のフィルタの襞折りユニット構成断面例
を示した図
FIG. 3 is a diagram showing an example of a cross section of a fold unit of a filter of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性多孔質層 2 非導電性多孔質層 3 空気流の方向 4 枠体 5 電源端子 1 conductive porous layer 2 non-conductive porous layer 3 air flow direction 4 frame 5 power supply terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 岳志 東京都千代田区丸の内3丁目4番2号 三 菱製紙株式会社内 (72)発明者 兵頭 建二 東京都千代田区丸の内3丁目4番2号 三 菱製紙株式会社内 (72)発明者 藤嶋 昭 神奈川県川崎市中原区中丸子710番地5 (72)発明者 橋本 和仁 神奈川県横浜市栄区小菅ケ谷町2000番地の 10 南小菅ケ谷住宅2棟506号 (72)発明者 斉藤 民雄 東京都青梅市河辺町8丁目12番地の22 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Yamazaki 3-4-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Paper Co., Ltd. (72) Kenji Hyodo 3-4-2, Marunouchi, Chiyoda-ku, Tokyo Sanryo Paper Co., Ltd. (72) Inventor Akira Fujishima, 710 Nakamaruko, Nakahara-ku, Kawasaki-shi, Kanagawa 5 (72) Inventor Kazuhito Hashimoto, 2000, Kosugaya-cho, Sakae-ku, Yokohama-shi, Kanagawa 2 Minami-Kosugaya Houses 2 506 (72) ) Inventor Tamio Saito 22 from 8-12 Kawabemachi, Ome City, Tokyo

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 通気性非導電性層を介在させて積層され
た少なくとも2層の導電性多孔質層と前記導電性多孔質
層間に電圧を印加する手段を備えてなるエアフィルタ。
1. An air filter comprising at least two conductive porous layers laminated with a breathable non-conductive layer interposed therebetween, and means for applying a voltage between the conductive porous layers.
【請求項2】 導電性多孔質層が金属メッキされた不織
布である請求項1記載のエアフィルタ。
2. The air filter according to claim 1, wherein the conductive porous layer is a metal-plated nonwoven fabric.
【請求項3】 通気性非導電性層がマイクロガラス繊維
不織布である請求項1記載のエアフィルタ。
3. The air filter according to claim 1, wherein the breathable non-conductive layer is a micro glass fiber nonwoven fabric.
JP21517592A 1992-08-12 1992-08-12 Air filter Pending JPH06254433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21517592A JPH06254433A (en) 1992-08-12 1992-08-12 Air filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21517592A JPH06254433A (en) 1992-08-12 1992-08-12 Air filter

Publications (1)

Publication Number Publication Date
JPH06254433A true JPH06254433A (en) 1994-09-13

Family

ID=16667912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21517592A Pending JPH06254433A (en) 1992-08-12 1992-08-12 Air filter

Country Status (1)

Country Link
JP (1) JPH06254433A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268405A (en) * 2006-03-31 2007-10-18 Japan Vilene Co Ltd Dielectric filter and application method of dielectric filter
JPWO2008136236A1 (en) * 2007-04-26 2010-07-29 三井金属鉱業株式会社 Clad filter material and method for producing the clad filter material
JP2015188883A (en) * 2014-03-31 2015-11-02 株式会社セラフト Micro-plasma net-like electrode, and manufacturing method therefor
US20220048045A1 (en) * 2020-08-14 2022-02-17 Lg Electronics Inc. Electrostatic dust filter
JP2023000439A (en) * 2021-06-18 2023-01-04 エステアール株式会社 Transparent electrostatic absorbing partition and transparent electrostatic absorbing partition system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268405A (en) * 2006-03-31 2007-10-18 Japan Vilene Co Ltd Dielectric filter and application method of dielectric filter
JPWO2008136236A1 (en) * 2007-04-26 2010-07-29 三井金属鉱業株式会社 Clad filter material and method for producing the clad filter material
JP2015188883A (en) * 2014-03-31 2015-11-02 株式会社セラフト Micro-plasma net-like electrode, and manufacturing method therefor
US20220048045A1 (en) * 2020-08-14 2022-02-17 Lg Electronics Inc. Electrostatic dust filter
US11958059B2 (en) * 2020-08-14 2024-04-16 Lg Electronics Inc. Electrostatic dust filter
JP2023000439A (en) * 2021-06-18 2023-01-04 エステアール株式会社 Transparent electrostatic absorbing partition and transparent electrostatic absorbing partition system

Similar Documents

Publication Publication Date Title
EP1981610B1 (en) Improved filter media for active field polarized media air cleaner
US8252095B2 (en) Filter media for active field polarized media air cleaner
US20210276021A1 (en) Filter Media For Active Field Polarized Media Air Cleaner
AU2021277606B2 (en) Corrugated Filtration Media for Polarising Air Cleaner
JP2753497B2 (en) Air purification filter element
JPH06254433A (en) Air filter
JPS6336852A (en) Electrically charged filter
JPH04122367A (en) Air cleaner
JPH11276822A (en) Dust collecting/deodorizing filter
JPH0687994B2 (en) Charge type filter
JP2615483B2 (en) Air cleaner
JPH05138069A (en) Air purification device
JPH02273561A (en) Air purifier