JPH06254342A - Dry type waste gas desulfurizer - Google Patents

Dry type waste gas desulfurizer

Info

Publication number
JPH06254342A
JPH06254342A JP5043559A JP4355993A JPH06254342A JP H06254342 A JPH06254342 A JP H06254342A JP 5043559 A JP5043559 A JP 5043559A JP 4355993 A JP4355993 A JP 4355993A JP H06254342 A JPH06254342 A JP H06254342A
Authority
JP
Japan
Prior art keywords
exhaust gas
desulfurization
tower
swirl
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5043559A
Other languages
Japanese (ja)
Inventor
Takayuki Ishida
孝行 石田
Yasuki Hashimoto
泰樹 橋本
Hiroshi Ishizaka
浩 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5043559A priority Critical patent/JPH06254342A/en
Publication of JPH06254342A publication Critical patent/JPH06254342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the dry type waste gas desulfurizer having a waste gas introducing mechanism which can stably maintain high desulfurization performance by applying adequate swirling and rising flow to the waste gases to be introduced into a dry type waste gas desulfurization column for removing the SOx in the waste gases and spraying humidifying water in the state of uniformly dispersing desulfurizing absorbents. CONSTITUTION:The waste combustion gases contg. the SOx are introduced in the state of suspending the powdery desulfurizing agents therein into the desulfurization column 16 and the water is sprayed via a nozzle 15 in the inlet section of the desulfurization column to absorb away the SOx in the waste gases before the fine liquid drops complete the evaporation in the desulfurization column. The lower part of the cylindrical barrel of the desulfurization column 16 is successively provided with a conical barrel 14 having an aperture of a prescribed size in the bottom. A waste gas introducing duct 12 contg. a swirling vane chamber 18 for swirling and raising the waste gases 1 in the desulfurization column along the inside surface of the conical barrel 14 from the aperture in the bottom of the conical barrel 14 is connected to the bottom of the conical barrel 14. Consequently, the high desulfurization performance is stably maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中の硫黄酸化
物を除去する乾式排ガス脱硫装置に係り、特に脱硫塔内
へ導入する排ガスに旋回上昇流を与え脱硫吸収剤を均一
に分散させて安定した脱硫性能を維持するのに好適な排
ガス導入機構を備えた乾式排ガス脱硫装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry type exhaust gas desulfurization device for removing sulfur oxides in combustion exhaust gas, and in particular, a swirl upward flow is applied to exhaust gas introduced into a desulfurization tower to uniformly disperse a desulfurization absorbent. The present invention relates to a dry exhaust gas desulfurization device equipped with an exhaust gas introduction mechanism suitable for maintaining stable desulfurization performance.

【0002】[0002]

【従来の技術】従来の燃焼排ガス中の硫黄酸化物の除去
方法の1つとして、排ガスダクトに消石灰等の吸収剤を
散布ないしは噴霧化した後、その後流に設けられた脱硫
塔に加湿用の水噴霧を行い、排ガス中の硫黄酸化物を吸
収除去する乾式排煙脱硫装置の構成の一例を図5および
図6に示す。なお、図6は排ガスを導入する脱硫塔入口
部の構造を示すものである。ボイラ等の火炉での燃焼に
より発生した排ガス1は、排ガス入口ダクト4から脱硫
塔5に導かれる。一方、排ガス入口ダクト4で吸収剤2
が噴霧され、排ガス1中に吸収剤2が浮遊した状態で脱
硫塔5に導入される。脱硫塔5内には、加湿水3用のス
プレノズル7が設けられており、噴霧された微細液滴が
脱硫塔5出口に到達するまでに蒸発は完了するが、この
過程において排ガス中の硫黄酸化物が加湿水3の微細液
滴を介して吸収剤2に吸収される。従来の乾式排ガス脱
硫塔の排ガス導入部の構造は、例えば図6に示すごと
く、入口ダクト9より排ガス1を導入し、脱硫塔5内に
吸収剤2を分散させる整流部10および整流コーン部1
1が設けられていた。なお、従来技術として、例えば実
開平2−133414号公報が挙げられる。
2. Description of the Related Art As one of the conventional methods for removing sulfur oxides in combustion exhaust gas, after spraying or atomizing an absorbent such as slaked lime in an exhaust gas duct, a desulfurization tower provided downstream of the absorbent is used for humidification. FIG. 5 and FIG. 6 show an example of the configuration of a dry flue gas desulfurization apparatus that performs water spraying to absorb and remove sulfur oxides in exhaust gas. Note that FIG. 6 shows the structure of the desulfurization tower inlet for introducing the exhaust gas. Exhaust gas 1 generated by combustion in a furnace such as a boiler is guided to a desulfurization tower 5 from an exhaust gas inlet duct 4. On the other hand, in the exhaust gas inlet duct 4, the absorbent 2
Is sprayed, and the absorbent 2 is introduced into the desulfurization tower 5 in a state of being suspended in the exhaust gas 1. A spray nozzle 7 for the humidifying water 3 is provided in the desulfurization tower 5, and the evaporation is completed before the sprayed fine droplets reach the desulfurization tower 5 outlet. The substance is absorbed by the absorbent 2 through the fine droplets of the humidifying water 3. The structure of the exhaust gas introduction part of the conventional dry exhaust gas desulfurization tower is, for example, as shown in FIG. 6, the rectification part 10 and the rectification cone part 1 for introducing the exhaust gas 1 from the inlet duct 9 and dispersing the absorbent 2 in the desulfurization tower 5.
1 was provided. As a conventional technique, for example, Japanese Utility Model Laid-Open No. 2-133414 can be cited.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、図5
および図6に示すごとく、排ガスを整流するための整流
部10、整流コーン部11を有するため、脱硫塔5の塔
高が必然的に高くなるという問題があった。また、整流
コーン部11での整流効果が少なく、脱硫塔5内のガス
流速が不均一となり、かつ吸収剤2の分布も偏りを生じ
るために、吸収剤2と加湿水3との均等な接触が難しく
なり、脱硫性能を高レベルに維持するためには、より多
量の吸収剤2を必要とし経済性が低下するなどの問題が
あった。この他にも、脱硫塔5の壁の一部に吸収剤2が
付着(以下スケーリングと呼ぶ)し、成長・剥離を生じ
固形物となって落下し、この固形物が、例えば整流コー
ン部11の傾斜面に堆積し脱硫運転の継続が不能になる
などの不具合があった。
The above conventional technique is shown in FIG.
Further, as shown in FIG. 6, since the rectifying section 10 and the rectifying cone section 11 for rectifying the exhaust gas are included, the tower height of the desulfurization tower 5 is inevitably high. Further, since the rectifying effect in the rectifying cone portion 11 is small, the gas flow velocity in the desulfurization tower 5 becomes non-uniform, and the distribution of the absorbent 2 is unevenly distributed, the absorbent 2 and the humidifying water 3 are evenly contacted with each other. However, in order to maintain the desulfurization performance at a high level, a larger amount of the absorbent 2 is required and the economy is reduced. In addition to this, the absorbent 2 adheres to a part of the wall of the desulfurization tower 5 (hereinafter referred to as scaling), grows and peels, and falls as a solid matter, and this solid matter falls, for example, on the rectifying cone portion 11 There was a problem such as accumulation on the sloping surface of No. 1 and the continuation of desulfurization operation became impossible.

【0004】本発明の目的は、上記従来技術における問
題点を解消し、燃焼排ガス中の硫黄酸化物を除去する乾
式排ガス脱硫塔へ導入する排ガスに適度の旋回上昇流を
与え、脱硫吸収剤を均等に分散させた状態で加湿水を噴
霧して安定して高い脱硫性能を維持することのできる排
ガス導入機構を備えた乾式排ガス脱硫装置を提供するこ
とにある。
The object of the present invention is to solve the above-mentioned problems in the prior art and to give an appropriate swirl upward flow to the exhaust gas to be introduced into the dry exhaust gas desulfurization tower for removing the sulfur oxides in the combustion exhaust gas to provide a desulfurization absorbent. It is an object of the present invention to provide a dry type exhaust gas desulfurization apparatus equipped with an exhaust gas introduction mechanism capable of spraying humidifying water in a uniformly dispersed state and stably maintaining high desulfurization performance.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明者らは流動解析シミュレーションを
行った結果、排ガスに適度の旋回上昇流を与えることが
有効であることを見い出した。この具体的手段として、
例えば集塵サイクロンのように排ガスダクトを脱硫塔の
中心に対して偏心させて接続する手法が考えられるが、
一般に採用されている塔高が30m以上にもなる脱硫塔
を、円筒自立型で構成する場合には構造的に無理が生
じ、相等に補強しないと排ガス導入部が座屈し破損しや
すくなるという問題は避けられない。このために、脱硫
塔の中心軸と排ガスを導入するダクトの中心線とを一致
させて排ガスを導入する手法に比べて、多量の構成部材
と加工工数を必要とし経済的ではない。そこで、脱硫塔
の中心線とダクトの中心線を一致させ、幅広ダクトによ
って脱硫塔の底部から排ガスを導入し適度の旋回力を与
えるために、複数の排ガス旋回ベーンを有する旋回ベー
ンチャンバを設け、かつ上記各旋回ベーンには、それぞ
れ等量の排ガスが導入されるように旋回ベーンを配設し
たチャンバの排ガス入口部から後流にかけて排ガスの導
入断面積が狭くなるように調整した傾斜屋根板を設ける
構成とした。また、脱硫塔内で付着堆積した固形物の落
下を妨げないように、落下通路には障害物などの出っ張
りのないスムースな内部形状とするものである。本発明
は、硫黄酸化物を含む燃焼排ガス中に粉末の脱硫剤を浮
遊させた状態で脱硫塔に導入し、脱硫塔入口部でノズル
を介して水を噴霧して微細な液滴が脱硫塔内で蒸発を完
了するまでの間に、排ガス中の硫黄酸化物を吸収除去す
る乾式排ガス脱硫装置において、上記脱硫塔の円筒胴の
下部に、底部に所定の大きさの開口部を有する円錐胴を
連接して設け、該円錐胴の下部に、円錐胴の底部開口部
から円錐胴の内面に沿って脱硫塔内に排ガスを旋回上昇
させる旋回ベーン室を内蔵した幅広の排ガス導入ダクト
を接続した乾式排ガス脱硫装置である。そして、本発明
の乾式排ガス脱硫装置において、排ガス導入ダクトとの
中心線と、脱硫塔の円筒部の中心軸とを一致させて配設
するのが構造上望ましく、また、排ガスに適切な旋回上
昇流を与え、脱硫剤を均一に分散させ高い脱硫効率を維
持するために、排ガスの旋回ベーンに対して、下記の
(数1)式で定義されるスワール数(SB)が0.35〜
0.65の範囲の旋回強さを与える旋回制御手段を有す
る乾式排ガス脱硫装置である。 SB=Gφ/GZ/R ………(数1) (式中、Gφ=回転モーメント、GZ=上向き軸方向運
動量、R=代表寸法を示す。) さらに、本発明は旋回ベーン室の下部に、旋回ベーン室
の内部ケーシングに接して円錐部を設け、脱硫塔内に付
着成長し剥離して落下する固形物の塔外への排出を容易
にする手段を設けることが好ましい。
In order to achieve the above-mentioned object of the present invention, the present inventors have found that it is effective to give an appropriate swirl upward flow to exhaust gas as a result of a flow analysis simulation. It was As a concrete means of this,
For example, a method of connecting the exhaust gas duct with eccentricity to the center of the desulfurization tower like a dust collection cyclone is conceivable.
When a desulfurization tower with a tower height of 30 m or more, which is generally adopted, is configured as a cylindrical self-supporting type, structurally unreasonable problems occur, and the exhaust gas introduction part buckles and is apt to be damaged unless it is reinforced in phase. Is inevitable. Therefore, compared with the method of introducing the exhaust gas by aligning the center axis of the desulfurization tower with the center line of the duct for introducing the exhaust gas, a large amount of components and processing man-hours are required, which is not economical. Therefore, in order to match the center line of the desulfurization tower and the center line of the duct and to introduce an exhaust gas from the bottom of the desulfurization tower by a wide duct to give an appropriate swirling force, a swirl vane chamber having a plurality of exhaust gas swirl vanes is provided, And, in each of the swirl vanes, an inclined roof plate adjusted so that the introduction cross-sectional area of the exhaust gas becomes narrower from the exhaust gas inlet portion of the chamber in which the swirl vanes are arranged so that an equal amount of exhaust gas is introduced to the wake. It is configured to be provided. Further, in order not to prevent the fall of the solid matter adhered and accumulated in the desulfurization tower, the drop passage has a smooth internal shape without protrusions such as obstacles. The present invention introduces a powdered desulfurizing agent suspended in a combustion exhaust gas containing sulfur oxides into a desulfurization tower, and sprays water through a nozzle at a desulfurization tower inlet to form fine droplets of the desulfurization tower. In a dry exhaust gas desulfurization apparatus that absorbs and removes sulfur oxides in exhaust gas until the completion of evaporation in a conical cylinder having an opening of a predetermined size at the bottom of the cylindrical cylinder of the desulfurization tower. And a wide exhaust gas introduction duct containing a swirl vane chamber for swirling and raising exhaust gas into the desulfurization tower along the inner surface of the conical cylinder from the bottom opening of the conical cylinder is connected to the lower part of the conical cylinder. It is a dry exhaust gas desulfurization device. And, in the dry exhaust gas desulfurization apparatus of the present invention, it is structurally desirable to arrange the center line of the exhaust gas introduction duct and the central axis of the cylindrical portion of the desulfurization tower so as to be aligned, and to appropriately swirl the exhaust gas. Of the swirl vane of the exhaust gas, the swirl number (S B ) defined by the following (Equation 1) is 0.35 to 0.35 in order to uniformly disperse the desulfurization agent and maintain high desulfurization efficiency.
It is a dry exhaust gas desulfurization apparatus having a swirl control means for giving a swirl strength in the range of 0.65. (Wherein, Jifai = torque, G Z = upward direction momentum, R = a representative dimension.) S B = Gφ / G Z / R ......... ( number 1) Further, the present invention is of the swirl vane chamber It is preferable to provide a conical portion in the lower part in contact with the inner casing of the swirl vane chamber, and to provide a means for facilitating the discharge of the solid matter that adheres to and grows in the desulfurization tower and peels off to the outside of the tower.

【0006】[0006]

【作用】脱硫塔内で付着成長した固形物の落下を妨げな
いように、旋回ベーンの内側の先端が、旋回ベーンチャ
ンバの内部ケーシングの内側からはみ出さないように
し、かつ上記旋回ベーンは、入口排ガス量の変化に対応
して、常に最適の旋回力が与えられる構成の可変ベーン
とすることによって、脱硫塔内に吸収剤を均一に分散さ
せることが可能となる。
In order not to hinder the fall of the solid matter adhered and grown in the desulfurization tower, the tip of the inner side of the swirl vane is prevented from protruding from the inner side of the inner casing of the swirl vane chamber, and the swirl vane is The absorbent can be uniformly dispersed in the desulfurization tower by using a variable vane configured to always provide an optimum swirling force according to the change in the exhaust gas amount.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1は、本発明の乾式排ガス脱
硫装置の脱硫塔の構成を示す模式図である。図におい
て、ボイラ火炉等より発生した排ガス1は、脱硫塔16
の中心軸と排ガス導入ダクトの中心線とを一致させて設
けた排ガス導入用幅広ダクト12から、旋回ベーン13
が設置された傾斜屋根板24を有する旋回ベーンチャン
バ部18に導入され、各旋回ベーン13間に等量の排ガ
スが供給され、排ガスに旋回上昇流を与える構造になっ
ている。一方、排ガス量はガス発生源の負荷によって変
化するので、負荷に対応して排ガスに適正な旋回力を与
えるために、図2に示すごとく、入口排ガス流量検知器
(排ガス流量計)19により入口排ガス量を検知し、演
算器20によって排ガスの旋回パラメータであるスワー
ル数を算出する。ここで、スワール数(SB)は、下記
の(数1)式によって定義される。 SB=Gφ/GZ/R ………(数1) Gφ=回転モーメント GZ=上向き軸方向運動量 R=代表寸法 このスワール数(SB)によって旋回ベーン13の角度
を調節し、排ガス発生源の負荷に応じて最適の旋回力を
与えることができる。
Embodiments of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a desulfurization tower of the dry exhaust gas desulfurization apparatus of the present invention. In the figure, an exhaust gas 1 generated from a boiler furnace or the like is a desulfurization tower 16
From the exhaust gas introduction wide duct 12 provided with the central axis of the exhaust gas and the center line of the exhaust gas introduction duct aligned,
Is introduced into the swirl vane chamber portion 18 having the inclined roof plate 24 in which is installed, an equal amount of exhaust gas is supplied between the swirl vanes 13, and the swirl upward flow is given to the exhaust gas. On the other hand, since the amount of exhaust gas changes depending on the load of the gas generation source, the inlet exhaust gas flow rate detector (exhaust gas flow meter) 19 is used to apply an appropriate turning force to the exhaust gas according to the load, as shown in FIG. The amount of exhaust gas is detected, and the computing unit 20 calculates the swirl number, which is a turning parameter of the exhaust gas. Here, the swirl number (S B) is defined by equation (1) below. S B = Gφ / G Z / R (Equation 1) G φ = rotational moment G Z = upward axial momentum R = representative dimension The angle of the swirl vane 13 is adjusted by this swirl number (S B ) to generate exhaust gas. An optimum turning force can be given depending on the load of the source.

【0008】〈実験例〉旋回ベーン13の最適条件を把
握するために、図3に示す小型モデル装置によて実験を
行った。小型モデルと実機との関係は、下記の(数
2)、(数3)式に示すフルード数と慣性パラメータを
一致させることにより相関づけた。 フルード数(Fr)=U2/(g・De) ……(数
2) 慣性パラメータ(Φ)=(8・ρP・DP)/(6・CD・ρ・
De)……(数3) ここで、 U:ガス流速(m/s) g:重力加速度(m2/s) De:塔径(m) ρP:吸収剤見かけ密度 DP:吸収剤粒径 CD:吸収剤抵抗係数 ρ:ガス密度 小型モデルの塔内各位置での吸収剤濃度を測定し、それ
ぞれの旋回力、すなわちスワール数(SB)における吸
収剤濃度分布を変動係数を用いて整理した結果を図4に
示す。ただし、変動係数は次の(数4)式によって求め
た。 変動係数(%)=(標準偏差)/(平均値)×100
……(数4) 図4に示すごとく、スワールSB数が0.5において、吸
収剤濃度変動係数は15%程度になる。また、0.35
<SB<0.65の間では、ほとんど吸収剤濃度の変動は
みられなかったので、0.35<SB<0.65が適正領
域である。したがって、負荷に応じて旋回ベーンの角度
を調節し、スワールSB数が上記領域内に維持できるよ
うに旋回ベーンの角度制御を行えばよい。排ガスを脱硫
塔内に導入する際、ガス流速は通常15m/s程度であ
るが、脱硫塔の径とほぼ等しい幅広ダクト12を採用す
ることによって、排ガス導入ダクトの高さを低くするこ
とができる。この結果、排ガス導入部の必要高さを最小
限にして脱硫塔が高くなるのを抑制することができる。
また、旋回ベーン13を設置している旋回ベーンチャン
バ部18の天井に傾斜(傾斜屋根板24)をもたせること
によって、各旋回ベーン13への導入排ガス量の均一化
をはかり、排ガス流に安定した旋回力を与える構成にし
ている。また、負荷変化時においても排ガス流量計19
によって検知したガス流量を演算器20に取り込み、S
B数をもとに最適な旋回ベーンの角度を算出し、適切な
旋回力を与えることのできるように可変ベーンの角度を
調整制御することによって、脱硫塔内に吸収剤を均一に
分散させることができ、水噴霧域における水滴との良好
な接触を促進して、吸収剤の有効利用と脱硫性能の安定
維持をはかるようにしたものである。
<Experimental example> In order to understand the optimum condition of the swirl vane 13, an experiment was conducted using a small model device shown in FIG. The relationship between the small model and the actual machine was correlated by matching the Froude number and the inertial parameters shown in the following (Equation 2) and (Equation 3). Froude number (Fr) = U 2 / (g · De) (Equation 2) Inertia parameter (Φ) = (8 · ρ P · D P ) / (6 · C D · ρ ·
De) (Equation 3) where: U: Gas flow velocity (m / s) g: Gravitational acceleration (m 2 / s) De: Tower diameter (m) ρ P : Apparent density of absorbent D P : Absorbent particles diameter C D: absorber resistance coefficient [rho: the absorbent concentration in the column in each position of the gas density miniature model was measured and the respective swirling force, i.e. the coefficient of variation absorber concentration distribution in the swirl number (S B) using Fig. 4 shows the result of the arrangement. However, the coefficient of variation was calculated by the following equation (4). Coefficient of variation (%) = (standard deviation) / (average value) × 100
...... As shown in equation (4) FIG. 4, in the swirl S B number 0.5, absorbent concentration variation coefficient is about 15%. Also, 0.35
<Between S B <0.65, so was not observed most variation in absorption concentration, 0.35 <S B <0.65 is appropriate region. Therefore, the angle of the swirl vane may be adjusted according to the load, and the swirl vane angle may be controlled so that the swirl number S B can be maintained within the above range. When introducing the exhaust gas into the desulfurization tower, the gas flow velocity is usually about 15 m / s, but the height of the exhaust gas introduction duct can be reduced by adopting the wide duct 12 which is almost equal to the diameter of the desulfurization tower. . As a result, the height of the desulfurization tower can be suppressed by minimizing the required height of the exhaust gas introduction section.
In addition, by providing the ceiling of the swirl vane chamber portion 18 in which the swirl vanes 13 are installed with an inclination (sloping roof plate 24), the amount of exhaust gas introduced to each swirl vane 13 is made uniform and the exhaust gas flow is stabilized. It is configured to give a turning force. In addition, the exhaust gas flow meter 19 even when the load changes
The gas flow rate detected by
Dispersing the absorbent evenly in the desulfurization tower by calculating the optimum swirl vane angle based on the B number and adjusting and controlling the variable vane angle so that an appropriate swirling force can be given. It is possible to promote good contact with water droplets in the water spraying area, so that the absorbent can be effectively used and the desulfurization performance can be stably maintained.

【0009】[0009]

【発明の効果】本発明によれば、脱硫塔の中心と排ガス
導入ダクトの中心とを一致させた幅広ダクトの採用によ
る塔高の低減(例えば、10m径の脱硫塔では、高さ約
4m低減可能)、および排ガスに最適な旋回力を与える
ことにより吸収剤の均一分散が可能となり脱硫吸収剤の
利用率の向上がはかられる。また、排ガス発生源の負荷
変化に際しても可変ベーンを調整し制御することにより
脱硫塔内への吸収剤のほぼ均一な分散が可能となり、安
定して高脱硫性能を維持することができる。
According to the present invention, the tower height is reduced by adopting a wide duct in which the center of the desulfurization tower and the center of the exhaust gas introduction duct are matched (for example, in a desulfurization tower having a diameter of 10 m, the height is reduced by about 4 m). It is possible to uniformly disperse the absorbent by giving an optimum swirling force to the exhaust gas, and the utilization rate of the desulfurized absorbent can be improved. Further, even when the load of the exhaust gas generation source changes, by adjusting and controlling the variable vanes, it is possible to disperse the absorbent in the desulfurization tower almost uniformly, and to stably maintain high desulfurization performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示した脱硫塔の排ガス導入
部の構造を示す模式図。
FIG. 1 is a schematic diagram showing a structure of an exhaust gas introducing part of a desulfurization tower exemplified in an example of the present invention.

【図2】本発明の実施例で例示した排ガスに旋回流を与
える可変ベーンの制御系を示す模式図。
FIG. 2 is a schematic diagram showing a control system of a variable vane that gives a swirl flow to the exhaust gas as exemplified in the embodiment of the present invention.

【図3】本発明の実施例で例示した旋回ベーンの最適条
件を決める小型モデル装置の構成を示す模式図。
FIG. 3 is a schematic diagram showing the configuration of a small model device that determines the optimum conditions of the swirl vanes illustrated in the embodiment of the present invention.

【図4】本発明の実施例で例示した旋回ベーンのスワー
ル数と吸収剤濃度変動係数との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the swirl number and the absorbent concentration variation coefficient of the swirl vane illustrated in the example of the present invention.

【図5】従来の脱硫塔の構造を示す模式図。FIG. 5 is a schematic diagram showing the structure of a conventional desulfurization tower.

【図6】従来の脱硫塔の排ガス導入部の構造を示す模式
図。
FIG. 6 is a schematic diagram showing the structure of an exhaust gas introduction section of a conventional desulfurization tower.

【符号の説明】[Explanation of symbols]

1…排ガス 2…吸収剤 3…加湿水 4…排ガス入口ダクト 5…脱硫塔 6…出口ダクト 7…スプレノズル 8…ダスト排出管 9…入口ダクト 10…整流部 11…整流コーン部 12…排ガス導入用幅広ダクト 13…旋回ベーン 14…コーン部 15…加湿水スプレノズル 16…脱硫塔 17…ダスト排出コーン 18…旋回ベーンチャンバ部 19…排ガス流量計(入口排ガス流量検知器) 20…演算器 21…リンク機構 22…排ガス導入用幅広ダクト 23…旋回ベーン 24…傾斜屋根板 25…直胴部 26…内部ケーシング 27…外部ケーシング 1 ... Exhaust gas 2 ... Absorbent 3 ... Humidifying water 4 ... Exhaust gas inlet duct 5 ... Desulfurization tower 6 ... Outlet duct 7 ... Spray nozzle 8 ... Dust discharge pipe 9 ... Inlet duct 10 ... Rectifying part 11 ... Rectifying cone part 12 ... Exhaust gas introduction Wide duct 13 ... Swirl vane 14 ... Cone part 15 ... Humidification water spray nozzle 16 ... Desulfurization tower 17 ... Dust discharge cone 18 ... Swirl vane chamber part 19 ... Exhaust gas flow meter (inlet exhaust gas flow rate detector) 20 ... Calculator 21 ... Link mechanism 22 ... Wide duct for introducing exhaust gas 23 ... Swivel vane 24 ... Sloping roof plate 25 ... Straight body part 26 ... Inner casing 27 ... Outer casing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】硫黄酸化物を含む燃焼排ガス中に粉末の脱
硫剤を浮遊させた状態で脱硫塔に導入し、脱硫塔入口部
でノズルを介して水を噴霧して微細な液滴が脱硫塔内で
蒸発を完了するまでの間に排ガス中の硫黄酸化物を吸収
除去する乾式排ガス脱硫装置において、上記脱硫塔の円
筒胴の下部に、底部に所定の大きさの開口部を有する円
錐胴を連接して設け、該円錐胴の下部に、円錐胴の底部
開口部から該円錐胴の内面に沿って脱硫塔内に排ガスを
旋回上昇させる旋回ベーン室を内蔵した排ガス導入ダク
トを接続してなることを特徴とする乾式排ガス脱硫装
置。
1. A desulfurizing agent in the form of powder suspended in a combustion exhaust gas containing sulfur oxides is introduced into a desulfurizing tower, and water is sprayed through a nozzle at the desulfurizing tower inlet to desulfurize fine droplets. In a dry exhaust gas desulfurization apparatus that absorbs and removes sulfur oxides in exhaust gas until the evaporation is completed in the tower, a conical cylinder having a bottom with an opening of a predetermined size in the lower part of the cylindrical body of the desulfurization tower. An exhaust gas introduction duct containing a swirl vane chamber for swirling and raising exhaust gas into the desulfurization tower along the inner surface of the conical cylinder from the bottom opening of the conical cylinder is connected to the lower part of the conical cylinder. A dry type exhaust gas desulfurization device characterized in that
【請求項2】請求項1において、排ガス導入ダクトとの
中心線と、脱硫塔の円筒部の中心軸とを一致させて配設
してなることを特徴とする乾式排ガス脱硫装置。
2. A dry type exhaust gas desulfurization apparatus according to claim 1, wherein the center line of the exhaust gas introduction duct and the center axis of the cylindrical portion of the desulfurization tower are aligned with each other.
【請求項3】請求項1または請求項2において、旋回ベ
ーンに対して、下記の(数1)式で定義されるスワール
数(SB)が0.35〜0.65の範囲の旋回強さを与え
る制御手段を備えたことを特徴とする乾式排ガス脱硫装
置。 SB=Gφ/GZ/R ………(数1) (式中、Gφ=回転モーメント、GZ=上向き軸方向運
動量、R=代表寸法を示す。)
3. An apparatus according to claim 1 or claim 2, with respect to the pivot vanes, pivoting strong range of swirl number defined by (Equation 1) below (S B) is 0.35-0.65 A dry-type exhaust gas desulfurization apparatus, which is provided with a control means for imparting strength. S B = Gφ / G Z / R ......... ( number 1) (wherein, Jifai = torque, G Z = upward axial movement amount, indicating a R = typical dimension.)
【請求項4】請求項1ないし請求項3のいずれか1項に
おいて、旋回ベーン室の下部に、旋回ベーン室の内部ケ
ーシングに接して円錐部を設け、脱硫塔内で成長して剥
離し落下する固形物の塔外への排出を容易にする手段を
設けたことを特徴とする乾式排ガス脱硫装置。
4. A cone portion is provided below the swirl vane chamber in contact with an inner casing of the swirl vane chamber according to any one of claims 1 to 3, and grows and separates and falls in a desulfurization tower. A dry-type exhaust gas desulfurization apparatus, characterized in that means for facilitating the discharge of the solid matter to the outside of the tower is provided.
JP5043559A 1993-03-04 1993-03-04 Dry type waste gas desulfurizer Pending JPH06254342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043559A JPH06254342A (en) 1993-03-04 1993-03-04 Dry type waste gas desulfurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043559A JPH06254342A (en) 1993-03-04 1993-03-04 Dry type waste gas desulfurizer

Publications (1)

Publication Number Publication Date
JPH06254342A true JPH06254342A (en) 1994-09-13

Family

ID=12667112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043559A Pending JPH06254342A (en) 1993-03-04 1993-03-04 Dry type waste gas desulfurizer

Country Status (1)

Country Link
JP (1) JPH06254342A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416724B1 (en) * 1997-03-24 2002-07-09 Tamfelt Oyj Abp Method for cleaning of combustion gas containing impurities
CN106582186A (en) * 2015-10-14 2017-04-26 江苏国强环保集团有限公司 Prefabricated type large ceramic desulfurizing tower
CN106731587A (en) * 2017-03-18 2017-05-31 吉占年 A kind of waste gas gas washing equipment
KR20180106259A (en) * 2017-03-18 2018-10-01 주식회사 혜천산업 Semi dry reactor enhancing SOx removal efficiency by improving a gas flow pattern
CN114307506A (en) * 2022-01-13 2022-04-12 济南众焦先科环保科技有限公司 Tail gas processing apparatus for chemical industry coking

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416724B1 (en) * 1997-03-24 2002-07-09 Tamfelt Oyj Abp Method for cleaning of combustion gas containing impurities
CN106582186A (en) * 2015-10-14 2017-04-26 江苏国强环保集团有限公司 Prefabricated type large ceramic desulfurizing tower
CN106731587A (en) * 2017-03-18 2017-05-31 吉占年 A kind of waste gas gas washing equipment
KR20180106259A (en) * 2017-03-18 2018-10-01 주식회사 혜천산업 Semi dry reactor enhancing SOx removal efficiency by improving a gas flow pattern
CN114307506A (en) * 2022-01-13 2022-04-12 济南众焦先科环保科技有限公司 Tail gas processing apparatus for chemical industry coking
CN114307506B (en) * 2022-01-13 2023-01-10 济南众焦先科环保科技有限公司 Tail gas processing apparatus for chemical industry coking

Similar Documents

Publication Publication Date Title
JPH05220323A (en) Dry scrubber low in pressure decrease
CN108722114A (en) Powdered activated coke adsorpting desulfurization device and the method that absorption desulfurization is carried out to flue gas using it
JP2004024945A (en) Absorption tower structure in wet flue gas desulfurization apparatus suitable for prevention of gas blow
JPH06254342A (en) Dry type waste gas desulfurizer
PL176814B1 (en) Dripping tower for cooling, moistening and/or purifying a gas and method of cooling, moistening and/or purifying a gas in such tower
CN212819071U (en) Desulfurization dust removal unit
CN111888925B (en) Dry desulfurization assembly, desulfurization dust removal unit, integrated equipment and system
JPH08332345A (en) Activated carbon-based catalyst reaction apparatus and waste gas desulfurization apparatus using same and method of desulfurization
CN205760583U (en) A kind of swirl-flow devices for flue gas desulfurization
CN209173717U (en) A kind of rotating spraying semidry process desulfurizer
CN208406596U (en) Cyclone atomization desulfurization dust remover
CN210544299U (en) Flue gas desulfurization system
CN208878220U (en) Powdered activated coke adsorpting desulfurization device
CN209161542U (en) A kind of desulfurization wastewater Zero discharging system
JPH06190240A (en) Cylindrical type flue gas desulfurizer
JPH09141041A (en) Gas-liquid mixer
CN213050066U (en) Integrated equipment and system for flue gas purification
CN209263071U (en) A kind of circulating fluidized bed boiler minimum discharge device
JP3068452B2 (en) Wet flue gas desulfurization equipment
JPH05154337A (en) Desulfurizer
WO2012006996A1 (en) Spray dryer absorption apparatus with flat-bottomed chamber
CN110237691A (en) Two phase flow semidry method deacidifying flue gas device
CN1401415A (en) Double circulating fluidized bed flue gas desulfurizing device
CN216367387U (en) Semi-dry desulfurization device
JP2902627B1 (en) Combustion flue gas cooling system