JPH0625391B2 - Method for producing wear-resistant iron-based alloy - Google Patents

Method for producing wear-resistant iron-based alloy

Info

Publication number
JPH0625391B2
JPH0625391B2 JP23921385A JP23921385A JPH0625391B2 JP H0625391 B2 JPH0625391 B2 JP H0625391B2 JP 23921385 A JP23921385 A JP 23921385A JP 23921385 A JP23921385 A JP 23921385A JP H0625391 B2 JPH0625391 B2 JP H0625391B2
Authority
JP
Japan
Prior art keywords
alloy
wear
weight
present
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23921385A
Other languages
Japanese (ja)
Other versions
JPS6299441A (en
Inventor
濶 奥村
謙介 日高
機 原
一雄 吉積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP23921385A priority Critical patent/JPH0625391B2/en
Publication of JPS6299441A publication Critical patent/JPS6299441A/en
Publication of JPH0625391B2 publication Critical patent/JPH0625391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐摩耗性に優れた合金の製造方法に関するもの
で、特に硼化物を主体とした硬質晶が微細で均一に分布
した組織を有する耐摩耗性合金に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an alloy having excellent wear resistance, and particularly has a structure in which hard crystals mainly containing boride are finely and uniformly distributed. It relates to a wear resistant alloy.

〔従来の技術〕[Conventional technology]

近年、機械部品や内燃機関等の性能の向上に伴い、耐摩
耗性に優れた合金の要求が高くなってきた。特に内燃機
関のバルブロッカーでは高速化に伴い、摩耗が激しくな
る傾向にある。
In recent years, as the performance of mechanical parts and internal combustion engines has improved, the demand for alloys with excellent wear resistance has increased. In particular, in a valve rocker of an internal combustion engine, wear tends to be severe with increasing speed.

従来、この対策として、摩耗の激しい部分にチル鋳物を
ろう付で接着したり、ハイス鋼を用いたり、又は浸炭、
窒化処理等を行ったり、更には硬質クロムメッキを施し
たりして使用してきた。
Conventionally, as a countermeasure against this, a chill cast product is brazed to a heavily worn part, high-speed steel is used, or carburization is performed.
It has been used after being subjected to nitriding treatment and further hard chrome plating.

しかしながら、通常の回転で特に問題なく使用されてい
る場合でも、高速、高荷重になると満足する耐摩耗性を
示さない。このような場合は、代表的にはステライトを
盛金して使用される。しかし、ステライトは耐摩耗性に
ついてはほぼ満足するが、W,Coを主として含んでいるた
め高価である欠点を有する。
However, even when it is used in normal rotation without any particular problem, it does not exhibit satisfactory wear resistance at high speed and high load. In such a case, stellite is typically used by plating. However, although stellite is almost satisfactory in wear resistance, it has a drawback that it is expensive because it mainly contains W and Co.

〔本発明が解決しようとする問題点〕[Problems to be Solved by the Present Invention]

本発明は、従来技術の問題点を種々検討し、高速、高荷
重に耐えられる耐摩耗性合金を種々検討した結果、Fe-C
r-B 系合金に注目し、組成範囲、添加元素及び冷却速度
を種々検討してFe-Cr-B合金を急冷凝固することにより
本発明を完成したものである。
The present invention has variously studied the problems of the prior art, and variously studied wear-resistant alloys capable of withstanding high speed and high load.
The present invention has been completed by paying attention to rB-based alloys, conducting various studies on the composition range, additional elements and cooling rates to rapidly solidify the Fe-Cr-B alloy.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、(1)Cr 8〜20重量%,B 6〜20重量%
と、C 又はAl 0.05 〜2.5 重量%を含み、残部が実質的
にFeから成る組成の合金を融体から103℃/sec 以上の
冷却速度で急冷凝固した事を特徴とする耐摩耗性鉄基合
金の製造方法。及び(2)Cr 8〜20重量%,B 6〜20重量%
と、C 又はAl 0.05 〜2.5 重量%、更にNi,Co,Nb,W,Mo
の1種又は2種以上をNi+Co=1〜5重量%、Nb+W +Mo
=1〜5重量%を含み、残部が実質的にFeから成る組成
の合金を融体から103℃/sec 以上の冷却速度で急冷凝
固した事を特徴とする耐摩耗性鉄基合金の製造方法であ
る。
That is, the present invention is (1) Cr 8 to 20 wt%, B 6 to 20 wt%
And wear-resistant iron characterized in that an alloy containing 0.05 to 2.5% by weight of C or Al and the balance being essentially Fe was rapidly solidified from the melt at a cooling rate of 10 3 ° C / sec or more. Base alloy manufacturing method. And (2) Cr 8-20% by weight, B 6-20% by weight
And C or Al 0.05 to 2.5 wt%, and Ni, Co, Nb, W, Mo
One or more of Ni + Co = 1-5% by weight, Nb + W + Mo
= 1 to 5% by weight, the balance of which is composed essentially of Fe, was rapidly solidified from the melt at a cooling rate of 10 3 ° C / sec or more to produce a wear-resistant iron-based alloy. Is the way.

〔作用〕[Action]

本発明はFe-Cr-B合金を融体から103℃/sec以上の冷却
速度で急冷凝固して鉄硼化物及びクロム硼化物が微細、
均一に分布することによって高度の耐摩耗性を発現でき
るものとなっている。
According to the present invention, an Fe-Cr-B alloy is rapidly solidified from a melt at a cooling rate of 10 3 ° C / sec or more to form fine iron boride and chromium boride,
The uniform distribution makes it possible to exhibit a high degree of wear resistance.

一般に鋳造で得られる硼素を含む合金の硼化物は、その
結晶の長さが約70μm程度になる。このような硼化物は
高い硬度を有するものの、靭性に乏しいため、高荷重の
掛かる部分に適用すると、結晶の一部が欠け脱落を生
じ、これがさらに他の部分を欠落されるという現象を生
じて摩耗を増進させる事がある。
Generally, a boride of an alloy containing boron obtained by casting has a crystal length of about 70 μm. Although such a boride has high hardness, it lacks in toughness, so when it is applied to a part under a high load, a part of the crystal is chipped and falls off, which causes the phenomenon that other parts are dropped. May increase wear.

本発明ではこの欠点を解決するため合金を融体より103
℃/sec 以上の冷却速度で急冷凝固し、硼化物結晶の長
さを最大でも20μm以下としている。
In the present invention, in order to solve this drawback, an alloy is prepared from the melt by 10 3
It is rapidly solidified at a cooling rate of ℃ / sec or more, and the maximum length of boride crystals is 20 μm or less.

本発明の合金組織を前述のように定めた理由は次の通り
である。
The reason for defining the alloy structure of the present invention as described above is as follows.

(a)Cr Cr成分は、B と化合して硬質の硼化物Cr2B,CrBを形成し
て耐摩耗性を向上させる。また、C と反応して合金素地
を強化させ耐摩耗性を向上させる。さらに、Feとは全率
固溶であるので耐熱性を向上させる作用がある。Cr含有
量が 8%以下では前記の効果は得られず、Cr含有量が20
%を越えて含有されても硬度が高くなりすぎ、強度の低
下を招く事から Cr の含有量を 8〜20%に定めた。
(a) Cr The Cr component combines with B to form hard borides Cr 2 B, CrB and improves wear resistance. It also reacts with C to strengthen the alloy matrix and improve wear resistance. Further, since it is a solid solution with Fe, it has the effect of improving heat resistance. If the Cr content is 8% or less, the above effect cannot be obtained.
%, The content of Cr is set to 8 to 20%.

(b)B B 成分はCr及びFe,Ni,Coと硼化物を作って耐摩耗性を向
上させる。 B含有量が 6%以下では、Fe及びCr硼化物の
析出量が不足し、前記の効果は得られず、B 含有が20%
を越えて含有されても析出量が多すぎて強度の低下を招
くことからその含有量を 6〜20%に定めた。
(b) BB component forms borides with Cr, Fe, Ni and Co to improve wear resistance. When the B content is 6% or less, the precipitation amount of Fe and Cr borides is insufficient, and the above effects cannot be obtained.
Even if the content exceeds the above range, the amount of precipitation is too large and the strength is lowered, so the content was set to 6 to 20%.

(c)C又はAl C 又はAlはいずれも合金の耐摩耗性を向上させる。特に
C はFeに固溶して合金素地を強化させると共にCr及びN
b,Wと結合して炭化物を形成する作用がある。
(c) C or Al Both C and Al improve the wear resistance of the alloy. In particular
C forms a solid solution with Fe to strengthen the alloy matrix, and Cr and N
It has the action of forming a carbide by combining with b and W.

AlはFeに固溶して合金素地を強化させ、硬度も高くなり
耐摩耗性を向上させる。
Al solid-dissolves in Fe to strengthen the alloy matrix, which also increases hardness and improves wear resistance.

C 又はAlとも0.05%以下では前記の効果は得られず、
2.5%以上では硬さが高くなり、合金の脆化と強度の低
下を招くので 0.05 〜2.5 %に定めた。
The above effect cannot be obtained with C or Al at 0.05% or less,
If the content is 2.5% or more, the hardness becomes high, which causes the alloy to become brittle and the strength to decrease, so it was set to 0.05 to 2.5%.

(d)Ni,Co,Nb,W,Mo Ni,Co,Nb,W及びMoはその1種でも又2種以上含有する場
合でもいずれも本発明合金の耐摩耗性を増す働きを有す
る。
(d) Ni, Co, Nb, W, Mo Ni, Co, Nb, W and Mo both have the function of increasing the wear resistance of the alloy of the present invention, whether they are contained alone or in a combination of two or more.

NiとCoはFeに固溶すると共に硼素との金属間化合物を形
成し合金の耐摩耗性を向上させるが、Ni+Coの含有量が
1%以下では前記の効果がなく、5%を越えて含有させ
ても特に耐摩耗性の一層の向上を認められないので、経
済性も考慮し、その含有量を1〜5%に定めた。
Ni and Co form a solid solution with Fe and form an intermetallic compound with boron to improve the wear resistance of the alloy, but if the Ni + Co content is 1% or less, the above effect does not occur and the content exceeds 5%. Even if it is carried out, no further improvement in wear resistance is recognized, so the content thereof is set to 1 to 5% in consideration of economic efficiency.

Nb,W,Mo は本発明合金に含まれるC との親和力が強く、
炭化物を形成すると共に合金素地との結合を強固にし、
耐摩耗性を一層向上させる働きを有し、特に高荷重で使
用される場合にその効果が有る。Nb+W +Moの含有量が
1%以下では前記の効果は得られず、5%を越えても耐
摩耗性の一層の向上が認められず、経済性を考慮して1
〜5%に定めた。
Nb, W, Mo have a strong affinity with C contained in the alloy of the present invention,
Form carbide and strengthen the bond with the alloy base,
It has the function of further improving the wear resistance, and has its effect particularly when used under a high load. If the content of Nb + W + Mo is 1% or less, the above effect is not obtained, and even if it exceeds 5%, further improvement in wear resistance is not recognized, and in consideration of economical efficiency,
It was set to ~ 5%.

本発明の合金を製造するに当っては103℃/sec以上の冷
却速度で冷却することが必要であるが、このような冷却
速度は通常の急冷合金の製造方法で容易に得られるが、
工業的に大量生産に向く方法としては水アトマイズ法に
よって粉末を得る方法が好ましい。
In producing the alloy of the present invention, it is necessary to cool at a cooling rate of 10 3 ° C / sec or more, and such a cooling rate can be easily obtained by a usual method for producing a quenched alloy,
As a method industrially suitable for mass production, a method of obtaining powder by a water atomizing method is preferable.

103℃/sec 以上の速い冷却速度で凝固された本発明の
合金は不規則状又は球状の粉末、又はフレーク状あるい
はリボンのような形状を有する。これを耐摩耗部材に適
用する場合、リボンのような形状ではろう付等により基
材へはり付ける事が考えられ、粉末の場合には必要な形
状に成形するかもしくは耐火性の容器に粉末を重点した
上で焼結する。又必要な部材に載せるか若しくは適選の
方法で接着した後レーザビーム等で極部的に再溶解さ
せ、基材と接着させる方法等が考えられる。さらに粉末
状又はリボン状の時には103℃/sec以下の比較的遅い冷
却速度で凝固され、硼化物の結晶粒の長さが20μm以上
の時であっても、耐摩耗性部材に適用された場合に溶湯
状態から103℃/sec 以上の冷却速度で冷却された場合
には本発明の目的とする耐摩耗性には何ら劣る事にはな
らない。例えば本発明の合金の溶湯を通常のガスアトマ
イズ法で粉末化した場合、103℃/sec 以下の冷却速度
で冷却された粉末が混入していても、この粉末を溶射等
で耐摩耗性部材に盛金した後、レーザビーム等で再溶融
し、これが凝固する時に103℃/sec 以上の冷却速度と
なるように条件を設定すれば本発明の目的は達成され
る。
The alloy of the present invention solidified at a high cooling rate of 10 3 ° C./sec or more has an irregular or spherical powder, or a flake or ribbon-like shape. When applying this to wear-resistant members, it is possible to stick it to the base material by brazing etc. in the shape of a ribbon.In the case of powder, shape it into the required shape or put the powder in a refractory container. Sinter with emphasis. It is also possible to consider a method in which it is placed on a necessary member or adhered by an appropriate method, and then it is locally redissolved by a laser beam or the like and adhered to a base material. Further, when it is in the form of powder or ribbon, it is solidified at a relatively slow cooling rate of 10 3 ° C / sec or less, and applied to wear-resistant members even when the length of boride crystal grains is 20 µm or more. In this case, when the molten metal is cooled at a cooling rate of 10 3 ° C / sec or more, the abrasion resistance intended by the present invention is not deteriorated at all. For example, when the molten metal of the alloy of the present invention is pulverized by a normal gas atomization method, even if the powder cooled at a cooling rate of 10 3 ° C / sec or less is mixed, the powder is sprayed to an abrasion resistant member or the like. The object of the present invention can be achieved by setting the conditions such that the metal is remelted with a laser beam or the like after being plated and the cooling rate is 10 3 ° C / sec or more when it is solidified.

以下、本発明の代表的な実施例と比較例を次に説明す
る。
Hereinafter, typical examples and comparative examples of the present invention will be described.

〔実施例〕〔Example〕

実施例(1) 第1表に示す組成となるように配合した合金の溶湯を、
10mmφの溶湯流として落下させ、これに0.5 m3/minの水
を吹き付ける水噴霧法により合金粉末を製造した。得ら
れた粉末を 149μmの篩で分級し、−149 μmの粉末を
採取した。この粉末100 gに対して潤滑剤としてステア
リン酸亜鉛を1g、結合剤としてポリ塩化ビニールを 0.3
g 添加、混合し、成形圧力 8t/cm2で11×30×3mm の成
体を作成し、これを水素中で1180℃1時間焼結した。得
られた焼結体は密度が 6.9g/cm3で硼化物が均一な組織
の合金が得られた。
Example (1) A molten alloy prepared to have the composition shown in Table 1
An alloy powder was manufactured by a water spray method in which a molten metal flow of 10 mmφ was dropped and 0.5 m 3 / min of water was sprayed onto the molten metal flow. The obtained powder was classified with a 149 μm sieve to collect −149 μm powder. To 100 g of this powder, 1 g of zinc stearate as a lubricant and 0.3 g of polyvinyl chloride as a binder
Addition, mixing and molding of 11 × 30 × 3 mm at molding pressure of 8 t / cm 2 A body was prepared and was sintered in hydrogen at 1180 ° C for 1 hour. The obtained sintered body was an alloy having a density of 6.9 g / cm 3 and a uniform structure of boride.

本発明合金のうちのNo.3の合金の顕微鏡組織写真を第
1図に示す。
A microstructure photograph of No. 3 alloy of the present invention alloy is shown in FIG.

上記のように得られた合金に、特殊合金チル鋳物、表面
硬さがHv 600の回転片(外径30mmφ、幅5mm)を70℃の
モータオイル中で40kgの圧力で押し付け、3370rpm の回
転数で摩耗試験をおこない、合金の摩耗減量及び摩耗量
を測定した。その結果を第2表に示す。
A special alloy chill casting, surface hardness Hv 600, rotating piece (outer diameter 30 mmφ, width 5 mm) was pressed against the alloy obtained as above in 70 ° C. motor oil at a pressure of 40 kg, and the rotation speed was 3370 rpm. A wear test was carried out to measure the wear loss and wear amount of the alloy. The results are shown in Table 2.

実施例(2) 第1表に示す本発明合金のNo.6の組成の合金粉末をア
ルゴンガス流量30/min、溶射材送給速度30g/min、溶
射距離60cmでプラズマジェットにより素材移動距離200c
m/min で鋼の表面を1回のパスで被膜の厚さ0.1mm に溶
射した。溶射後の溶融処理として、炭酸ガスレーザビー
ム10.6μmの波長のレーザ光を照射して、極部的に溶融
させて、下地を傷める事もなく、溶射表面は急冷凝固の
均一な組織の合金が得られた。溶射後、溶融処理した合
金を11×30×3mm の試験片に切り出し、実施例(1)と同
じ方法で摩耗試験をおこない、合金の摩耗減量及び摩耗
量を測定した。その結果、50時間後の摩耗減量 3.1mg、
摩耗量6.5 μmであった。
Example (2) The alloy powder having the composition No. 6 of the alloy of the present invention shown in Table 1 was used as the material moving distance of 200c by the plasma jet at the argon gas flow rate of 30 / min, the spraying material feeding rate of 30g / min and the spraying distance of 60cm.
The surface of the steel was sprayed with a single pass at a coating thickness of 0.1 mm at m / min. As a melting process after thermal spraying, a carbon dioxide laser beam is irradiated with a laser beam having a wavelength of 10.6 μm to melt it locally, without damaging the base, and the sprayed surface can be rapidly solidified to obtain an alloy with a uniform structure. Was given. After thermal spraying, the melt-processed alloy was cut into 11 × 30 × 3 mm test pieces, and a wear test was conducted in the same manner as in Example (1) to measure the wear loss and wear amount of the alloy. As a result, wear loss after 50 hours 3.1 mg,
The amount of wear was 6.5 μm.

〔比較例〕[Comparative example]

比較例No.1の合金は第1表に示す組織となるように配
合した合金の溶湯を通常の水アトマイズ法で粉末を製造
し、篩によって− 149μmの粉末を得た。得られた粉末
100gに対して潤滑剤としてステアリン酸亜鉛0.5g添加の
後、混合し、成形圧力7t/ cm2で11×30×3mm の成形体
を作成し、1240℃、10分間真空焼結(1×10-4torr)し
た。次いで焼結体を1150℃で焼入れ、 550℃で焼戻しを
おこなった。焼結体密度は8.1g/ cm3である。
As for the alloy of Comparative Example No. 1, powder of a melt of the alloy compounded so as to have the structure shown in Table 1 was produced by a normal water atomizing method, and a powder of −149 μm was obtained by a sieve. The powder obtained
After adding 0.5 g of zinc stearate as a lubricant to 100 g, mix and mix to make a compact of 11 × 30 × 3 mm at a molding pressure of 7 t / cm 2 , and vacuum sinter at 1240 ° C. for 10 minutes (1 × 10 -4 torr). Next, the sintered body was quenched at 1150 ° C and tempered at 550 ° C. The sintered body density is 8.1 g / cm 3 .

比較例No.2の合金は合金工具鋼材(SKD11) を素材とし
て1000℃で焼入れ、 200℃で焼戻と処理をして試験片を
作成した。
The alloy of Comparative Example No. 2 was made of an alloy tool steel material (SKD11), quenched at 1000 ° C, tempered at 200 ° C and treated to prepare a test piece.

比較例No.3の合金は機械構造用合金鋼材(SNCM420)を素
材として固形浸炭剤で 950℃で5時間保持した後、炉冷
処理して試験片を作成した。
The alloy of Comparative Example No. 3 was made of alloy steel for machine structure (SNCM420) as a raw material, held at 950 ° C. for 5 hours with a solid carburizing agent, and then cooled in a furnace to prepare a test piece.

比較例No.4の合金は機械構造用合金鋼材(S15C)を素材
として電解による硬質クロムメッキを厚さ10μm施して
試験片を作成した。
The alloy of Comparative Example No. 4 was made of alloy steel material for machine structure (S15C) as a raw material, and hard chromium plating by electrolysis was applied to a thickness of 10 μm to prepare a test piece.

比較例No.1〜No.4の試験片を実施例(1)と同じ方法で
摩耗試験をおこない、その結果を第2表に示す。
The test pieces of Comparative Examples No. 1 to No. 4 were subjected to an abrasion test in the same manner as in Example (1), and the results are shown in Table 2.

〔効果〕〔effect〕

以上、実施例(1)及び(2)に示した通り、本発明の方法に
よりFe-Cr-B合金を融体から103℃/sec以上の冷却速度
で急例凝固して製造した合金は耐摩耗性が良好で機械部
品、内燃機関等の摩耗の激しい部材に適用した場合に著
しく優れた性能を発揮する材料として産業上有用な効果
がもたらされる。
As described above in Examples (1) and (2), the alloy produced by suddenly solidifying the Fe-Cr-B alloy from the melt at the cooling rate of 10 3 ° C / sec or more by the method of the present invention is Industrially useful effects can be obtained as a material that has excellent wear resistance and exerts remarkably excellent performance when applied to highly worn members such as machine parts and internal combustion engines.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の合金で、実施例(1)No.3の合金の顕微
鏡組織写真である。
FIG. 1 is a microstructure photograph of the alloy of the present invention, Example No. 3 (1).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Cr 8〜20重量%,B 6〜20重量%と、C 又
はAl0.05〜2.5 重量%を含み、残部が実質的にFeから成
る組成の合金を融体から 10℃/sec以上の冷却速度で
急冷凝固した事を特徴とする耐摩耗性鉄基合金の製造方
法。
1. An alloy having a composition containing 8 to 20% by weight of Cr, 6 to 20% by weight of B, and 0.05 to 2.5% by weight of C or Al, and the balance being substantially Fe at 10 3 ° C. from the melt. A method for producing a wear-resistant iron-based alloy, characterized by being rapidly solidified at a cooling rate of not less than / sec.
【請求項2】Cr 8〜20重量%,B 6〜20重量%と、C 又
はAl0.05〜2.5 重量%、更に Ni,Co,Nb,W,Moの1種又は
2種以上をNi+Co=1〜5重量%、Nb+W+Mo=1〜5 重量%
を含み、残部が実質的にFeから成る組成の合金を融体か
ら 10℃/sec以上の冷却速度で急冷凝固した事を特徴
とする耐摩耗性鉄基合金の製造方法。
2. Cr 8 to 20% by weight, B 6 to 20% by weight, C or Al 0.05 to 2.5% by weight, and one or more of Ni, Co, Nb, W and Mo Ni +. Co = 1-5% by weight, Nb + W + Mo = 1-5% by weight
A method for producing a wear-resistant iron-based alloy, characterized in that an alloy having a composition substantially containing Fe as a balance is rapidly solidified from a melt at a cooling rate of 10 3 ° C / sec or more.
JP23921385A 1985-10-24 1985-10-24 Method for producing wear-resistant iron-based alloy Expired - Lifetime JPH0625391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23921385A JPH0625391B2 (en) 1985-10-24 1985-10-24 Method for producing wear-resistant iron-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23921385A JPH0625391B2 (en) 1985-10-24 1985-10-24 Method for producing wear-resistant iron-based alloy

Publications (2)

Publication Number Publication Date
JPS6299441A JPS6299441A (en) 1987-05-08
JPH0625391B2 true JPH0625391B2 (en) 1994-04-06

Family

ID=17041425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23921385A Expired - Lifetime JPH0625391B2 (en) 1985-10-24 1985-10-24 Method for producing wear-resistant iron-based alloy

Country Status (1)

Country Link
JP (1) JPH0625391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233847A (en) * 2018-09-05 2019-01-18 重庆交通大学 Soft Rock Slope soil defence curing agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110668A2 (en) * 2014-01-27 2015-07-30 Rovalma, S.A. Centrifugal atomization of iron-based alloys
CN109988976B (en) * 2018-06-08 2022-04-01 中南大学 Al toughened high-hardness alloy and casting and heat treatment method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109233847A (en) * 2018-09-05 2019-01-18 重庆交通大学 Soft Rock Slope soil defence curing agent

Also Published As

Publication number Publication date
JPS6299441A (en) 1987-05-08

Similar Documents

Publication Publication Date Title
US9291264B2 (en) Coatings and powders, methods of making same, and uses thereof
EP0960954B2 (en) Powder of chromium carbide and nickel chromium
EP0266149B1 (en) High wear-resistant member, method of producing the same, and valve gear using the same for use in internal combustion engine
EP0223202B1 (en) Iron alloy containing molybdenum, copper and boron
CA1060683A (en) Composite wear-resistant alloy, and tools from same
US5068003A (en) Wear-resistant titanium alloy and articles made thereof
CN103045920B (en) High-silicon aluminum alloy cylinder sleeve material and fabrication method thereof
US3896244A (en) Method of producing plasma sprayed titanium carbide tool steel coatings
CN1109123C (en) Nickel base self-fluxing alloy powder
CA2161959A1 (en) Microstructurally refined multiphase castings
CN104918733A (en) Thermal spray powder for sliding systems which are subject to heavy loads
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
KR20040028753A (en) Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
CA2567089C (en) Wear resistant alloy powders and coatings
CN108315638A (en) A kind of cold spraying iron(-)base powder and its preparation method and application
JPS599152A (en) Wear-resistant sintered alloy
CN110344046B (en) Preparation method for in-situ synthesis of low-pressure cold spraying aluminum bronze coating
EP0214944A2 (en) Powder particles for fine-grained hard material alloys and a process for the preparation of such particles
JPH076026B2 (en) Manufacturing method of ferrous sintered alloy members with excellent wear resistance
US3886637A (en) Method of producing heat treatable titanium carbide tool steel coatings on cylinders of internal combustion engines
JPH0625391B2 (en) Method for producing wear-resistant iron-based alloy
CN108220804A (en) The Cr-Al alloy Fe-B alloys and its manufacturing method of resisting zinc liquid corrosion abrasion
JP4176064B2 (en) Piston ring and manufacturing method thereof
JPS635441B2 (en)
CN113862662B (en) High-temperature self-hardening composite side guide plate lining plate and processing method thereof