JPH0625299A - Protein capable of transporting vitamin e - Google Patents

Protein capable of transporting vitamin e

Info

Publication number
JPH0625299A
JPH0625299A JP3146564A JP14656491A JPH0625299A JP H0625299 A JPH0625299 A JP H0625299A JP 3146564 A JP3146564 A JP 3146564A JP 14656491 A JP14656491 A JP 14656491A JP H0625299 A JPH0625299 A JP H0625299A
Authority
JP
Japan
Prior art keywords
fraction
vitamin
molecular weight
column
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3146564A
Other languages
Japanese (ja)
Inventor
Keizo Inoue
圭三 井上
Hiroyoshi Arai
洋由 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Original Assignee
Eisai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd filed Critical Eisai Co Ltd
Priority to JP3146564A priority Critical patent/JPH0625299A/en
Publication of JPH0625299A publication Critical patent/JPH0625299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain a new protein, having a specific amino acid sequence, a specified isoelectric point and a specific molecular weight, capable of efficiently carrying out the intracellular transportation of vitamin E capable of preventing phospholipids from undergoing peroxidizing reaction leading to unsaturated fatty acids and useful as medicines, etc. CONSTITUTION:The objective protein, capable of transporting vitamin E and having partial structures of formulas I and II, 5.1 pI isoelectric point and about 30500 molecular weight is obtained by homogenizing a fresh liver of an SD rat (male) in a buffer solution, centrifuging the homogenate, collecting a supernatant, adding 1NHCl thereto, regulating the pH to 5.0, removing a precipitate, then collecting a fraction saturated with 30-60% ammonium sulfate according to an ammonium sulfate salting out method, dissolving the resultant fraction in a buffer solution, carrying out the gel filtration, collecting an active fraction having about 30000 molecular weight, passing the obtained fraction through an anion exchange column, eluting the prepared fraction with a concentration gradient at 0-0.3 M common salt concentration in the buffer solution, subsequently successively passing the fraction through a hydroxyapatite column and a gel filtration column and performing the purification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はビタミンE特異的輸送蛋
白質に関する。
TECHNICAL FIELD The present invention relates to a vitamin E-specific transport protein.

【0002】[0002]

【従来の技術】ビタミンEは生体内で生体膜に広く分布
し、リン脂質の不飽和脂肪酸に及ぶ過酸化反応およびそ
の拡大をその抗酸化作用によって防止する役割を演じて
いると考えられている。その他に微小循環賦活作用、脂
質代謝への効果などが知られ、近年、老化・成人病とビ
タミンEとの関連が重要視され多くの研究がなされてい
る。ビタミンEの細胞内輸送に関してはラット肝臓の細
胞質にビタミンE結合性蛋白質が存在するとの報告がい
くつかある(Rajaram,O.V.et al,B
iochem.Biophys.Res.Commu
n.,52,459−465,1973.,Catig
nani,G.L.,Biochem.Biophy
s.Res.Commun.,67,66−72,19
75.,Catignani,G.L.et al,B
iochem.Biophys.Acta.,497,
349−357,1977.,Behrens.W.
A.et al,Nutr.Rep.Int.,25,
107−112,1982.)しかしながらいまだ不明
の点が多く、その構造に関しては何もわかっていない。
2. Description of the Related Art Vitamin E is widely distributed in biological membranes in vivo and is considered to play a role of preventing the peroxidation reaction of phospholipids to unsaturated fatty acids and its expansion by its antioxidant action. . In addition, microcirculatory activating action, effects on lipid metabolism, etc. are known, and in recent years, many studies have been conducted with emphasis on the relationship between aging and adult diseases and vitamin E. Regarding the intracellular transport of vitamin E, there are some reports that a vitamin E binding protein exists in the cytoplasm of rat liver (Rajaram, OV et al, B.
iochem. Biophys. Res. Commu
n. , 52, 459-465, 1973. , Catig
nani, G .; L. , Biochem. Biophy
s. Res. Commun. , 67, 66-72, 19
75. , Catignani, G .; L. et al, B
iochem. Biophys. Acta. , 497,
349-357, 1977. Behrens. W.
A. et al, Nutr. Rep. Int. , 25,
107-112, 1982. However, there are still many unclear points, and nothing is known about its structure.

【0003】[0003]

【発明が解決しようとする課題】生体内でのビタミンE
特異的輸送蛋白質を提供することを目的とする。
[Problems to be Solved by the Invention] Vitamin E in vivo
The purpose is to provide a specific transport protein.

【0004】[0004]

【課題を解決するための手段】本発明者らはビタミンE
の生理機構について鋭意研究の結果、ラット肝臓の可溶
性画分からビタミンE特異的輸送蛋白質の完全精製法を
確立した。さらにその部分構造を解析したところ新規な
特異的輸送蛋白質であることを見出し本発明を完成し
た。すなわち本発明は配列番号1および2の部分構造を
有し等電点pI5.1、分子量約30500であるビタ
ミンE特異的輸送蛋白質I、および配列番号3の部分構
造を有し等電点pI5.0、分子量約30500である
ビタミンE特異的輸送蛋白質IIに関するものである。本
蛋白質は細胞内でのビタミンE輸送を効率的に行ない有
用な物質である。以下に本発明の蛋白質I,IIの精製法
および構造確認について実施例をもって詳細に述べる。
[Means for Solving the Problems] The present inventors
As a result of earnest studies on the physiological mechanism of the, the complete purification method of the vitamin E-specific transport protein from the soluble fraction of rat liver was established. Furthermore, when the partial structure was analyzed, it was found that it was a novel specific transport protein, and the present invention was completed. That is, the present invention has an isoelectric point pI5.1 having a partial structure of SEQ ID NOS: 1 and 2, a vitamin E-specific transport protein I having a molecular weight of about 30500, and an isoelectric point pI5.I having a partial structure of SEQ ID NO: 3. It relates to a vitamin E-specific transport protein II having a molecular weight of 0 and a molecular weight of about 30,500. This protein is a useful substance that efficiently transports vitamin E in cells. Hereinafter, the purification method and structure confirmation of the proteins I and II of the present invention will be described in detail with reference to Examples.

【0005】[0005]

【実施例】【Example】

参考例1 ビタミンE輸送活性測定法 Bloj R.らの方法(Bloj R.et al,
J.Biol.Chem.,252,1613−161
9,1977.)に準じて行なう。すなわちリポソーム
とミトコンドリアを使用し、リポソームは卵黄ホスファ
チジルコリン、ジセチルホスフェイト、ブチルヒドロキ
シトリエンさらにα−14Cトコフェロールを組成物とし
て調製する(Mowri.H.et.al,Eur.
J.Biochem.,117,537−542,19
81.)。ミトコンドリアはラット肝臓より常法に準じ
て調製したものを用いる。リポソームとミトコンドリア
共存下、検体を添加しリポソームからミトコンドリアへ
のα−14Cトコフェロールの輸送量を指標として各精製
工程での輸送蛋白質の確認、さらに輸送蛋白質のビタミ
ンE特異性の確認を行なった。
Reference Example 1 Vitamin E transport activity measurement method Blj R. et al. Et al. (Bloj R. et al,
J. Biol. Chem. , 252, 1613-161
9, 1977. ). That is, liposomes and mitochondria are used, and the liposomes are prepared as a composition of egg yolk phosphatidylcholine, dicetylphosphate, butylhydroxytriene, and α- 14 C tocopherol (Mowri. H. et. Al. Eur.
J. Biochem. , 117, 537-542, 19
81. ). The mitochondria used are those prepared from rat liver according to a conventional method. In the presence of liposomes and mitochondria, a sample was added to confirm the transport protein in each purification step and the vitamin E specificity of the transport protein using the amount of α- 14C tocopherol transported from the liposome to mitochondria as an index.

【0006】実施例1 ビタミンE輸送蛋白質の精製法 SDラット(雄)の新鮮肝臓20匹分を2〜3倍量の
0.25M sucrose,1mM EDTA,10
mM Tris−HCl緩衝液(pH7.4)を加えホ
モジナイズし、10000×G、20分間遠心分離後上
清をとる。これに1N HClを滴下しpH5.0に調
整後同様に遠心分離を行ない上清を得る。次に硫安塩析
法により30%〜60%硫安飽和画分をとり、順次下記
のカラム操作により精製を行なう。まずSephade
x G75(superfine)カラム(サイズ、4
5×1000mm)を用い、10mM KH2 PO4
5mM 2−mercaptoethanol・10%
Glycerol(pH6.8)(緩衝液A)を溶媒と
して上記硫安塩析物のゲル濾過分画を行ない、分子量約
30000付近の活性画分を分取する。
Example 1 Purification Method of Vitamin E Transport Protein Twenty fresh livers of SD rats (male) were mixed with 2-3 times the amount of 0.25 M sucrose, 1 mM EDTA, 10
Add mM Tris-HCl buffer (pH 7.4), homogenize, centrifuge at 10,000 × G for 20 minutes, and collect the supernatant. 1N HCl is added dropwise to this to adjust the pH to 5.0, and then the same centrifugation is performed to obtain a supernatant. Next, a 30% to 60% ammonium sulfate saturated fraction is obtained by the ammonium sulfate salting-out method, and the column fraction is subjected to the following column operations for purification. First Sephade
x G75 (superfine) column (size, 4
5 × 1000 mm) and 10 mM KH 2 PO 4 ·
5 mM 2-mercaptoethanol, 10%
Using Glycerol (pH 6.8) (buffer solution A) as a solvent, gel filtration fractionation of the above ammonium sulfate salting out is carried out to fractionate an active fraction having a molecular weight of about 30,000.

【0007】次いで同緩衝液Aで充分に緩衝化したDE
AE−Sepharose CL−6Bカラム(サイ
ズ、10×250mm)を用い、先のSephadex
G75カラムにて分取した活性画分を吸着させた後同
緩衝液中食塩0〜0.3M濃度で濃度勾配溶出を行なう
(150mlずつ)。3mlずつ分取し活性画分番号3
7−45を分取する。次に緩衝液Aで充分に緩衝化した
Hydroxyapatiteカラム(サイズ、4×9
0mm)を用い、上記操作により得た活性物質を吸着さ
せた後10mMと200mMのKH2 PO4 70ml
(他の組成は緩衝液Aと同じ)で濃度勾配溶出を行な
う。3mlずつ分画し活性画分番号19−26を分取す
る。この活性画分を25mM Histidine/H
Cl、5mM 2−mercaptoethanol、
10%Glycerol(pH6.2)(緩衝液B)で
充分に緩衝化したpolybuffer94excha
ngerカラム(サイズ、10×250mm)に吸着さ
せた後polybuffer74(pH4.0)にて溶
出しpH6.2から4.0へのpHグラジェント分画を
行なう。その結果図1に示すごとく、等電点5.1と
5.0に二つの活性ピークIとIIが認められそれぞれを
分取する。
Then, DE fully buffered with the same buffer A was used.
Using an AE-Sepharose CL-6B column (size, 10 × 250 mm), the Sephadex
After adsorbing the active fraction collected on the G75 column, concentration gradient elution is carried out at a salt concentration of 0 to 0.3 M in the same buffer (150 ml each). 3 ml aliquots are collected and active fraction number 3
Collect 7-45. Next, a Hydroxyapatite column (size, 4 × 9) sufficiently buffered with buffer A
0 mm) and after adsorbing the active substance obtained by the above operation, 70 ml of 10 mM and 200 mM KH 2 PO 4
Gradient elution is performed with (other composition is the same as buffer A). Fractionation is carried out in 3 ml portions and the active fraction number 19-26 is collected. This active fraction was added to 25 mM Histidine / H
Cl, 5 mM 2-mercaptoethanol,
Polybuffer 94excha well buffered with 10% Glycerol (pH 6.2) (buffer B)
After being adsorbed on an nger column (size, 10 × 250 mm), it is eluted with polybuffer 74 (pH 4.0) to perform pH gradient fractionation from pH 6.2 to 4.0. As a result, as shown in FIG. 1, two activity peaks I and II were observed at the isoelectric points 5.1 and 5.0, and each was separated.

【0008】最後にblue Sepharose C
L−6Bカラムを用い活性ピークIおよびIIを精製・単
一化する。活性ピークIは5mM KH2 PO4 、5m
M 2−mercaptoethanol、10%Gl
ycerol(pH6.8)で充分に緩衝化したblu
eSepharose CL−6Bカラム(サイズ、6
×150mm)に吸着させた後、同緩衝液中食塩濃度0
−1Mで濃度勾配溶出を行ない単一活性画分として得
る。活性ピークIIは1mM KH2 PO4 、5mM 2
−mercaptoethanol、10%Glyce
rol(pH7.4)にて充分に緩衝化したblue
Sepharoseカラム(サイズ、6×150mm)
にチャージし、非吸着画分として回収した後、活性ピー
クIと同じ条件でblue Sepharose CL
−6Bカラムにかけ同じ操作にて単一活性画分として得
る。
Finally, blue Sepharose C
Purify and unify activity peaks I and II using an L-6B column. Activity peak I is 5 mM KH 2 PO 4 , 5 m
M 2-mercaptoethanol, 10% Gl
Blu well buffered with ycerol (pH 6.8)
eSepharose CL-6B column (size, 6
X 150 mm), and then the salt concentration in the same buffer was 0
Gradient elution is performed at -1 M to obtain a single active fraction. Activity peak II is 1 mM KH 2 PO 4 , 5 mM 2
-Mercaptoethanol, 10% Glyce
blue well buffered with roll (pH 7.4)
Sepharose column (size, 6 x 150 mm)
And collect as a non-adsorbed fraction, and then under the same conditions as for activity peak I, blue Sepharose CL
-6B column is applied and the same operation is performed to obtain a single active fraction.

【0009】各精製工程の収率、比活性は表1に示す如
くである。
The yield and specific activity of each purification step are as shown in Table 1.

【表1】 [Table 1]

【0010】精製標品の単一性の確認はO.Farre
llの方法に準じて15%スラブゲルを用いたSDS−
ポリアクリルアミドゲル電気泳動法を実施した。(O.
Farrell P.H.,J.Biol.Che
m.,250,4007−4021,1975)。図2
に示す如く活性ピークI,IIすなわち輸送蛋白質I,II
とも分子量約30500に位置する単一バンドを示し
た。
Confirmation of the unity of the purified sample is made by O.K. Farre
SDS-using 15% slab gel according to the method of 11.
Polyacrylamide gel electrophoresis was performed. (O.
Farrell P. H. J. Biol. Che
m. , 250, 4007-4021, 1975). Figure 2
Activity peaks I and II, that is, transport proteins I and II
Both showed a single band located at a molecular weight of about 30,500.

【0011】実施例2 アミノ酸分析値とアミノ酸配列の解析 輸送蛋白質IおよびIIをアミノ酸分析計によりアミノ酸
組成値を解析した結果は表2に示す如く、両者あまり大
きな差はない。アミノ酸配列はシークエンサーを用いて
解析した。両蛋白質ともそのままでは全く情報が得られ
なかったことからN末端はブロックされている可能性が
示唆された。そこで両蛋白質をリジルエンドペプチダー
ゼにて加水分解した後、生じたフラグメントを高速液体
クロマトグラフィにて精製後同シークエンサーにて解析
した。その結果、輸送蛋白質Iのフラグメントから配列
番号1と2の配列を確認し、輸送蛋白質IIのフラグメン
トからは配列番号3の配列を確認した。これらのアミノ
酸配列はシークエンスのデータベースと比較したところ
類似の配列をもつ蛋白質は見い出されず新規な輸送蛋白
質である。
Example 2 Analysis of Amino Acid Analysis Value and Amino Acid Sequence As shown in Table 2, the amino acid composition values of transport proteins I and II were analyzed by an amino acid analyzer, and there is not much difference between them. The amino acid sequence was analyzed using a sequencer. Since no information was obtained for both proteins as they were, it was suggested that the N-terminus may be blocked. Therefore, both proteins were hydrolyzed with lysyl endopeptidase, and the resulting fragments were purified by high performance liquid chromatography and analyzed by the same sequencer. As a result, the sequences of SEQ ID NOS: 1 and 2 were confirmed from the fragment of transport protein I, and the sequence of SEQ ID NO: 3 was confirmed from the fragment of transport protein II. When these amino acid sequences were compared with a sequence database, no protein having a similar sequence was found and it is a novel transport protein.

【0012】参考例2 基質特異性 参考例1記載の方法に従い、α−トコフェロールの構造
類似体及びコレステロールに対する輸送活性を、競合阻
害実験により比較した(表3)。その結果、α−トコフ
ェロールのみならずβ、γ、δ−トコフェロールも程度
は低いものの阻害効果を示し、精製タンパク質がこれら
のトコフェロールも認識していることが示された。しか
し、トコフェロールキノン、トコフェロールアセテー
ト、コレステロールなどには全く阻害効果はなく、この
タンパク質がトコフェロールの構造を特異的に認識して
いることが示唆された。また二つのアイソフォームは基
質特異性の点で差は無かった。
Reference Example 2 Substrate Specificity According to the method described in Reference Example 1, the transport activities of α-tocopherol for structural analogs and cholesterol were compared by competitive inhibition experiments (Table 3). As a result, it was shown that not only α-tocopherol but also β, γ, δ-tocopherol exhibited an inhibitory effect to a small extent, and the purified protein also recognized these tocopherols. However, tocopherol quinone, tocopherol acetate, cholesterol, etc. had no inhibitory effect, suggesting that this protein specifically recognizes the structure of tocopherol. The two isoforms did not differ in terms of substrate specificity.

【図面の簡単な説明】[Brief description of drawings]

【図1】等電点分画法の溶出図。FIG. 1 is an elution diagram of the isoelectric focusing method.

【図2】SDS−ポリアクリルアミド電気泳動図。 B:輸送蛋白質I、C:輸送蛋白質II、A,D:分子量
マーカー
FIG. 2 is an SDS-polyacrylamide electrophoresis diagram. B: Transport protein I, C: Transport protein II, A, D: Molecular weight marker

【配列表】[Sequence list]

配列番号 :1 配列の長さ:21 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Lys Ala lle Phe Asp Leu Glu Gly Trp Gln lle Ser His Ala Phe 5 10 15 Gln lle Thr Xaa Ser Val 20 配列番号 :2 配列の長さ:12 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 lle Ser Asn Ser Thr Ser Pro Thr(Gln) Asn(Ser) 5 Phe Val Ala 配列番号 :3 配列の長さ:9 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド SEQ ID NO: 1 Sequence length: 21 Sequence type: Amino acid Topology: Linear Sequence type: Peptide sequence Lys Ala lle Phe Asp Leu Glu Gly Trp Gln lle Ser His Ala Phe 5 10 15 Gln lle Thr Xaa Ser Val 20 SEQ ID NO: 2 Sequence length: 12 Sequence type: Amino acid Topology: Linear Sequence type: Peptide sequence lle Ser Asn Ser Thr Ser Pro Thr (Gln) Asn (Ser) 5 Phe Val Ala SEQ ID NO: 3 Sequence length: 9 Sequence type: Amino acid Topology: Linear Sequence type: Peptide

【表2】 [Table 2]

【表3】 [Table 3]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月22日[Submission date] June 22, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はビタミンE特異的輸送蛋
白質に関する。
TECHNICAL FIELD The present invention relates to a vitamin E-specific transport protein.

【0002】[0002]

【従来の技術】ビタミンEは生体内で生体膜に広く分布
し、リン脂質の不飽和脂肪酸に及ぶ過酸化反応およびそ
の拡大をその抗酸化作用によって防止する役割を演じて
いると考えられている。その他に微小循環賦活作用、脂
質代謝への効果などが知られ、近年、老化・成人病とビ
タミンEとの関連が重要視され多くの研究がなされてい
る。ビタミンEの細胞内輸送に関してはラット肝臓の細
胞質にビタミンE結合性蛋白質が存在するとの報告がい
くつかある(Rajaram,O.V.et al,B
iochem.Biophys.Res.Commu
n.,52,459−465,1973.,Catig
nani,G.L.,Biochem.Biophy
s.Res.Commun.,67,66−72,19
75.,Catignani,G.L.et al,B
iochem.Biophys.Acta.,497,
349−357,1977.,Behrens.W.
A.et al,Nutr.Rep.Int.,25,
107−112,1982.)しかしながらいまだ不明
の点が多く、その構造に関しては何もわかっていない。
2. Description of the Related Art Vitamin E is widely distributed in biological membranes in vivo and is considered to play a role of preventing the peroxidation reaction of phospholipids to unsaturated fatty acids and its expansion by its antioxidant action. . In addition, microcirculatory activating action, effects on lipid metabolism, etc. are known, and in recent years, many studies have been conducted with emphasis on the relationship between aging and adult diseases and vitamin E. Regarding the intracellular transport of vitamin E, there are some reports that a vitamin E-binding protein exists in the cytoplasm of rat liver (Rajaram, OV et al, B.
iochem. Biophys. Res. Commu
n. , 52, 459-465, 1973. , Catig
nani, G .; L. , Biochem. Biophy
s. Res. Commun. , 67, 66-72, 19
75. , Catignani, G .; L. et al, B
iochem. Biophys. Acta. , 497,
349-357, 1977. Behrens. W.
A. et al, Nutr. Rep. Int. , 25,
107-112, 1982. However, there are still many unclear points, and nothing is known about its structure.

【0003】[0003]

【発明が解決しようとする課題】生体内でのビタミンE
特異的輸送蛋白質を提供することを目的とする。
[Problems to be Solved by the Invention] Vitamin E in vivo
The purpose is to provide a specific transport protein.

【0004】[0004]

【課題を解決するための手段】本発明者らはビタミンE
の生理機構について鋭意研究の結果、ラット肝臓の可溶
性画分からビタミンE特異的輸送蛋白質の完全精製法を
確立した。さらにその部分構造を解析したところ新規な
特異的輸送蛋白質であることを見出し本発明を完成し
た。すなわち本発明は配列番号1および2の部分構造を
有し等電点pI5.1、分子量約30500であるビタ
ミンE特異的輸送蛋白質I、および配列番号3の部分構
造を有し等電点pI5.0、分子量約30500である
ビタミンE特異的輸送蛋白質IIに関するものである。本
蛋白質は細胞内でのビタミンE輸送を効率的に行ない有
用な物質である。以下に本発明の蛋白質I,IIの精製法
および構造確認について実施例をもって詳細に述べる。
[Means for Solving the Problems] The present inventors
As a result of earnest studies on the physiological mechanism of the, the complete purification method of the vitamin E-specific transport protein from the soluble fraction of rat liver was established. Furthermore, when the partial structure was analyzed, it was found that it was a novel specific transport protein, and the present invention was completed. That is, the present invention has an isoelectric point pI5.1 having a partial structure of SEQ ID NOS: 1 and 2, a vitamin E-specific transport protein I having a molecular weight of about 30500, and an isoelectric point pI5.I having a partial structure of SEQ ID NO: 3. It relates to a vitamin E-specific transport protein II having a molecular weight of 0 and a molecular weight of about 30,500. This protein is a useful substance that efficiently transports vitamin E in cells. Hereinafter, the purification method and structure confirmation of the proteins I and II of the present invention will be described in detail with reference to Examples.

【0005】[0005]

【実施例】 参考例1 ビタミンE輸送活性測定法 Bloj R.らの方法(Bloj R.et al,
J.Biol.Chem.,252,1613−161
9,1977.)に準じて行なう。すなわちリポソーム
とミトコンドリアを使用し、リポソームは卵黄ホスファ
チジルコリン、ジセチルホスフェイト、ブチルヒドロキ
シトリエンさらにα−14Cトコフェロールを組成物とし
て調製する(Mowri.H.et.al,Eur.
J.Biochem.,117,537−542,19
81.)。ミトコンドリアはラット肝臓より常法に準じ
て調製したものを用いる。リポソームとミトコンドリア
共存下、検体を添加しリポソームからミトコンドリアへ
のα−14Cトコフェロールの輸送量を指標として各精製
工程での輸送蛋白質の確認、さらに輸送蛋白質のビタミ
ンE特異性の確認を行なった。
EXAMPLES Reference Example 1 Vitamin E Transport Activity Measurement Method Blj R. et al. Et al. (Bloj R. et al,
J. Biol. Chem. , 252, 1613-161
9, 1977. ). That is, liposomes and mitochondria are used, and the liposomes are prepared as a composition of egg yolk phosphatidylcholine, dicetylphosphate, butylhydroxytriene, and α- 14 C tocopherol (Mowri. H. et. Al. Eur.
J. Biochem. , 117, 537-542, 19
81. ). The mitochondria used are those prepared from rat liver according to a conventional method. In the presence of liposomes and mitochondria, a sample was added to confirm the transport protein in each purification step and the vitamin E specificity of the transport protein using the amount of α- 14C tocopherol transported from the liposome to mitochondria as an index.

【0006】実施例1 ビタミンE輸送蛋白質の精製法 SDラット(雄)の新鮮肝臓20匹分を2〜3倍量の
0.25M sucrose,1mM EDTA,10
mM Tris−HCl緩衝液(pH7.4)を加えホ
モジナイズし、10000×G、20分間遠心分離後上
清をとる。これに1N HClを滴下しpH5.0に調
整後同様に遠心分離を行ない上清を得る。次に硫安塩析
法により30%〜60%硫安飽和画分をとり、順次下記
のカラム操作により精製を行なう。まずSephade
x G75(superfine)カラム(サイズ、4
5×1000mm)を用い、10mM KH2 PO4
5mM 2−mercaptoethanol・10%
Glycerol(pH6.8)(緩衝液A)を溶媒と
して上記硫安塩析物のゲル濾過分画を行ない、分子量約
30000付近の活性画分を分取する。
Example 1 Purification Method of Vitamin E Transport Protein Twenty fresh livers of SD rats (male) were mixed with 2-3 times the amount of 0.25 M sucrose, 1 mM EDTA, 10
Add mM Tris-HCl buffer (pH 7.4), homogenize, centrifuge at 10,000 × G for 20 minutes, and collect the supernatant. 1N HCl is added dropwise to this to adjust the pH to 5.0, and then the same centrifugation is performed to obtain a supernatant. Next, a 30% to 60% ammonium sulfate saturated fraction is obtained by the ammonium sulfate salting-out method, and the column fraction is subjected to the following column operations for purification. First Sephade
x G75 (superfine) column (size, 4
5 × 1000 mm) and 10 mM KH 2 PO 4 ·
5 mM 2-mercaptoethanol, 10%
Using Glycerol (pH 6.8) (buffer solution A) as a solvent, gel filtration fractionation of the above ammonium sulfate salting out is carried out to fractionate an active fraction having a molecular weight of about 30,000.

【0007】次いで同緩衝液Aで充分に緩衝化したDE
AE−Sepharose CL−6Bカラム(サイ
ズ、10×250mm)を用い、先のSephadex
G75カラムにて分取した活性画分を吸着させた後同
緩衝液中食塩0〜0.3M濃度で濃度勾配溶出を行なう
(150mlずつ)。3mlずつ分取し活性画分番号3
7−45を分取する。次に緩衝液Aで充分に緩衝化した
Hydroxyapatiteカラム(サイズ、4×9
0mm)を用い、上記操作により得た活性物質を吸着さ
せた後10mMと200mMのKH2 PO4 70ml
(他の組成は緩衝液Aと同じ)で濃度勾配溶出を行な
う。3mlずつ分画し活性画分番号19−26を分取す
る。この活性画分を25mM Histidine/H
Cl、5mM 2−mercaptoethanol、
10%Glycerol(pH6.2)(緩衝液B)で
充分に緩衝化したpolybuffer94excha
ngerカラム(サイズ、10×250mm)に吸着さ
せた後polybuffer74(pH4.0)にて溶
出しpH6.2から4.0へのpHグラジェント分画を
行なう。その結果図1に示すごとく、等電点5.1と
5.0に二つの活性ピークIとIIが認められそれぞれを
分取する。
Then, DE fully buffered with the same buffer A was used.
Using an AE-Sepharose CL-6B column (size, 10 × 250 mm), the Sephadex
After adsorbing the active fraction collected on the G75 column, concentration gradient elution is carried out at a salt concentration of 0 to 0.3 M in the same buffer (150 ml each). 3 ml aliquots are collected and active fraction number 3
Collect 7-45. Next, a Hydroxyapatite column (size, 4 × 9) sufficiently buffered with buffer A
0 mm) and after adsorbing the active substance obtained by the above operation, 70 ml of 10 mM and 200 mM KH 2 PO 4
Gradient elution is performed with (other composition is the same as buffer A). Fractionation is carried out in 3 ml portions and the active fraction number 19-26 is collected. This active fraction was added to 25 mM Histidine / H
Cl, 5 mM 2-mercaptoethanol,
Polybuffer 94excha well buffered with 10% Glycerol (pH 6.2) (buffer B)
After being adsorbed on an nger column (size, 10 × 250 mm), it is eluted with polybuffer 74 (pH 4.0) to perform pH gradient fractionation from pH 6.2 to 4.0. As a result, as shown in FIG. 1, two activity peaks I and II were observed at the isoelectric points 5.1 and 5.0, and each was separated.

【0008】最後にblue Sepharose C
L−6Bカラムを用い活性ピークIおよびIIを精製・単
一化する。活性ピークIは5mM KH2 PO4 、5m
M 2−mercaptoethanol、10%Gl
ycerol(pH6.8)で充分に緩衝化したblu
eSepharose CL−6Bカラム(サイズ、6
×150mm)に吸着させた後、同緩衝液中食塩濃度0
−1Mで濃度勾配溶出を行ない単一活性画分として得
る。活性ピークIIは1mM KH2 PO4 、5mM 2
−mercaptoethanol、10%Glyce
rol(pH7.4)にて充分に緩衝化したblue
Sepharoseカラム(サイズ、6×150mm)
にチャージし、非吸着画分として回収した後、活性ピー
クIと同じ条件でblue Sepharose CL
−6Bカラムにかけ同じ操作にて単一活性画分として得
る。
Finally, blue Sepharose C
Purify and unify activity peaks I and II using an L-6B column. Activity peak I is 5 mM KH 2 PO 4 , 5 m
M 2-mercaptoethanol, 10% Gl
Blu well buffered with ycerol (pH 6.8)
eSepharose CL-6B column (size, 6
X 150 mm), and then the salt concentration in the same buffer was 0
Gradient elution is performed at -1 M to obtain a single active fraction. Activity peak II is 1 mM KH 2 PO 4 , 5 mM 2
-Mercaptoethanol, 10% Glyce
blue well buffered with roll (pH 7.4)
Sepharose column (size, 6 x 150 mm)
And collect as a non-adsorbed fraction, and then under the same conditions as for activity peak I, blue Sepharose CL
-6B column is applied and the same operation is performed to obtain a single active fraction.

【0009】各精製工程の収率、比活性は表1に示す如
くである。
The yield and specific activity of each purification step are as shown in Table 1.

【表1】[Table 1]

【0010】精製標品の単一性の確認はO.Farre
llの方法に準じて15%スラブゲルを用いたSDS−
ポリアクリルアミドゲル電気泳動法を実施した。(O.
Farrell P.H.,J.Biol.Che
m.,250,4007−4021,1975)。図2
に示す如く活性ピークI,IIすなわち輸送蛋白質I,II
とも分子量約30500に位置する単一バンドを示し
た。
Confirmation of the unity of the purified sample is made by O.K. Farre
SDS-using 15% slab gel according to the method of 11.
Polyacrylamide gel electrophoresis was performed. (O.
Farrell P. H. J. Biol. Che
m. , 250, 4007-4021, 1975). Figure 2
Activity peaks I and II, that is, transport proteins I and II
Both showed a single band located at a molecular weight of about 30,500.

【0011】実施例2 アミノ酸分析値とアミノ酸配列の解析 輸送蛋白質IおよびIIをアミノ酸分析計によりアミノ酸
組成値を解析した結果は表2に示す如く、両者あまり大
きな差はない。アミノ酸配列はシークエンサーを用いて
解析した。両蛋白質ともそのままでは全く情報が得られ
なかったことからN末端はブロックされている可能性が
示唆された。そこで両蛋白質をリジルエンドペプチダー
ゼにて加水分解した後、生じたフラグメントを高速液体
クロマトグラフィにて精製後同シークエンサーにて解析
した。その結果、輸送蛋白質Iのフラグメントから配列
番号1と2の配列を確認し、輸送蛋白質IIのフラグメン
トからは配列番号3の配列を確認した。これらのアミノ
酸配列はシークエンスのデータベースと比較したところ
類似の配列をもつ蛋白質は見い出されず新規な輸送蛋白
質である。
Example 2 Analysis of Amino Acid Analysis Value and Amino Acid Sequence As shown in Table 2, the amino acid composition values of transport proteins I and II were analyzed by an amino acid analyzer, and there is not much difference between them. The amino acid sequence was analyzed using a sequencer. Since no information was obtained for both proteins as they were, it was suggested that the N-terminus may be blocked. Therefore, both proteins were hydrolyzed with lysyl endopeptidase, and the resulting fragments were purified by high performance liquid chromatography and analyzed by the same sequencer. As a result, the sequences of SEQ ID NOS: 1 and 2 were confirmed from the fragment of transport protein I, and the sequence of SEQ ID NO: 3 was confirmed from the fragment of transport protein II. When these amino acid sequences were compared with a sequence database, no protein having a similar sequence was found and it is a novel transport protein.

【0012】参考例2 基質特異性 参考例1記載の方法に従い、α−トコフェロールの構造
類似体及びコレステロールに対する輸送活性を、競合阻
害実験により比較した(表3)。その結果、α−トコフ
ェロールのみならずβ、γ、δ−トコフェロールも程度
は低いものの阻害効果を示し、精製タンパク質がこれら
のトコフェロールも認識していることが示された。しか
し、トコフェロールキノン、トコフェロールアセテー
ト、コレステロールなどには全く阻害効果はなく、この
タンパク質がトコフェロールの構造を特異的に認識して
いることが示唆された。また二つのアイソフォームは基
質特異性の点で差は無かった。
Reference Example 2 Substrate Specificity According to the method described in Reference Example 1, the transport activities of α-tocopherol for structural analogs and cholesterol were compared by competitive inhibition experiments (Table 3). As a result, it was shown that not only α-tocopherol but also β, γ, δ-tocopherol exhibited an inhibitory effect to a small extent, and the purified protein also recognized these tocopherols. However, tocopherol quinone, tocopherol acetate, cholesterol, etc. had no inhibitory effect, suggesting that this protein specifically recognizes the structure of tocopherol. The two isoforms did not differ in terms of substrate specificity.

【配列表】 配列番号 :1 配列の長さ:21 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Lys Ala lle Phe Asp Leu Glu Gly Trp Gln lle Ser His Ala Phe Gln 5 10 15 lle Thr Xaa Ser Val 20 配列番号 :2 配列の長さ:12 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 lle Ser Asn Ser Thr Ser Pro Thr(Gln) Asn(Ser) Phe Val Ala 5 10 配列番号 :3 配列の長さ:9 配列の型 :アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド [Sequence Listing] SEQ ID NO: 1 Sequence length: 21 Sequence type: Amino acid Topology: Linear Sequence type: Peptide sequence Lys Ala lle Phe Asp Leu Glu Gly Trp Gln lle Ser His Ala Phe Gln 5 10 15 lle Thr Xaa Ser Val 20 Sequence number: 2 Sequence length: 12 Sequence type: Amino acid Topology: Linear Sequence type: Peptide sequence lle Ser Asn Ser Thr Ser Pro Thr (Gln) Asn (Ser) Phe Val Ala 5 10 SEQ ID NO: 3 Sequence length: 9 Sequence type: Amino acid Topology: Linear Sequence type: Peptide

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】等電点分画法の溶出図。FIG. 1 is an elution diagram of the isoelectric focusing method.

【図2】SDS−ポリアクリルアミド電気泳動図。FIG. 2 is an SDS-polyacrylamide electrophoresis diagram.

【符号の説明】 A、D 分子量マ−カ− B 輸送蛋白質 I C 輸送蛋白質 II[Explanation of symbols] A, D molecular weight marker B transport protein I C transport protein II

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1および2の部分構造を有し、
下記の物性値を示すビタミンE輸送蛋白質I 等電点 : pI 5.1 分子量 : 約30500
1. Having a partial structure of SEQ ID NOS: 1 and 2,
Vitamin E transport protein I having the following physical properties: isoelectric point: pI 5.1 molecular weight: about 30500
【請求項2】 配列番号3の部分構造を有し、下記の物
性値を示すビタミンE輸送蛋白質II 等電点 : pI 5.0 分子量 : 約30500
2. A vitamin E transport protein II having the partial structure of SEQ ID NO: 3 and having the following physical properties: isoelectric point: pI 5.0 molecular weight: about 30500.
JP3146564A 1991-05-23 1991-05-23 Protein capable of transporting vitamin e Pending JPH0625299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146564A JPH0625299A (en) 1991-05-23 1991-05-23 Protein capable of transporting vitamin e

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146564A JPH0625299A (en) 1991-05-23 1991-05-23 Protein capable of transporting vitamin e

Publications (1)

Publication Number Publication Date
JPH0625299A true JPH0625299A (en) 1994-02-01

Family

ID=15410531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146564A Pending JPH0625299A (en) 1991-05-23 1991-05-23 Protein capable of transporting vitamin e

Country Status (1)

Country Link
JP (1) JPH0625299A (en)

Similar Documents

Publication Publication Date Title
Faure et al. Crotoxin, a phospholipase A2 neurotoxin from the South American rattlesnake Crotalus durissus terrificus: purification of several isoforms and comparison of their molecular structure and of their biological activities
Brzin et al. Human cystatin, a new protein inhibitor of cysteine proteinases
Yamakoshi et al. Porcine amelogenins
TURK et al. Protein inhibitors of cysteine proteinases. III. Amino-acid sequence of cystatin from chicken egg white
Jones et al. Properties of chromatographically purified trypsin inhibitors from lima beans
Varon et al. The isolation of the mouse nerve growth factor protein in a high molecular weight form
EP0132732B1 (en) Homologues from aprotinine whose lys 15 amino acid is substituted by other amino acids, process for their preparation and their use as medicaments
Kortt Isolation and characterization of the trypsin inhibitors from winged bean seed (Psophocarpus tetragonolobus (L) Dc.)
Arnold et al. Thermal unfolding and proteolytic susceptibility of ribonuclease A
Jagschies et al. Bovine fatty acid binding proteins: Isolation and characterisation of two cardiac fatty acid binding proteins that are distinct from corresponding hepatic proteins
Kutzbach et al. Kallikrein from pig pancreas. Purification, separation of components A and B, and crystallization
Berggård et al. α1-Microglobulin chromophores are located to three lysine residues semiburied in the lipocalin pocket and associated with a novel lipophilic compound
Esnard et al. Purification and physicochemical characterization of a new rat plasma proteinase inhibitor, α1-inhibitor III
van der Horst et al. Different isoforms of an apoprotein (apolipophorin III) associate with lipoproteins in Locusta migratoria
Larsson et al. The identity and properties of two forms of activated colipase from porcine pancreas
Jelı́nková et al. Proteinase inhibitors in aggregated forms of boar seminal plasma proteins
Feldman et al. Purification and characterization of frog. alpha.-macroglobulin: receptor recognition of an amphibian glycoprotein
SCHOLZ et al. Low‐Molecular‐Weight Polypeptides of Vicilin from Vicia faba L. are Product of Proteolytic Breakdown
Xu et al. Purification and characterization of anticoagulation factors from the venom of Agkistrodon acutus
Melsert et al. Albumin, a biologically active protein acting on Leydig cells
Miyoshi et al. General proteolytic activity of highly purified preparations of clostridial collagenase
Lundahl et al. Fractionation of human red cell membrane proteins by ion-exchange chromatography in detergent on Mono Q, with special reference to the glucose transporter
Jander et al. Characteristics and in vivo occurrence of type VIII collagen
Kino et al. Purification and characterization of three mitogenic lectins from the roots of pokeweed (Phytolacca americana)
JPH0625299A (en) Protein capable of transporting vitamin e