JPH06252741A - Compound semiconductor integrated circuit device - Google Patents

Compound semiconductor integrated circuit device

Info

Publication number
JPH06252741A
JPH06252741A JP5035489A JP3548993A JPH06252741A JP H06252741 A JPH06252741 A JP H06252741A JP 5035489 A JP5035489 A JP 5035489A JP 3548993 A JP3548993 A JP 3548993A JP H06252741 A JPH06252741 A JP H06252741A
Authority
JP
Japan
Prior art keywords
fet
power supply
supply voltage
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5035489A
Other languages
Japanese (ja)
Other versions
JP3186302B2 (en
Inventor
Hidetoshi Kawasaki
英俊 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP03548993A priority Critical patent/JP3186302B2/en
Publication of JPH06252741A publication Critical patent/JPH06252741A/en
Application granted granted Critical
Publication of JP3186302B2 publication Critical patent/JP3186302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To adopt a high power supply voltage for a integrated circuit device and to avoid the effect of power supply voltage fluctuation by providing a 2nd load resistor in parallel with a drive FET(field-effect transistor(TR)). CONSTITUTION:A 1st load resistor 11 is connected in series with a source and a drain of a drive FET 1 being an n-channel enhancement PN junction FET to form an E/R DCFL circuit (direct coupled FET logic circuit). A 2nd load resistor 12 is connected in parallel with the drive FET 1. Since a logic 1 level is extracted as a voltage dividing a power supply voltage, even when an, e.g. 2V generally used for a silicon semiconductor integrated circuit is adopted for a power supply voltage, an output voltage is selected to be 1.0V or below. Furthermore, a power supply voltage is selected to be within a permissible voltage changing rate to avoid injection of positive holes being a problem in the FET.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体集積回路
装置、特に直接結合型FET(電界効果トランジスタ)
論理(Direct Coupled FET Logic)回路(以下DCFL
回路という)を論理ゲートとして用いる化合物半導体集
積回路装置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor integrated circuit device, particularly a direct coupling type FET (field effect transistor).
Logic (Direct Coupled FET Logic) circuit (hereinafter DCFL
Circuit) as a logic gate.

【0002】[0002]

【従来の技術】図4に従来の駆動用のGaAs系のエン
ハンスメント型のnチャネル接合型FET1と、そのソ
ース及びドレインに直列に接続された負荷抵抗2とより
成るE/R型DCFL回路の1エレメントの基本的回路
構成を示す。
2. Description of the Related Art FIG. 4 shows an E / R type DCFL circuit 1 including a conventional GaAs enhancement type n channel junction type FET 1 for driving and a load resistor 2 connected in series to its source and drain. The basic circuit configuration of the element is shown.

【0003】このE/R型DCFL回路の論理ゲート集
積回路は、高速かつ低消費電力であると同時に、nチャ
ネル型ショットキー接合型FETを用いたこの種回路に
比べ論理振幅が大きくとれ、大きなノイズマージンを持
つことから、超高速LSIに適している。
The logic gate integrated circuit of the E / R type DCFL circuit has high speed and low power consumption, and at the same time, has a large logic amplitude and a large logic amplitude as compared with this type of circuit using an n channel type Schottky junction type FET. Since it has a noise margin, it is suitable for ultra-high speed LSI.

【0004】ところで、図4のDCFL回路は、その出
力端子TOUT からの出力が次段のDCFL回路の入力端
子TINに入力される。このDCFL回路において、その
電源電圧が、接合型FETのPN接合の順方向ターンオ
ン電圧を越えない場合には、その論理1レベルはほぼ正
極の電源電圧と等しくなる。電源電圧を1.2V以上に
すると、図5に示すこの接合型FETによるE/R型D
CFL回路のリングオシレータ発振から評価した電源電
圧に対するスイッチング速度をみて分かるようにスイッ
チング速度は遅くなる。
By the way, in the DCFL circuit of FIG. 4, the output from the output terminal T OUT is input to the input terminal T IN of the DCFL circuit of the next stage. In this DCFL circuit, if the power supply voltage does not exceed the forward turn-on voltage of the PN junction of the junction FET, the logic 1 level becomes substantially equal to the positive power supply voltage. When the power supply voltage is 1.2 V or more, the E / R type D by this junction type FET shown in FIG.
As can be seen from the switching speed with respect to the power supply voltage evaluated from the ring oscillator oscillation of the CFL circuit, the switching speed becomes slow.

【0005】また、電源電圧が1.0Vでは図6Aで示
す入力電圧波形に対してその出力のいわゆるアイパター
ンは同図Bに示すように、比較的良好に開くが、電源電
圧が1.2Vでは図7Aで示す同様の入力電圧波形に対
して図7Bの出力のアイパターンはその形状がなまって
くる。
When the power supply voltage is 1.0 V, the so-called eye pattern of the output is relatively well opened as shown in FIG. 6A with respect to the input voltage waveform shown in FIG. 6A, but the power supply voltage is 1.2 V. Then, for the same input voltage waveform shown in FIG. 7A, the shape of the output eye pattern of FIG. 7B becomes blunt.

【0006】これは、E/R型DCFL回路において、
その駆動用FETとしてPN接合型FETを用いる場
合、電源電圧が大となり、これに対応する出力が次段の
エンハンスメント型FETゲートに与えられることによ
って、この接合に1.2V以上の電圧が印加されると、
このFETのゲート電極から正孔がGaAs基体中に注
入されてこれが蓄積されることに因る。
In the E / R type DCFL circuit,
When a PN junction type FET is used as the driving FET, the power source voltage becomes large, and an output corresponding to this is given to the enhancement type FET gate in the next stage, so that a voltage of 1.2 V or more is applied to this junction. Then,
This is because holes are injected from the gate electrode of this FET into the GaAs substrate and accumulated.

【0007】また同様の正孔の蓄積効果によって近隣の
FETへの影響が生じるいわゆるサイドゲート効果によ
って正常な回路動作を阻害する場合がある。
In addition, there is a case where normal circuit operation is hindered by a so-called side gate effect in which neighboring FETs are affected by the similar hole accumulation effect.

【0008】したがって、この種PN接合型FETを駆
動用FETとして用いたE/R型DCFL回路において
は、その電源電圧としては、上述した正孔の注入が殆ど
生じることのない1.0Vとすることが望ましく、また
電源電圧の変動によって1.2Vを越えることがないよ
うに考慮されることが必要となる。
Therefore, in the E / R type DCFL circuit using this kind of PN junction type FET as a driving FET, the power supply voltage is set to 1.0 V at which the above-mentioned injection of holes hardly occurs. It is desirable that the fluctuations of the power supply voltage should not exceed 1.2V.

【0009】ところが、実際に各種電子機器を構成する
場合、このGaAs化合物半導体集積回路を、Siによ
る半導体集積回路と混合して用いることがしばしば必要
となり、一般的にSi半導体集積回路において用いられ
る電源電圧は、2Vとか、3.3Vとか、5Vであるこ
とから、この電源を兼用して用いることには問題があ
る。
However, in the case of actually configuring various electronic devices, it is often necessary to use this GaAs compound semiconductor integrated circuit in combination with a semiconductor integrated circuit made of Si, and a power supply generally used in the Si semiconductor integrated circuit. Since the voltage is 2V, 3.3V, or 5V, there is a problem in using this power supply as a dual purpose.

【0010】このような問題点を回避するために、上述
したような正孔の注入の問題のないnチャネルショット
キー接合型FETによるDCFL回路を用いればよく、
この場合は、電源電圧として2Vの電源の使用が可能と
なる。
In order to avoid such a problem, a DCFL circuit using an n-channel Schottky junction type FET which does not have the problem of hole injection as described above may be used.
In this case, it is possible to use a power supply of 2V as the power supply voltage.

【0011】しかしながら、この場合は前述したように
ノイズマージンが比較的小さい等の問題がある。
However, in this case, there is a problem that the noise margin is relatively small as described above.

【0012】そこで、上述したGaAsのnチャネルP
N接合型FETを駆動用FETとするDCFL回路を用
い、しかも半導体集積回路の内部においてFETゲート
部に印加される論理1レベルが1.0Vを越えないよう
にすることが望まれる。
Therefore, the above-described GaAs n-channel P
It is desirable to use a DCFL circuit having an N-junction FET as a driving FET and to prevent the logic 1 level applied to the FET gate section from exceeding 1.0 V inside the semiconductor integrated circuit.

【0013】このため、例えばDCFL回路による集積
回路において、1Vの定電圧回路を設けることが考えら
れるが、この場合低電圧回路を設けることによる回路構
成上の不利益はもとより、DCFL回路の動作状態によ
って定電圧回路の負荷インピーダンスが変化することか
ら、実際上これによって常時電源電圧を1Vの電圧に安
定に保持することは困難である。
Therefore, for example, it is conceivable to provide a constant voltage circuit of 1 V in an integrated circuit of a DCFL circuit. In this case, not only the disadvantage of the circuit configuration due to the provision of the low voltage circuit but also the operating state of the DCFL circuit Since the load impedance of the constant voltage circuit changes due to this, it is practically difficult to constantly maintain the power supply voltage stably at a voltage of 1V.

【0014】因みに、接合型FETによるE/R型DC
FL回路での論理振幅の有利性について図4の従来回路
についてみると、今、その電源電圧が、FETのPN接
合の順方向ターオン電圧より大であるVDD=0V,VSS
=−2Vの場合についてみると、その出力の論理1レベ
ルは負極電源電圧VSSよりPN接合順方向ターオン電圧
(約1.2V)だけ高い約−0.8Vになる。そして、
論理0レベルは負荷抵抗Rによる電圧降下がFETしき
い値電圧以下になるように設定され、通常は負極電源電
圧より約0.2V高い約−1.8Vになる。したがって
この場合の論理振幅は約1Vになる。
Incidentally, an E / R type DC by a junction type FET
Regarding the advantage of the logic amplitude in the FL circuit, looking at the conventional circuit of FIG. 4, it is now confirmed that the power supply voltage is higher than the forward turn-on voltage of the PN junction of the FET, V DD = 0V, V SS.
In the case of = -2V, the logic 1 level of the output is about -0.8V which is higher than the negative power supply voltage V SS by the PN junction forward turn-on voltage (about 1.2V). And
The logic 0 level is set so that the voltage drop due to the load resistance R is equal to or lower than the FET threshold voltage, and is normally about -1.8V, which is about 0.2V higher than the negative power supply voltage. Therefore, the logical amplitude in this case is about 1V.

【0015】これに対して上述の接合型のFETにかえ
てショットキー接合型のFETによるときは、論理1レ
ベルは約−1.3Vであり、論理0レベルは約−1.8
Vになり、論理振幅は約0.5Vとなる。つまり接合型
FETによるE/R型DCFL回路では、ショットキー
接合型FETの場合に比べてその論理振幅は約2倍とな
る。
On the other hand, when a Schottky junction type FET is used instead of the above-mentioned junction type FET, the logic 1 level is about -1.3V and the logic 0 level is about -1.8V.
V, and the logical amplitude is about 0.5V. That is, in the E / R type DCFL circuit using the junction type FET, the logical amplitude thereof is about twice that in the case of the Schottky junction type FET.

【0016】[0016]

【発明が解決しようとする課題】本発明は、駆動用FE
TとしてPN接合型FETを用いたDCFL回路による
化合物半導体集積回路において、例えばSi半導体集積
回路における汎用の電源電圧の例えば2Vの電源を用い
ることができ、しかも電源電圧の変動による出力変動に
よって例えば次段のFETのゲート電極からの正孔の注
入及びの蓄積に基く上述の諸問題の解決をはかる。
DISCLOSURE OF THE INVENTION The present invention provides a driving FE.
In a compound semiconductor integrated circuit by a DCFL circuit using a PN junction type FET as T, for example, a general-purpose power supply voltage of 2 V, for example, in a Si semiconductor integrated circuit can be used, and the output fluctuation due to the fluctuation of the power supply voltage causes The above problems are solved based on the injection and accumulation of holes from the gate electrode of the stepped FET.

【0017】[0017]

【課題を解決するための手段】第1の本発明は、図1に
本発明装置の一例の1エレメントの基本的回路図を示す
ように、少なくとも1つのエンハンスメント型のPN接
合型FET1を有する直接結合型FET論理回路の化合
物半導体集積回路装置において、そのFET1と並列に
負荷抵抗12が接続された構成とする。
According to a first aspect of the present invention, as shown in FIG. 1 which is a basic circuit diagram of one element of an example of the device of the present invention, a direct circuit having at least one enhancement type PN junction type FET 1 is provided. In the compound semiconductor integrated circuit device of the coupled FET logic circuit, the load resistance 12 is connected in parallel with the FET 1.

【0018】また、第2の本発明は、少なくとも1つの
エンハンスメント型のPN接合型FETすなわち駆動用
FET1と、これに直列に接続された第1の負荷抵抗1
1を有する直接結合型FET論理回路すなわちE/R型
DCFL回路の化合物半導体集積回路装置において、F
ET1と並列に第2の負荷抵抗12を接続する構成とす
る。
Further, the second aspect of the present invention is to provide at least one enhancement type PN junction type FET, that is, a driving FET 1 and a first load resistor 1 connected in series thereto.
In the compound semiconductor integrated circuit device of the direct coupling type FET logic circuit having 1, the E / R type DCFL circuit,
The second load resistor 12 is connected in parallel with ET1.

【0019】そして、このFET1において正孔の注入
が顕著に生じない最大電圧、つまり電圧を大にして行く
とき顕著な注入が起こり始める直前の電圧をVcr,電源
電圧をVs(正極電源電圧VDD−負極電源電圧VSS),
電源電圧の変動率をa,上記第1及び第2の各抵抗値を
1 及びR2 とするとき、下記数2の(1)式に選定す
る。
Then, in this FET 1, the maximum voltage at which the injection of holes is not significantly generated, that is, the voltage immediately before the start of significant injection when increasing the voltage is V cr , and the power supply voltage is Vs (the positive power supply voltage V DD -negative power supply voltage V SS ),
When the fluctuation rate of the power supply voltage is a and the first and second resistance values are R 1 and R 2 , the formula (1) below is selected.

【0020】[0020]

【数2】 Vcr=Vs・(1+a)・R2 /(R1 +R2 ) ……(1) [ Formula 2] V cr = Vs · (1 + a) · R 2 / (R 1 + R 2 ) ... (1)

【0021】[0021]

【作用】上述の本発明構成によれば、駆動用のPN接合
型FETと並列に第2の抵抗を設けたことにより論理1
レベルを、電源電圧を分圧した電圧として取り出すので
出力電圧を例えば1.0V以下にすることができる。
According to the above-described configuration of the present invention, the logic 1 is provided by providing the second resistor in parallel with the driving PN junction type FET.
Since the level is extracted as a voltage obtained by dividing the power supply voltage, the output voltage can be set to 1.0 V or less, for example.

【0022】また、E/R型DCFL回路構成におい
て、その第1及び第2の抵抗11及び12の抵抗値R1
及びR2 を上記(1)式が成り立つ関係に選定するとき
は、電源電圧Vsが変動率aの範囲で、その出力を電圧
cr以下に抑制してFETにおける問題発生の正孔注入
を回避できることになる。
Further, in the E / R type DCFL circuit configuration, the resistance value R 1 of the first and second resistors 11 and 12 is
When R 2 and R 2 are selected so that the above equation (1) is satisfied, the output of the power supply voltage Vs is suppressed to a voltage V cr or less within the range of the fluctuation rate a to avoid hole injection which causes a problem in the FET. You can do it.

【0023】[0023]

【実施例】図1を参照して本発明装置の一例を説明す
る。この例ではnチャネルエンハンスメント型のGaA
sのPN接合型FETによる駆動用FET1のソース及
びドレインと直列に第1の負荷抵抗R1 が接続されて成
るE/R型DCFL回路において、その駆動用FETと
並列に第2の負荷抵抗R2 を接続する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the device of the present invention will be described with reference to FIG. In this example, n-channel enhancement type GaA
In the E / R type DCFL circuit in which the first load resistor R 1 is connected in series with the source and drain of the driving FET 1 of the s PN junction type FET, the second load resistor R is connected in parallel with the driving FET. Connect 2

【0024】この場合、その出力インピーダンスを、例
えば従来の図4の場合と同様に選定するとすると、すな
わち正孔注入を考慮しない場合の動作速度を従来と等し
くすると、図4における負荷抵抗2の抵抗値をRとする
とき、下記数3の(2)式の関係に選定すれば良いこと
になる。
In this case, if the output impedance is selected in the same manner as in the conventional case of FIG. 4, that is, if the operating speed when hole injection is not considered is made equal to that of the conventional case, the resistance of the load resistor 2 in FIG. When the value is R, it may be selected according to the relation of the expression (2) of the following mathematical expression 3.

【0025】[0025]

【数3】 1/R=(1/R1 )+(1/R2 ) ……(2)## EQU3 ## 1 / R = (1 / R 1 ) + (1 / R 2 ) ... (2)

【0026】そして、正孔注入を考慮するときは、前記
(1)式を同時に満足するように選定する。
Then, in consideration of hole injection, selection is made so as to simultaneously satisfy the above expression (1).

【0027】今、駆動用FETにおける正孔注入が顕著
に起こり始める電圧、すなわち正孔注入がスイッチング
速度に影響を与えたり、サイドゲート効果を生じさせる
ことのない最大電圧Vcrが1.0Vで、電源電圧Vsが
例えばSi半導体集積回路における汎用の電源電圧の
2.0Vとするときに、この電源電圧の変動率aが0.
1(10%)であるとすると、前記(1)式から、下記
数4の(1a)式が成り立つようにすれば、論理1レベ
ルを−1.0以下に保障することができることになる。
Now, the voltage at which hole injection in the driving FET begins to occur remarkably, that is, the maximum voltage V cr at which hole injection does not affect the switching speed or cause the side gate effect is 1.0 V. , And the power supply voltage Vs is 2.0 V which is a general-purpose power supply voltage in a Si semiconductor integrated circuit, the fluctuation rate a of the power supply voltage is 0.
If it is 1 (10%), the logical 1 level can be guaranteed to be -1.0 or less if the formula (1a) of the following formula 4 is satisfied from the formula (1).

【0028】[0028]

【数4】 1.0=2.0(1+0.1)・R2 /(R1 +R2 ) ……(1a)[Formula 4] 1.0 = 2.0 (1 + 0.1) · R 2 / (R 1 + R 2 ) ... (1a)

【0029】これら条件を満足する負荷抵抗R1 及びR
2 を設定した場合は、−2Vの電源電圧に対する論理振
幅は、約0.8V程度となる。したがって、このPN接
合型FETを用いたときのノイズマージンの優位性を保
ちながら、動作速度、サイドゲートの問題を招くことな
く汎用の電源が使用可能になる。
Load resistances R 1 and R satisfying these conditions
When 2 is set, the logical amplitude for a power supply voltage of -2V is about 0.8V. Therefore, it is possible to use a general-purpose power supply without causing problems of operating speed and side gate while maintaining the superiority of the noise margin when using this PN junction type FET.

【0030】次に、具体的に回路の各定数を挙げて図1
と図4の回路の比較を行う。図2及び図3は、図1及び
図4に示した本発明及び従来の回路のインバータ伝達特
性である。
Next, the respective constants of the circuit will be specifically shown in FIG.
And the circuit of FIG. 4 are compared. 2 and 3 are inverter transfer characteristics of the circuit of the present invention and the conventional circuit shown in FIGS.

【0031】この場合、本発明の図1の回路では、汎用
電源電圧の−2.0Vを標準電圧として、正極電源電圧
を0Vに固定した。図1Aはこの標準電源電圧とした場
合で、同図B及びCは、それぞれこの標準電源電圧に対
し、10%増加、減少させた場合である。この場合、電
源電圧を10%増加させたときの論理1レベルに注目す
ると、負極電源電圧にたいして1.0V以上に上昇して
いない。
In this case, in the circuit of FIG. 1 of the present invention, the positive power supply voltage was fixed at 0 V with the general power supply voltage of -2.0 V as the standard voltage. FIG. 1A shows the case where the standard power supply voltage is used, and FIGS. 1B and 1C show the case where the standard power supply voltage is increased and decreased by 10%. In this case, paying attention to the logic 1 level when the power supply voltage is increased by 10%, the negative power supply voltage has not risen to 1.0 V or more.

【0032】すなわち、−2Vの電源でしかも10%電
源電圧が変動した場合でも正孔の注入の問題が回避され
ることがわかる。
That is, it can be seen that the problem of hole injection can be avoided even when the power supply voltage of -2 V fluctuates by 10%.

【0033】図3Aは、図4の従来回路において、正極
電源電圧を、図5及び図6で説明した問題点が生じない
+1Vとし、これを標準電圧とし、負極電源電圧を0V
に固定した。図3の各B図及びC図はこの標準電源電圧
よりそれぞれ10%増加、減少させた場合である。
In FIG. 3A, in the conventional circuit of FIG. 4, the positive power supply voltage is set to + 1V which does not cause the problems described in FIGS. 5 and 6, and this is set as a standard voltage, and the negative power supply voltage is 0V.
Fixed to. 3B and 3C show the case where the standard power supply voltage is increased and decreased by 10%, respectively.

【0034】図3の結果からわかるように、図4の回路
において論理1レベルはほぼ正極電圧に等しくなってい
て、この場合、電源電圧が10%増加したときに前述し
た問題点が発生することが危惧される。
As can be seen from the results of FIG. 3, the logic 1 level in the circuit of FIG. 4 is almost equal to the positive voltage, and in this case, the above-mentioned problems occur when the power supply voltage increases by 10%. Is afraid.

【0035】尚、上述した例では、本発明をE/R型D
CFL回路とした場合であるが、駆動用FET1として
のエンハンスメント型PN接合型FETと直列に、ディ
プリージョン型のFETが接続されたいわゆるE/D型
DCFL回路による化合物半導体集積回路装置に適用す
ることもできる。
In the above-mentioned example, the present invention is an E / R type D.
Although it is a CFL circuit, it should be applied to a compound semiconductor integrated circuit device by a so-called E / D type DCFL circuit in which a depletion type FET is connected in series with an enhancement type PN junction type FET as a driving FET 1. You can also

【0036】[0036]

【発明の効果】上述の本発明構成によれば、駆動用のP
N接合型FET1と並列に第2の負荷抵抗12を設けた
ことにより、論理1レベルを電源電圧を分圧した電圧と
して取り出すので電源電圧を例えばSi半導体集積回路
の汎用の例えば2Vとしてもその出力電圧Vcr以下の例
えば1.0V以下にことができる。
According to the above-mentioned configuration of the present invention, the driving P
By providing the second load resistor 12 in parallel with the N-junction type FET 1, the logic 1 level is taken out as a voltage obtained by dividing the power supply voltage, so that the power supply voltage is output even if it is, for example, a general-purpose 2V of Si semiconductor integrated circuit. The voltage can be, for example, 1.0 V or less, which is less than or equal to V cr .

【0037】また、E/R型DCFL回路構成におい
て、その第1及び第2の抵抗11及び12の抵抗値R1
及びR2 を上記(1)式が成り立つ関係に選定するとき
は、電源電圧Vsを許容電圧変化率の範囲で、FETに
おける問題発生の正孔注入を回避できることになる。
Further, in the E / R type DCFL circuit configuration, the resistance value R 1 of the first and second resistors 11 and 12 is
When R 2 and R 2 are selected so as to satisfy the above formula (1), it is possible to avoid the hole injection which causes a problem in the FET within the range of the allowable voltage change rate of the power supply voltage Vs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置一例の回路図である。FIG. 1 is a circuit diagram of an example of a device of the present invention.

【図2】本発明装置の一例のインバータ伝達特性図であ
る。
FIG. 2 is an inverter transfer characteristic diagram of an example of the device of the present invention.

【図3】従来装置のインバータ伝達特性図である。FIG. 3 is an inverter transfer characteristic diagram of a conventional device.

【図4】従来の装置の回路図である。FIG. 4 is a circuit diagram of a conventional device.

【図5】DCFL回路のスイッチング速度の電源電圧の
依存性の測定結果を示す図である。
FIG. 5 is a diagram showing a measurement result of dependency of a switching speed of a DCFL circuit on a power supply voltage.

【図6】従来装置のインバータのパルス応答と電源電圧
の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a pulse response of an inverter of a conventional device and a power supply voltage.

【図7】従来装置のインバータのパルス応答と電源電圧
の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a pulse response of an inverter of a conventional device and a power supply voltage.

【符号の説明】[Explanation of symbols]

1 駆動用のFET 11 第1の負荷抵抗 12 第2の負荷抵抗 1 FET for driving 11 First load resistance 12 Second load resistance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1つのエンハンスメント型の
PN接合型FETを有する直接結合型FET論理回路の
化合物半導体集積回路装置において、 上記FETと並列に負荷抵抗が接続されて成ることを特
徴とする化合物半導体集積回路装置。
1. A compound semiconductor integrated circuit device of a direct coupling type FET logic circuit having at least one enhancement type PN junction type FET, wherein a load resistance is connected in parallel with said FET. Integrated circuit device.
【請求項2】 少なくとも1つのエンハンスメント型の
PN接合型FETとこれに直列に接続された第1の負荷
抵抗とを有する直接結合型FET論理回路の化合物半導
体集積回路装置において、 上記FETと並列に第2の負荷抵抗が接続されて、上記
FETにおいて正孔の注入が顕著に起こることのない最
大電圧をVcr,電源電圧をVs,電源電圧の変動率を
a,上記第1及び第2の各抵抗値をR1 及びR2 とする
とき、下記数1 【数1】 Vcr=Vs・(1+a)・R2 /(R1 +R2 ) に選定することを特徴とする化合物半導体集積回路装
置。
2. A compound semiconductor integrated circuit device of a direct coupling type FET logic circuit having at least one enhancement type PN junction type FET and a first load resistor connected in series to the enhancement type PN junction type FET. A second load resistance is connected to the FET so that the maximum voltage at which holes are not significantly injected in the FET is V cr , the power supply voltage is Vs, the fluctuation rate of the power supply voltage is a, and the first and second When the respective resistance values are R 1 and R 2 , the compound semiconductor integrated circuit is characterized by selecting the following formula 1 V cr = Vs · (1 + a) · R 2 / (R 1 + R 2 ). apparatus.
JP03548993A 1993-02-24 1993-02-24 Compound semiconductor integrated circuit device Expired - Fee Related JP3186302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03548993A JP3186302B2 (en) 1993-02-24 1993-02-24 Compound semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03548993A JP3186302B2 (en) 1993-02-24 1993-02-24 Compound semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH06252741A true JPH06252741A (en) 1994-09-09
JP3186302B2 JP3186302B2 (en) 2001-07-11

Family

ID=12443165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03548993A Expired - Fee Related JP3186302B2 (en) 1993-02-24 1993-02-24 Compound semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP3186302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364922A1 (en) * 2014-06-16 2015-12-17 Hamilton Sundstrand Corporation Solid stte power controller with parallel mosfet load sharing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150364922A1 (en) * 2014-06-16 2015-12-17 Hamilton Sundstrand Corporation Solid stte power controller with parallel mosfet load sharing
US9716385B2 (en) * 2014-06-16 2017-07-25 Hamilton Sundstrand Corporation Solid STTE power controller with parallel MOSFET load sharing

Also Published As

Publication number Publication date
JP3186302B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US5444396A (en) Level shifting circuit
JPH0440798B2 (en)
US7724045B2 (en) Output buffer circuit
US6781413B2 (en) Level conversion circuit for which an operation at power voltage rise time is stabilized
US7554361B2 (en) Level shifter and method thereof
US20080150577A1 (en) Interface Circuit
US4937474A (en) Low power, high noise margin logic gates employing enhancement mode switching FETs
JP3196301B2 (en) Compound semiconductor integrated circuit device
US20020041194A1 (en) Semiconductor integrated circuit having output buffer
JP2774176B2 (en) Semiconductor integrated circuit
JP3186302B2 (en) Compound semiconductor integrated circuit device
JPH07231252A (en) Level shift circuit
US6774665B2 (en) Cascode SSTL output buffer using source followers
JPH04150316A (en) Field effect transistor circuit
JP3249293B2 (en) Semiconductor integrated circuit
JPH04278719A (en) Source electrode coupled logic circuit
TWI769003B (en) Voltage conversion circuit having self-adaptive mechanism
JP2743729B2 (en) ECL level output circuit, ECL / DCFL level conversion input circuit, and semiconductor integrated circuit device
JP2001094402A (en) Output circiut for semiconductor integrated circuit
JP3538678B2 (en) High-speed logic circuit
JP2000165227A (en) Logical output circuit
US20020180479A1 (en) Pull-up terminator
JP2976497B2 (en) Semiconductor integrated circuit
JP2663884B2 (en) Output buffer circuit
JPH0537334A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees