JPH0625225B2 - Polymerization method of diacetylene compound - Google Patents

Polymerization method of diacetylene compound

Info

Publication number
JPH0625225B2
JPH0625225B2 JP1187246A JP18724689A JPH0625225B2 JP H0625225 B2 JPH0625225 B2 JP H0625225B2 JP 1187246 A JP1187246 A JP 1187246A JP 18724689 A JP18724689 A JP 18724689A JP H0625225 B2 JPH0625225 B2 JP H0625225B2
Authority
JP
Japan
Prior art keywords
pressure
diacetylene
polymerization
diacetylene compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1187246A
Other languages
Japanese (ja)
Other versions
JPH0352905A (en
Inventor
仁一郎 加藤
克之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1187246A priority Critical patent/JPH0625225B2/en
Publication of JPH0352905A publication Critical patent/JPH0352905A/en
Publication of JPH0625225B2 publication Critical patent/JPH0625225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジアセチレン化合物の重合方法に関するもの
であり、更に詳しくは高圧を利用して低融点のジアセチ
レン化合物を効率的に重合させる方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for polymerizing a diacetylene compound, and more specifically, a method for efficiently polymerizing a low melting point diacetylene compound by utilizing high pressure. It is about.

〔従来の技術〕[Conventional technology]

近年、非線形光学材料、半導体結晶、高弾性率材料の原
料として種々のジアセチレン化合物の合成及び成形、機
械化がさかんに研究されている。
2. Description of the Related Art In recent years, various studies have been actively conducted on the synthesis, molding, and mechanization of various diacetylene compounds as raw materials for nonlinear optical materials, semiconductor crystals, and high elastic modulus materials.

本発明者らも、ジアセチレン基と炭素−炭素二重結合を
有する化合物を架橋成形し、20GPaを越える高弾性率
材料を製造している。
The present inventors have also produced a high elastic modulus material exceeding 20 GPa by cross-linking and molding a compound having a diacetylene group and a carbon-carbon double bond.

これまで研究されてきたジアセチレン化合物は、一般に
固相重合(トポケミカル重合)によって対応するポリジ
アセチレン化合物へ変換される。得られたポリジアセチ
レンは、一般に不溶不融であるため、素子や成形体とし
て使用するためには重合する前に必要な形状付与が一般
に行われる。しかしながら、一般に研究されているジア
セチレン化合物は、固相重合を行なわせるために、双極
子−双極子相互作用や水素結合等によって、高い融点を
持つような分子構造を有している。従って、このような
ジアセチレン化合物は融点に達すると同時に急激な重合
や分解が起こるために、溶融状態での形状付与は極めて
困難である。
The diacetylene compounds that have been studied so far are generally converted into the corresponding polydiacetylene compounds by solid-state polymerization (topochemical polymerization). Since the obtained polydiacetylene is generally insoluble and infusible, it is generally given the necessary shape before being polymerized for use as an element or a molded body. However, generally studied diacetylene compounds have a molecular structure having a high melting point due to dipole-dipole interaction, hydrogen bond and the like in order to perform solid phase polymerization. Therefore, such a diacetylene compound undergoes rapid polymerization and decomposition at the same time when it reaches the melting point, and thus it is extremely difficult to impart a shape in a molten state.

一方、低融点すなわち常温付近以下で液状のジアセチレ
ン化合物は、モノマー状態で容易に希望する形状にでき
るものの、これらのジアセチレン化合物の重合性は一般
に小さい。長谷川らは、融点が20℃以下のジアセチレ
ン化合物を低温で固化させてから光重合させる方法を開
示している(synth.Met.,18,413(1987))が、光源とし
て、紫外光を利用しているために大量、肉厚のジアセチ
レン化合物の重合には適さない。又、この方法によって
重合するジアセチレン化合物の種類も極めて限定されて
いる。
On the other hand, diacetylene compounds that have a low melting point, that is, a liquid at around room temperature or less, can be easily formed into a desired shape in the monomer state, but the diacetylene compounds generally have low polymerizability. Hasegawa et al. Disclose a method in which a diacetylene compound having a melting point of 20 ° C. or lower is solidified at low temperature and then photopolymerized (synth. Met., 18 , 413 (1987)), but ultraviolet light is used as a light source. Since it is used, it is not suitable for the polymerization of large amounts and thick diacetylene compounds. Also, the type of diacetylene compound polymerized by this method is extremely limited.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明の目的は、成形性、操作性にすぐれた、且つ、重
合率、重合速度を向上させることのできる液状ジアセチ
レン化合物の効果的な重合方法を提供することにある。
An object of the present invention is to provide an effective method for polymerizing a liquid diacetylene compound, which is excellent in moldability and operability and which can improve the polymerization rate and the polymerization rate.

〔問題を解決するための手段〕[Means for solving problems]

本発明者らは、形状付与能力の高い低融点のジアセチレ
ン化合物の効率的な重合方法を種々検討する過程で、ジ
アセチレン化合物を高圧状態に置き、必要に応じて形状
付与した後、固化させて、さらに高圧状態のままで熱や
光を与えると極めて容易にジアセチレン基の重合が進行
する可能性を見い出した。
The present inventors, in the process of variously studying the efficient polymerization method of a low melting point diacetylene compound having a high shape-imparting ability, put the diacetylene compound in a high-pressure state, shape it as necessary, and then solidify it. Then, it was found that the polymerization of the diacetylene group can proceed extremely easily when heat or light is applied under a high pressure.

さらに、高圧固化における圧力とジアセチレン化合物の
分子構造との関係、重合条件の鋭意研究の結果、本発明
に到達した。
Further, as a result of earnest research on the relationship between the pressure in the high-pressure solidification and the molecular structure of the diacetylene compound and the polymerization conditions, the present invention has been accomplished.

すなわち本発明は、常温常圧で液状のジアセチレン化合
物を2気圧以上の圧力下で固化させたまま加熱及び/又
は高エネルギー照射により重合させることを特徴とする
ジアセチレン化合物の重合方法、である。
That is, the present invention is a method for polymerizing a diacetylene compound, which comprises polymerizing a diacetylene compound which is liquid at room temperature and atmospheric pressure by heating and / or irradiation with high energy while being solidified under a pressure of 2 atm or more. .

本発明において、液状のジアセチレン化合物 R-C≡CC≡C-R′(R,R′は、異種又は同種の有機基を
示す。)の化学構造は、特に制限はないが、扱いやすさ
の点において常圧で−10℃〜30℃付近に融点を持つ
ジアセチレン化合物が好ましい。
In the present invention, the chemical structure of the liquid diacetylene compound RC≡CC≡CR '(R and R'represent different kinds or the same kind of organic groups) is not particularly limited, but is usually easy to handle. A diacetylene compound having a melting point near -10 ° C to 30 ° C under pressure is preferable.

本発明におけるジアセチレン化合物(R-C≡CC≡C-R′)
のR,R′を例示するならば、−CH2Cl,−CH2Br,−CH
2F,−CH2CH2C,−CH2OCH3,-CH2CH2OCH3,−CH2OCH2
CH3,−CH2CH3,−CH2CH2CH3,−CH2 HNCH3,−CH2N(C
H3)2−CH2OOCCH3,CH2CH2OOCCH3等が挙げられる。
Diacetylene compound (RC≡CC≡CR ') in the present invention
Examples of R and R'of -CH 2 Cl, -CH 2 Br, -CH
2 F, -CH 2 CH 2 C, -CH 2 OCH 3 , -CH 2 CH 2 OCH 3 , -CH 2 OCH 2
CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH 2 H NCH 3 , -CH 2 N (C
H 3 ) 2 , -CH 2 OOCCH 3 , CH 2 CH 2 OOCCH 3 , Etc.

液状ジアセチレン化合物を高圧固化させる方法として
は、該ジアセチレン化合物を予めポリエステル、ナイロ
ン、テフロン等の袋に密封してから、固体圧、気体圧又
は静水圧下で固化させる方法が挙げられる。高圧付与方
法としては、気体圧法、静水圧法が好ましいが、特に好
ましくは、扱いやすさから静水圧法が好ましい。
Examples of the method for solidifying the liquid diacetylene compound under high pressure include a method in which the diacetylene compound is sealed in advance in a bag of polyester, nylon, Teflon or the like and then solidified under solid pressure, gas pressure or hydrostatic pressure. As a method for applying high pressure, a gas pressure method and a hydrostatic pressure method are preferable, but a hydrostatic pressure method is particularly preferable in terms of easy handling.

該ジアセチレン化合物が固化しているかどうかの確認
は、圧力発生装置に窓を取り付けて直接そこから目視に
よってできる。しかしながら、一般的に有機物の融点上
昇率は1000気圧の加圧で20〜30℃くらいであり、この尺
度から概略的に求めることができる。正確に、高圧下で
の融点を測定するには、高圧示差熱分析法(高圧DTA)
や高圧示差走査熱分析法が適用できる。
Whether or not the diacetylene compound is solidified can be confirmed visually by directly attaching a window to the pressure generator. However, the melting point increase rate of an organic substance is generally about 20 to 30 ° C. at a pressure of 1000 atm, and can be roughly determined from this scale. To accurately measure the melting point under high pressure, high pressure differential thermal analysis (high pressure DTA)
And high pressure differential scanning calorimetry can be applied.

圧力範囲としては、2気圧以上であり、好ましくは融点
の上昇率から5気圧から、15000気圧、さらに好ましく
は化合物の分解性を抑えることから10気圧から5000気
圧である。
The pressure range is 2 atm or more, preferably 5 atm to 15,000 atm from the rate of increase in melting point, and more preferably 10 atm to 5000 atm to suppress decomposability of the compound.

以上のように、液状ジアセチレン化合物が2気圧以上の
圧力下で固化したことを確認してから、加熱又は/及び
高エネルギー照射して該ジアセチレン化合物を重合せし
めることができる。
As described above, after confirming that the liquid diacetylene compound is solidified under a pressure of 2 atm or more, the diacetylene compound can be polymerized by heating or / and irradiation with high energy.

加熱範囲としては、好ましくは35℃から300℃であ
り、分解性を抑えるという点では、35℃から200℃が
より好ましい。該ジアセチレン化合物が高圧下で分解す
るような場合には、0℃以下の低温で圧力付与の後、徐
々に反応温度を高めるなど、該ジアセチレン化合物の重
合性、安定性に応じた加熱、昇温速度を選ぶことが好ま
しい。
The heating range is preferably 35 ° C. to 300 ° C., and 35 ° C. to 200 ° C. is more preferable from the viewpoint of suppressing decomposability. When the diacetylene compound decomposes under high pressure, after applying pressure at a low temperature of 0 ° C. or lower, the reaction temperature is gradually raised, such as heating depending on the polymerizability and stability of the diacetylene compound, It is preferable to select the heating rate.

高エネルギー照射源としては、紫外線、電子線、X線、
γ線、α線などの放射線等が挙げられ、照射時間、照射
量については、該液状ジアセチレン化合物の反応性に応
じて任意決定できる。
High energy irradiation sources include ultraviolet rays, electron beams, X-rays,
Radiation such as γ-rays and α-rays can be used, and the irradiation time and irradiation amount can be arbitrarily determined according to the reactivity of the liquid diacetylene compound.

加熱や光照射は、必要に応じて組み合わせることも可能
である。
Heating and light irradiation can be combined as needed.

該液状ジアセチレン化合物の重合は、圧力を開放後、不
溶物が生成していることから確認できる。特にジアセチ
レンポリマーが、エン−イン構造又はブタトリエン構造
を有する場合には、特有の赤、青、紫等の着色が認めら
れる。生成したポリマーの構造は、赤外吸収スペクトル
(IR)、ラマンスペクトル、固体NMRスペクトル等
の汎用分析手段により容易に決定できる。
The polymerization of the liquid diacetylene compound can be confirmed from the fact that an insoluble matter is generated after the pressure is released. In particular, when the diacetylene polymer has an ene-yne structure or a butatriene structure, peculiar colors such as red, blue and purple are recognized. The structure of the produced polymer can be easily determined by a general-purpose analytical means such as infrared absorption spectrum (IR), Raman spectrum, and solid-state NMR spectrum.

〔発明の効果〕〔The invention's effect〕

本発明は、成形性、操作性にすぐれた液状ジアセチレン
化合物の効果的な重合方法を示したものである。本発明
により、従来ほとんど利用されていなかった液状ジアセ
チレン化合物が、容易に重合することにより、産業上利
用されるジアセチレン化合物の範囲がかなり広くなっ
た。また、重合反応が高圧下で進行するため、常圧固相
重合では得られない高圧相での結晶構造を有するポリジ
アセチレン化合物が得られるなど、本発明は高次構造的
な面からも新規なポリジアセチレン化合物を提供でき
る。
The present invention shows an effective method for polymerizing a liquid diacetylene compound having excellent moldability and operability. According to the present invention, a liquid diacetylene compound which has been rarely used in the past is easily polymerized, so that the range of industrially used diacetylene compounds is considerably widened. Further, since the polymerization reaction proceeds under high pressure, a polydiacetylene compound having a crystal structure in a high-pressure phase, which cannot be obtained by atmospheric pressure solid-state polymerization, can be obtained. A polydiacetylene compound can be provided.

ジアセチレン化合物の重合反応のように、遷移状態で体
積が減少する反応系では、圧力を高めることにより反応
速度、反応率を高めることができる。従って、本発明の
重合方法は、重合率、重合速度を向上させる上でも、極
めてすぐれた方法であると言えよう。
In a reaction system in which the volume decreases in the transition state such as the polymerization reaction of a diacetylene compound, the reaction rate and the reaction rate can be increased by increasing the pressure. Therefore, it can be said that the polymerization method of the present invention is a very excellent method even in improving the polymerization rate and the polymerization rate.

以上のように、本発明は、化学構造面、高次構造面、反
応面から考えてこれまでのジアセチレン化合物の重合反
応方法にはない数多くの特色を有していることがわか
る。
As described above, it is understood that the present invention has a number of features not found in conventional polymerization reaction methods for diacetylene compounds in terms of chemical structure, higher order structure, and reaction.

従って、本発明によって得られるポリジアセチレン化合
物は、光素子、導電性材料、高強度高弾性率材料として
非常に有用となる。
Therefore, the polydiacetylene compound obtained by the present invention is very useful as an optical element, a conductive material, and a high-strength and high-modulus material.

〔実施例〕〔Example〕

以下、実施例により本発明を説明するが、本発明は、こ
れらの実施例のみに限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

〔実施例1〕 ClCH2C≡CC≡CCH2Clの重合 1,6−ジクロロ−2,4−ヘキサジイン5mlを、ポリ
エステル系フィルムで密封し、5000気圧の静水圧下、4
0℃にて60時間熱処理した。(高圧DTAにより、こ
の条件で、サンプルの固化が確認できた。)熱処理後、
圧力を常圧にもどし得られた反応物をアセトンで洗浄し
た。24%の収率で、赤かっ色の金属光沢を有するポリ
マーを得た。得られたポリマーは、赤外吸収スペクト
ル、固化NMRスペクトル、ラマンスペクトル等の分析
よりエン−イン構造を有するポリマーであることが判明
した。また、得られたポリマーはその粉末X線回折から
極めて結晶性が高いことが明らかとなった。
EXAMPLE 1 ClCH 2 C≡CC≡CCH 2 Polymerization of 1,6-dichloro-2,4-hexadiyne 5ml of Cl, and sealed with polyester film, under hydrostatic pressure 5000 atm, 4
Heat treatment was performed at 0 ° C. for 60 hours. (High-pressure DTA confirmed solidification of the sample under these conditions.) After heat treatment,
The reaction product obtained by returning the pressure to normal pressure was washed with acetone. A polymer with a reddish-brown metallic luster was obtained in a yield of 24%. The obtained polymer was found to be a polymer having an en-in structure by analysis of infrared absorption spectrum, solidification NMR spectrum, Raman spectrum and the like. In addition, it was revealed from the powder X-ray diffraction that the obtained polymer had extremely high crystallinity.

IR(cm−1):1425,1326,1261、 ラマンスペクトル(cm−1):2210,1590 〔実施例2〕 BrCH2C≡CC≡CC2Brの重合 1,6−ジブロモ−2,4−ヘキサジイン5mlをポリエ
ステル系フィルムで密封してから、3000気圧、100時
間、50℃で熱処理した。(高圧DTAにより、この条
件で、サンプルの固化が確認できた。)処理後、析出し
たポリマーを吸引濾過にて単離し、繰り返しアセトンで
洗浄した。収率38%で赤かっ色のポリマーを得た。得
られたポリマーは、ラマンスペクトル、赤外吸収スペク
トル等の分析から、エン−イン構造を有することがわか
った。
IR (cm −1 ): 1425, 1326, 1261, Raman spectrum (cm −1 ): 2210, 1590 [Example 2] Polymerization of BrCH 2 C ≡ CC ≡ CC 2 Br 1,6-dibromo-2,4- Hexadiyne (5 ml) was sealed with a polyester film and then heat-treated at 3000 atm for 100 hours at 50 ° C. (The solidification of the sample could be confirmed under this condition by high-pressure DTA.) After the treatment, the precipitated polymer was isolated by suction filtration and repeatedly washed with acetone. A reddish brown polymer was obtained with a yield of 38%. The obtained polymer was found to have an en-in structure by analysis of Raman spectrum, infrared absorption spectrum and the like.

〔実施例3〕 C2H5COOCH2C≡CC≡CCH2OOCC2H5の重合 2,4−ヘキサジイン−1,6−ジオールジプロピロレ
ート3mlを6500気圧で60時間、80℃で熱処理した。
(高圧DTAにより、この条件でサンプルの固化が確認
できた。)熱処理後、ほぼ定量的に不溶不融のポリマー
を得た。赤外吸収スペクトル、元素分析、ラマンスペク
トル等の分析により、ほぼエン−イン構造から成るポリ
マーであることが判明した。
Example 3 60 h C 2 H 5 COOCH 2 C≡CC≡CCH 2 OOCC 2 Polymerization of H 5 2,4-hexadiyn-1,6-diol dipropionate pilolate 3ml of 6500 atm, and heat treated at 80 ° C. .
(High-pressure DTA confirmed solidification of the sample under these conditions.) After the heat treatment, an insoluble and infusible polymer was obtained almost quantitatively. By analysis of infrared absorption spectrum, elemental analysis, Raman spectrum and the like, it was found that the polymer was almost an ene-in structure.

〔実施例4〕 CH3OCH2C≡CC≡CCH2OCH3の重合 1,6−ジメトキシ−2,4−ヘキサジインを用いた以
外は、実施例3を繰り返した。熱処理後、ほぼ定量的に
黒色の不溶不融のポリマーを得た。赤外吸収スペクト
ル、元素分析、ラマンスペクトル等の分析により、ほぼ
エン−イン構造から成るポリマーであることが判明し
た。
Example 4 Polymerization of CH 3 OCH 2 C≡CC≡CCH 2 OCH 3 Example 3 was repeated except that 1,6-dimethoxy-2,4-hexadiyne was used. After the heat treatment, a black insoluble and infusible polymer was obtained almost quantitatively. By analysis of infrared absorption spectrum, elemental analysis, Raman spectrum and the like, it was found that the polymer was almost an ene-in structure.

〔実施例5〕 (CH3)2NCH2C≡CC≡CCH2N(CH3)2の重合 N,N,N′,N′−テトラメチル−1.6−ジアミン
−2,4−ヘキサジインを用いた以外は、実施例3を繰
り返した。熱処理後、ほぼ定量的に黒色の不溶不融のポ
リマーを得た。赤外吸収スペクトル、元素分析、ラマン
スペクトル等の分析によりほぼエン−イン構造から成る
ポリマーであることが判明した。
Example 5 Polymerization of (CH 3 ) 2 NCH 2 C≡CC≡CCH 2 N (CH 3 ) 2 N, N, N ′, N′-Tetramethyl-1.6-diamine-2,4-hexadiyne Example 3 was repeated except that was used. After the heat treatment, a black insoluble and infusible polymer was obtained almost quantitatively. Analysis by infrared absorption spectrum, elemental analysis, Raman spectrum, etc. revealed that the polymer was almost an ene-in structure.

〔実施例6〕 ClCH2C≡CC≡CCH2Clの重合 サファイヤの光学窓をつけた高圧静水圧装置にポリエス
テル系フィルムで密封した1,6−ジクロロ−2,4−
ヘキサジンを入れ、5000気圧、20℃にて固化させた。
このように固化させたサンプルに、1時間、紫外線を照
射した。紫外線の照射と共にポリマー生成による赤色の
着色が認められた。この時のポリマー収率は36%であ
った。
Example 6 Polymerization of ClCH 2 C≡CC≡CCH 2 Cl 1,6-dichloro-2,4-sealed with a polyester film in a high-pressure hydrostatic device equipped with a sapphire optical window.
Hexazine was added and solidified at 5000 at 20 ° C.
The sample solidified in this way was irradiated with ultraviolet rays for 1 hour. Red coloring due to polymer formation was observed with irradiation of ultraviolet rays. The polymer yield at this time was 36%.

同様に、紫外線の代りに、電子線、X線、放射線(γ
線)を1時間照射した。この時のポリマー収率は、各
々、58%、52%、86%であった。
Similarly, instead of ultraviolet rays, electron beams, X-rays, radiation (γ
(Line) for 1 hour. The polymer yields at this time were 58%, 52%, and 86%, respectively.

比較のため、常圧下、−30℃で固化させた1,6−ジ
クロロ−2,4−ヘキサジインに紫外線を1時間照射し
たが、ポリマー収率は、8.2%であった。
For comparison, 1,6-dichloro-2,4-hexadiyne solidified at −30 ° C. under normal pressure was irradiated with ultraviolet rays for 1 hour, and the polymer yield was 8.2%.

又、紫外線の代りに、電子線、X線、放射線(γ線)を
用いたが、この時のポリマー収率は、50%を越えなか
った。
Further, electron rays, X-rays, and radiation (γ rays) were used instead of ultraviolet rays, but the polymer yield at this time did not exceed 50%.

〔実施例7〕 実施例6において、重合温度を20℃の代りに40℃に
して実施例6(紫外線照射)を繰り返した。この時のポ
リマー収率は46%であった。
Example 7 In Example 6, the polymerization temperature was changed to 40 ° C. instead of 20 ° C., and Example 6 (UV irradiation) was repeated. The polymer yield at this time was 46%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】常温常圧で液状のジアセチレン化合物を2
気圧以上の圧力下で固化させたまま加熱及び/又は高エ
ネルギー照射により重合させることを特徴とするジアセ
チレン化合物の重合方法。
1. A diacetylene compound which is liquid at room temperature and atmospheric pressure.
A method for polymerizing a diacetylene compound, which comprises polymerizing by heating and / or irradiation with high energy while being solidified under a pressure of at least atmospheric pressure.
JP1187246A 1989-07-21 1989-07-21 Polymerization method of diacetylene compound Expired - Fee Related JPH0625225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187246A JPH0625225B2 (en) 1989-07-21 1989-07-21 Polymerization method of diacetylene compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187246A JPH0625225B2 (en) 1989-07-21 1989-07-21 Polymerization method of diacetylene compound

Publications (2)

Publication Number Publication Date
JPH0352905A JPH0352905A (en) 1991-03-07
JPH0625225B2 true JPH0625225B2 (en) 1994-04-06

Family

ID=16202606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187246A Expired - Fee Related JPH0625225B2 (en) 1989-07-21 1989-07-21 Polymerization method of diacetylene compound

Country Status (1)

Country Link
JP (1) JPH0625225B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322115A (en) * 1986-07-12 1988-01-29 井関農機株式会社 Center-of-gravity stabilizing apparatus in combine
JPH01108210A (en) * 1987-10-21 1989-04-25 Agency Of Ind Science & Technol Polydiacetylene having reacted double bond
JPH0618829B2 (en) * 1988-08-26 1994-03-16 工業技術院長 Diphenyl diacetylene polymer
JPH0259547A (en) * 1988-08-26 1990-02-28 Agency Of Ind Science & Technol Butadiyneamide dimer and crosslinked material thereof

Also Published As

Publication number Publication date
JPH0352905A (en) 1991-03-07

Similar Documents

Publication Publication Date Title
Kaiser et al. Topochemical Reactions of Monomers with Conjugated Triple‐Bonds VII Mechanism of Transition from Monomer to Polymer Phase During Solid‐State Polymerisation
Natta et al. Crystalline polymers of phenyl‐and n‐butylisocyanates
Kiji et al. Solid-state polymerization of derivatives of 2, 4, 6-octatriyne: 9. Topochemical reactions of monomers with conjugated triple bonds
Patel et al. Solid state phase transformation of a diacetylene by solvation. Crystal structure of a moderately reactive monomer form
JPH0625225B2 (en) Polymerization method of diacetylene compound
Tsuda Solid state polymerization of formaldehyde induced by ionizing radiation
Tieke Solid‐state polymerization of butadienes. Polymerization of salts of 6‐amino‐2, 4‐trans, trans‐hexadienoic acid
Cho et al. Polymerization of substituted cyclopropanes. III. Anionic polymerizations of 2‐substituted cyclopropane‐1, 1‐dicarbonitriles
Malhotra et al. Trityl Salt-Initiated Cationic Polymerization of 1, 2-Cyclohexene Oxide: Structural Analyses of the Products
US2851451A (en) Polymerization process
Yokota et al. Alternating copolymerization of carbonyl sulfide with aziridines
US2980695A (en) Polyfluoro-1, 3-dithietanes and their preparation
JPH0618829B2 (en) Diphenyl diacetylene polymer
Lahti et al. Synthesis, characterization, and photolysis of poly [3, 5‐di‐tert‐butyl‐4‐[(2, 4, 6‐tri‐tert‐butylphenyl) oxalato] phenylacetylene], a photochemical polyradical precursor
Tieke et al. Solid state polymerization and physical properties of crystalline complexes of phenazine and diacetylene‐monocarbonic acids
Ivanov et al. Radiation polymerization of N-phenylmalimide in the solid state
Wéry et al. Thermal conversion of PPV precursor: characterization at different stages of the process
Keggenhoff et al. Solid‐state polymerization of oxetanes. I. Lattice parameters and packing properties of the monomers
US3050507A (en) Epoxy derivatives of unsaturated polyvinyl chloride
Yoshii et al. In‐source and post‐polymerization of long chain monomers γ‐irradiated in urea canal complexes
Kröhnke Single crystals from optically active diacetylenes and polydiacetylenes
Patel Studies on partially polymerized 2, 4‐hexadiyn‐1, 6‐bis (p‐toluenesulfonate)
US3385657A (en) Vinyl ether polymerization catalysts comprising alkaline earth metal halides
Zilkha et al. Anionic polymerization of acrylonitrile by cyclopentadienyl sodium
Sugawara et al. Radiation-Induced Solid-State Polymerization of n-Butylisocyanate at Low Temperature

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees