JPH06251773A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH06251773A
JPH06251773A JP5035203A JP3520393A JPH06251773A JP H06251773 A JPH06251773 A JP H06251773A JP 5035203 A JP5035203 A JP 5035203A JP 3520393 A JP3520393 A JP 3520393A JP H06251773 A JPH06251773 A JP H06251773A
Authority
JP
Japan
Prior art keywords
fuel cell
potential side
current value
electric potential
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5035203A
Other languages
Japanese (ja)
Inventor
Takashi Kashiro
貴志 鍛代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5035203A priority Critical patent/JPH06251773A/en
Publication of JPH06251773A publication Critical patent/JPH06251773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a higher power generating effect over a long period of time by using a material whose electric current value at the low electric potential side peak appearing in a hydrogen attracting area of the cyclic voltamogram is not less than twice an electric current value at the high electric potential side 7 peak, as electrode catalyst. CONSTITUTION:Acetylene black (particle diameter 10-50mu and surface area 60-800m<2>/g) and furnace black (particel diameter 10-30mu and surface area 200-1400m<2>/g) are used as a catalyst carrier as they are or by heat treatment. A platinum holding quantity is set in 10-30wt%, and a platinum particle diameter is set in 30-80 angstrom. An electric current value at the low electric potential side peak appearing in a hydrogen attracting area of a cyclic voltamogram is set in I1, and electric potential at the high electric potential side peak is set in I2, and a value of I1/I2 is set in 2.0-3.5. Thereby, a higher power generating effect can be obtained over a long period of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質電極基体に電解
質を保持させた燃料電池に係り、より高い発電効率を得
ることができるように改良を施した燃料電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell in which an electrolyte is retained on a porous electrode substrate, and more particularly to a fuel cell improved so as to obtain higher power generation efficiency.

【0002】[0002]

【従来の技術】従来、燃料の有している化学的エネルギ
ーを直接電気エネルギーに変換するものとして、燃料電
池が知られている。この燃料電池において、より高い発
電効果を得るための手段の一つとして、従来から、電極
触媒の活性を向上させる方法が研究されてきた。この電
極触媒の活性向上の手段として従来行われてきたのは、
導電性炭素粉末に担持される白金の比表面積(m2 /g
−Pt)をいかに大きくするかであり、具体的な方法と
しては、担持される白金粒子の粒径を小さくするという
ものであった。
2. Description of the Related Art Conventionally, a fuel cell is known as a device for directly converting the chemical energy of fuel into electric energy. As a means for obtaining a higher power generation effect in this fuel cell, a method for improving the activity of the electrode catalyst has been conventionally studied. As a means for improving the activity of this electrode catalyst, conventionally,
Specific surface area of platinum supported on conductive carbon powder (m 2 / g
-Pt) is increased, and a specific method is to reduce the particle size of platinum particles to be supported.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
たような燃料電池用電極触媒を用いた燃料電池には、以
下に述べるような解決すべき課題があった。即ち、担持
される白金粒子を小さくすることにより電極触媒の活性
向上を図った場合、そのような電極触媒を使用した燃料
電池を運転すると、運転初期における特性は良好である
が、特性の低下速度が速いといった欠点があった。その
ため、燃料電池の効率を長期的な視点から検討した場
合、担持される白金粒子の粒径を小さくすることは、か
えって燃料電池の発電効率を低下させる恐れがあるとい
った問題があった。
However, the fuel cell using the above-mentioned fuel cell electrode catalyst has the following problems to be solved. That is, when the activity of the electrocatalyst is improved by making the supported platinum particles small, when a fuel cell using such an electrocatalyst is operated, the characteristics at the initial stage of operation are good, but the rate of decrease in characteristics is low. It had the drawback of being fast. Therefore, when examining the efficiency of the fuel cell from a long-term viewpoint, there is a problem that reducing the particle size of the supported platinum particles may rather reduce the power generation efficiency of the fuel cell.

【0004】本発明は、上記の様な従来技術の欠点を解
消するために提案されたもので、その目的は、より高い
発電効果を長期間にわたって得ることができる燃料電池
を提供することにある。
The present invention has been proposed in order to solve the above-mentioned drawbacks of the prior art, and its object is to provide a fuel cell which can obtain a higher power generation effect for a long period of time. .

【0005】[0005]

【課題を解決するための手段】本発明は、担体に活性触
媒金属粒子を担持させて成る電極触媒を用いた燃料電池
において、前記電極触媒が、そのサイクリックボルタモ
グラムの水素吸着領域に現れる低電位側ピークの電流値
が、高電位側ピークの電流値の2倍以上となるものであ
ることを特徴とするものである。
The present invention is directed to a fuel cell using an electrocatalyst comprising active catalyst metal particles supported on a carrier, wherein the electrocatalyst has a low potential appearing in a hydrogen adsorption region of its cyclic voltammogram. The current value of the high-side peak is twice or more the current value of the high-potential side peak.

【0006】[0006]

【作用】本発明の燃料電池においては、燃料電池用電極
触媒として、サイクリックボルタモグラムの水素吸着領
域に現れる低電位側ピークの電流値I1 が、高電位側ピ
ークの電流値I2 の2倍以上である電極触媒を用いるこ
とにより、より高い発電効果を長期間にわたって得るこ
とができる。
In the fuel cell of the present invention, as the fuel cell electrode catalyst, the low-potential-side peak current value I 1 that appears in the hydrogen adsorption region of the cyclic voltammogram is twice the high-potential-side peak current value I 2 . By using the above electrode catalyst, a higher power generation effect can be obtained for a long period of time.

【0007】なお、上記手段は、本発明者が、燃料電池
用電極触媒の性状、活性度、特性の変化等について長年
にわたって鋭意研究を重ねた結果得られたものである。
The above means was obtained as a result of the present inventor's earnest research over many years regarding changes in the properties, activity, characteristics, etc. of the fuel cell electrode catalyst.

【0008】図1は、燃料電池用電極触媒のサイクリッ
クボルタモグラムから、水素吸着領域のみを示したもの
である。図から明らかなように、水素吸着領域には低電
位側及び高電位側に2つのピークが現われる。ここで、
低電位側ピークのピーク電流値(I1 )と高電位側ピー
クのピーク電流値(I2 )との比(I1 /I2 )は、燃
料電池用電極触媒、特に、カソード電極用触媒の活性に
影響を与える値である。 また、図2は、カソード電極
用触媒の活性の高低を示す指標となる酸化物還元ピーク
電位と、前記水素吸着領域の2つのピーク電流値の比
(I1 /I2 )との関係を示したものである。図から明
らかなように、酸化物還元ピーク電位は、I1 /I2
値が増加するに従って上昇し、高電位となるが、I1
2 の値が2以上になるとほとんど変化しなくなる。こ
の酸化物還元ピーク電位の値が高いほど、燃料電池のカ
ソード電極反応である酸素還元反応に対する触媒活性は
高くなるので、カソード電極触媒としての活性は、水素
吸着領域の2つのピーク電流値の比(I1 /I2 )の値
が大きくなる程高くなり、I1 /I2 の値が2以上では
ピークに達することを示している。
FIG. 1 shows only the hydrogen adsorption region from the cyclic voltammogram of the fuel cell electrode catalyst. As is apparent from the figure, two peaks appear on the low potential side and the high potential side in the hydrogen adsorption region. here,
Peak current value of the low-potential side peak (I 1) and the high potential side peak of the peak current value ratio between (I 2) (I 1 / I 2) is a fuel cell electrode catalyst, in particular, a catalyst for a cathode electrode It is a value that affects activity. Further, FIG. 2 shows the relationship between the oxide reduction peak potential, which is an index showing the level of activity of the cathode electrode catalyst, and the ratio (I 1 / I 2 ) of the two peak current values in the hydrogen adsorption region. It is a thing. As can be seen, the oxide reduction peak potential, increases as the value of I 1 / I 2 is increased, but a higher potential, I 1 /
When the value of I 2 is 2 or more, it hardly changes. The higher the value of the oxide reduction peak potential, the higher the catalytic activity for the oxygen reduction reaction, which is the cathode electrode reaction of the fuel cell. Therefore, the activity as the cathode electrode catalyst is the ratio of the two peak current values in the hydrogen adsorption region. It is shown that the higher the value of (I 1 / I 2 ) is, the higher the value is, and the peak is reached when the value of I 1 / I 2 is 2 or more.

【0009】以上のことから、I1 /I2 の値を2以上
にすることにより、燃料電池用電極触媒のカソード電極
反応に対する活性は、最高レベルに向上させることがで
きると予想される。また、その結果、従来行われてきた
ような白金粒子の粒径を小さくする必要がなくなるた
め、経時的な出力特性の低下も防止できる。
From the above, it is expected that the activity of the fuel cell electrode catalyst for the cathode electrode reaction can be improved to the maximum level by setting the value of I 1 / I 2 to 2 or more. Further, as a result, it is not necessary to reduce the particle size of the platinum particles as has been conventionally done, so that it is possible to prevent the deterioration of the output characteristics with time.

【0010】[0010]

【実施例】以下に、本発明の一実施例を示すが、本発明
は該実施例に限定されるものではない。
EXAMPLES An example of the present invention will be shown below, but the present invention is not limited to the example.

【0011】即ち、触媒担体としては、アセチレン・ブ
ラック(粒径10〜50μ、表面積60〜800m2
g)とファーネス・ブラック(粒径10〜30μ、表面
積200〜1400m2 /g)をそのまま、または熱処
理して使用する。また、白金担持量を10〜30wt
%、白金粒子径を30〜80オングストローム、I1
2 の値を2.0〜3.5とした燃料電池用電極触媒を
用いた。
That is, as the catalyst carrier, acetylene black (particle size 10 to 50 μm, surface area 60 to 800 m 2 /
g) and furnace black (particle size 10 to 30 μ, surface area 200 to 1400 m 2 / g) are used as they are or after heat treatment. Moreover, the amount of platinum carried is 10 to 30 wt.
%, Platinum particle size 30-80 Å, I 1 /
A fuel cell electrode catalyst having an I 2 value of 2.0 to 3.5 was used.

【0012】図3は、従来の電極触媒と本実施例による
電極触媒をそれぞれ使用した燃料電池について、運転に
伴うセル電圧の変化を示したグラフである。即ち、本実
施例による電極触媒を使用したセルは、従来型に比べて
全過程においてより高いセル電圧を示し、また、セル電
圧の低下速度も小さいことが明らかとなった。
FIG. 3 is a graph showing changes in cell voltage with operation of the fuel cell using the conventional electrode catalyst and the electrode catalyst according to the present embodiment. That is, it was revealed that the cell using the electrocatalyst according to this example exhibited a higher cell voltage in the whole process and a lowering rate of the cell voltage as compared with the conventional type.

【0013】この様に本実施例による電極触媒を用いて
燃料電池を構成した場合には、従来のものに比べ、より
高い発電効果を長期間にわたって得ることができる。
As described above, when the fuel cell is constructed using the electrode catalyst according to the present embodiment, higher power generation effect can be obtained for a long period of time as compared with the conventional one.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
電極触媒として、そのサイクリックボルタモグラムの水
素吸着領域に現れる低電位側ピークの電流値が、高電位
側ピークの電流値の2倍以上であるものを用いることに
よって、より高い発電効果を長期間にわたって得ること
ができる燃料電池を提供することができる。
As described above, according to the present invention,
By using an electrocatalyst in which the current value of the low-potential-side peak that appears in the hydrogen adsorption region of the cyclic voltammogram is at least twice the current value of the high-potential-side peak, a higher power generation effect can be obtained over a long period of time. A fuel cell that can be obtained can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料電池用電極触媒のサイクリックボルタモグ
ラムの水素吸着領域を示した図
FIG. 1 is a diagram showing a hydrogen adsorption region of a cyclic voltammogram of a fuel cell electrode catalyst.

【図2】酸化物還元ピーク電位と、図1に示した水素吸
着領域の2つのピーク電流値の比(I1 /I2 )との関
係を示した図
FIG. 2 is a diagram showing a relationship between an oxide reduction peak potential and a ratio (I 1 / I 2 ) of two peak current values in the hydrogen adsorption region shown in FIG.

【図3】本発明による燃料電池と従来の燃料電池につい
て、長時間運転に伴うセル電圧の変化を示した図
FIG. 3 is a diagram showing a change in cell voltage due to long-term operation of a fuel cell according to the present invention and a conventional fuel cell.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 担体に活性触媒金属粒子を担持させて成
る電極触媒を用いた燃料電池において、 前記電極触媒が、そのサイクリックボルタモグラムの水
素吸着領域に現れる低電位側ピークの電流値が、高電位
側ピークの電流値の2倍以上となるものであることを特
徴とする燃料電池。
1. A fuel cell using an electrocatalyst in which active catalyst metal particles are carried on a carrier, wherein the electrocatalyst has a high current value of a low potential side peak appearing in a hydrogen adsorption region of its cyclic voltammogram. A fuel cell having a current value twice or more of a peak on the potential side.
JP5035203A 1993-02-24 1993-02-24 Fuel cell Pending JPH06251773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035203A JPH06251773A (en) 1993-02-24 1993-02-24 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035203A JPH06251773A (en) 1993-02-24 1993-02-24 Fuel cell

Publications (1)

Publication Number Publication Date
JPH06251773A true JPH06251773A (en) 1994-09-09

Family

ID=12435305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035203A Pending JPH06251773A (en) 1993-02-24 1993-02-24 Fuel cell

Country Status (1)

Country Link
JP (1) JPH06251773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330433B1 (en) * 1998-03-16 2002-03-27 니시무로 타이죠 X-ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330433B1 (en) * 1998-03-16 2002-03-27 니시무로 타이죠 X-ray tube

Similar Documents

Publication Publication Date Title
US6635369B2 (en) Method for improving fuel cell performance
AU725835B2 (en) Fuel cell with pulsed anode potential
KR20200099046A (en) Manufacturing method of nitrogen doped metal-carbon catalyst for fuel cell
JP2004146223A (en) Negative electrode catalyst for fuel cell
JPH0636366B2 (en) Three-component metal alloy catalyst for fuel cells
JP2007220384A (en) Catalyst carrier, electrode catalyst for fuel battery, fuel battery electrode, and fuel battery as well as fuel battery cell
WO2005088748A1 (en) Anode catalyst for solid polymer fuel cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
JP2004095263A (en) Electrode catalyst for fuel cell, fuel cell, and fuel cell system
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
US20030022033A1 (en) Fuel cell with pulsed anode potential
CN113871629A (en) Anti-reversal catalyst, preparation method and application thereof
JPH06251773A (en) Fuel cell
JPS60434B2 (en) Hydrogen generation method
JPH03236160A (en) Electrode catalyst layer for fuel cell and manufacture thereof
US3468717A (en) Electrodes having an intimate mixture of platinum and a second metal
US3230114A (en) Catalyst electrodes and process for storing electrical energy
JPH0594823A (en) Electrode catalyst for fuel cell
JP2005327584A (en) Regenerating control method of fuel cell
Cheng et al. Electrochemical performance of metal hydride negative electrode modified with bismuth oxide
JPS61185863A (en) Hydrogen occlusion alloy electrode
KR20140100782A (en) Active material for anode of lithium ion capacitor, manufacturing method for the same and lithium ion capacitor comprising the same
JP6187962B2 (en) Anode catalyst for alkaline direct ethanol fuel cell, alkaline direct ethanol fuel cell provided with the catalyst, method for producing the catalyst, and method for improving output of alkaline direct ethanol fuel cell
WO2024057960A1 (en) Fuel cell electrode
US3682709A (en) Process for improving nickel base,nonnoble metal fuel cell catalysts