JPH06251624A - Insulation composition and power cable - Google Patents

Insulation composition and power cable

Info

Publication number
JPH06251624A
JPH06251624A JP5039093A JP3909393A JPH06251624A JP H06251624 A JPH06251624 A JP H06251624A JP 5039093 A JP5039093 A JP 5039093A JP 3909393 A JP3909393 A JP 3909393A JP H06251624 A JPH06251624 A JP H06251624A
Authority
JP
Japan
Prior art keywords
polyethylene
lubricating oil
power cable
dielectric loss
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039093A
Other languages
Japanese (ja)
Inventor
Kazuhiko Goto
和彦 後藤
Izumi Ishikawa
泉 石川
Hiroyuki Miyata
裕之 宮田
Toru Nakatsuka
徹 中司
Kenji Matsui
研二 松井
Shiro Nakayama
四郎 中山
Susumu Takahashi
享 高橋
Mitsutaka Tanida
光隆 谷田
Toshio Niwa
利夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP5039093A priority Critical patent/JPH06251624A/en
Publication of JPH06251624A publication Critical patent/JPH06251624A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a power cable having a small dielectric loss, composed of an insulation composition having a small dielectric loss and an insulator available therefrom. CONSTITUTION:This insulation composition is made of polyethylene based polymer, and manufactured by a high pressure method where ethylene gas is compressed to high pressure on the operation of a booster compressor using a fluorocarbon lubricant as lubricating oil. As a result, polyethylene does not contain any polyether compound as an impurity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電損失の小さい絶縁
体となる絶縁組成物、及びこれを絶縁体として用いた電
力ケーブルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating composition which is an insulator having a small dielectric loss, and a power cable using the insulating composition.

【0002】[0002]

【従来の技術】従来、電力ケーブルやその付属品に用い
られる絶縁体としては、架橋ポリエチレン(XLPE)
が広く用いられている。このXLPEのベースポリマー
としてのポリエチレン(PE)には、一般に高圧法で重
合された低密度PE(LDPE)が使用されている。こ
の高圧法は、エチレンガスを高圧(1000〜3000
Kg/cm2)に圧縮し、反応管中でPEを重合させる
方法であるが、この製造工程中に極微量の不純物が混入
されることがある。
2. Description of the Related Art Conventionally, a cross-linked polyethylene (XLPE) has been used as an insulator used for a power cable and its accessories.
Is widely used. Low density PE (LDPE) polymerized by a high pressure method is generally used for polyethylene (PE) as a base polymer of this XLPE. This high-pressure method uses ethylene gas at high pressure (1000 to 3000).
This is a method in which PE is polymerized in a reaction tube after being compressed to Kg / cm 2 ), but an extremely small amount of impurities may be mixed in during the manufacturing process.

【0003】このような微量不純物としては、例えばエ
チレンガス昇圧圧縮機(圧縮シリンダ)からの潤滑剤不
純物、反応管壁からの不純物などが挙げられる。ここ
で、昇圧圧縮機に用いられる潤滑剤としては、ポリエー
テル系の水溶性潤滑油が一般に用いられている。これ
は、炭化水素系の潤滑油を用いると、昇圧圧縮機のパッ
キンや摺動面にカーボンスラッジが堆積してしまい、メ
ンテナンスインターバルが短くなってしまうからであ
る。
Examples of such trace impurities include lubricant impurities from an ethylene gas booster compressor (compression cylinder) and impurities from a reaction tube wall. Here, as the lubricant used in the booster compressor, a polyether-based water-soluble lubricating oil is generally used. This is because when hydrocarbon-based lubricating oil is used, carbon sludge is deposited on the packing and sliding surface of the booster compressor, shortening the maintenance interval.

【0004】ところで、この架橋ポリエチレンを用いた
電力ケーブルはCVケーブルと呼ばれるもので、一般に
はその電気的tanδ(誘電正接)が低く、そのため誘
電損失も少ないことからケーブルのエネルギーロスも少
ないものとなっている。
By the way, a power cable using this crosslinked polyethylene is called a CV cable, and generally its electrical tan δ (dielectric loss tangent) is low, and therefore the dielectric loss is also small, so that the energy loss of the cable is also small. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記C
Vケーブルにあっても、特に高電圧を送電する場合に
は、すなわち超高圧CVケーブルの使用電界や温度にお
いては、電気的tanδが上昇し、これに伴って誘電損
失が多くなり、ケーブルのエネルギーロスが増大してし
まうといった問題があった。
However, the above-mentioned C
Even in the case of a V cable, particularly when transmitting a high voltage, that is, when the electric field or temperature of the ultra-high voltage CV cable is used, the electrical tan δ is increased, and the dielectric loss is increased accordingly. There was a problem that the loss would increase.

【0006】[0006]

【課題を解決するための手段】本発明者は前記課題に鑑
み、CVケーブルにおける電気的tanδの上昇の原因
を究明すべく鋭意研究した結果、詳細理論については未
判明であるものの、ポリエチレンを製造するときに使用
する昇圧圧縮機のポリエーテル系潤滑油が、ポリエチレ
ン中に不純物として混入することにより、前述したta
nδの上昇が見られることを究明し、本発明に至った。
In view of the above problems, the present inventor has conducted diligent research to investigate the cause of the increase in electrical tan δ in a CV cable, and as a result, although a detailed theory is unknown, polyethylene is produced. When the polyether-based lubricating oil of the booster compressor used at the time of mixing is mixed as an impurity in polyethylene, the above-mentioned ta
It was clarified that an increase in nδ was observed, and the present invention was completed.

【0007】すなわち、本発明における請求項1記載の
絶縁組成物では、潤滑油として炭化水素系潤滑油を用い
た昇圧圧縮機により、エチレンガスを高圧に圧縮する高
圧法によって製造されたポリエチレンをベースポリマー
としたことを前記課題の解決手段とした。請求項2記載
の電力ケーブルでは、請求項1記載の絶縁組成物から得
られる絶縁体を用いたことを前記課題の解決手段とし
た。
That is, in the insulating composition according to the first aspect of the present invention, a polyethylene-based base produced by a high pressure method in which ethylene gas is compressed to a high pressure by a booster compressor using a hydrocarbon lubricating oil as a lubricating oil is used. The use of a polymer was used as a means for solving the above problems. In the power cable according to claim 2, the insulator obtained from the insulating composition according to claim 1 is used as a means for solving the problems.

【0008】以下、本発明を詳しく説明する。ポリエチ
レンが、その製造に際して昇圧圧縮機に炭化水素系の潤
滑油が用いられて得られたものであるか、ポリエーテル
系の潤滑油が用いられて得られたものであるかを特定す
るためには、例えばポリエチレンのコンパウンドからの
水抽出液を紫外線吸光分析にかけたとき、320nm付
近に吸収が見られるか否かによって判断することができ
る。
The present invention will be described in detail below. In order to identify whether polyethylene was obtained by using a hydrocarbon-based lubricating oil in a booster compressor or a polyether-based lubricating oil during its production Can be determined by whether or not absorption is observed at around 320 nm when a water extract from a polyethylene compound is subjected to ultraviolet absorption analysis.

【0009】すなわち、紫外線吸光分析にかけたとき、
320nm付近に吸収が見られるものは、潤滑油として
ポリエーテル系のものを用いて得られたものであり、逆
に320nm付近に吸収が見られないものは、潤滑油と
してほぼ炭化水素系のものを用いて得られたものと特定
できるのである。そして、炭化水素系の潤滑油を用いて
得られたポリエチレンは、ポリエーテル系の潤滑油を用
いて得られた、すなわちポリエーテル系の潤滑油が不純
物として含まれるポリエチレンに比べ、実施例で示すよ
うにそのtanδが小さいことが判明した。
That is, when subjected to ultraviolet absorption analysis,
Those with absorption around 320 nm were obtained by using polyether type as lubricating oil, while those without absorption around 320 nm were almost hydrocarbon type with lubricating oil. Can be specified as obtained by using. The polyethylene obtained by using the hydrocarbon lubricating oil is shown in the examples as compared with the polyethylene obtained by using the polyether lubricating oil, that is, the polyether lubricating oil is contained as an impurity. It was found that the tan δ was small.

【0010】[0010]

【実施例】ポリエチレンを高圧法により製造するに際
し、エチレンガス昇圧圧縮機の潤滑油として炭化水素系
のものを用いて製造した低密度ポリエチレンのコンパウ
ンド(実施例品)と、ポリエーテル系のものを用いて製
造した低密度ポリエチレンのコンパウンド(比較例品)
とを用意した。
[Example] When polyethylene is produced by the high pressure method, a low density polyethylene compound (example product) produced by using a hydrocarbon type as a lubricating oil for an ethylene gas booster compressor and a polyether type are used. Low-density polyethylene compound manufactured using (comparative example product)
And prepared.

【0011】[紫外線吸収分析]得られたコンパウンド
中に、ポリエーテル系化合物が含まれているか否かを分
析するため、コバルトチオシアネート法を用いた定性分
析を以下のようにして実施した。 (測定試料の作製)まず、前記コンパウンドの一部をそ
れぞれ粉砕処理し、粉砕処理物をそれぞれ500gずつ
試料として採取した。次いで、これら試料にそれぞれ1
000gずつ純水を加え、さらに加熱して48時間還流
抽出処理を行った。還流抽出後、それぞれ濾過を行い、
その濾液1000mlをエバポレーターを用いて減圧蒸
留し、50mlにまで正確に濃縮してこれらを測定試料
とした。
[Ultraviolet Absorption Analysis] In order to analyze whether the obtained compound contains a polyether compound, a qualitative analysis using a cobalt thiocyanate method was carried out as follows. (Preparation of Measurement Sample) First, a part of the compound was pulverized, and 500 g of the pulverized product was sampled. Then 1 for each of these samples
Pure water was added in an amount of 000 g each, and the mixture was further heated and subjected to reflux extraction treatment for 48 hours. After extraction under reflux, each is filtered,
1000 ml of the filtrate was distilled under reduced pressure using an evaporator, and accurately concentrated to 50 ml to obtain these as measurement samples.

【0012】(コバルトチオシアン酸アンモニア水溶液
の作製)チオシアン酸アンモニウム[NH4SCN]6.
2gと、硝酸コバルト[Co(NO32]2.8gとを
純水に溶解し、100mlのコバルトチオシアン酸アン
モニア水溶液を作製した。 (紫外線吸光分析用試料の作製)先に作製した測定試料
50mlと、コバルトチオシアン酸アンモニア水溶液1
5mlと、塩化ナトリウム(NaCl)20gとを分液
ロートに入れ、NaClが完全に溶解するまで振とう攪
拌した後、15分間静置した。次に、分液ロートにそれ
ぞれ1,2-ジクロルエタンを正確に30ml加え、1分
間振とう攪拌した後静置し、2層分離させた。次いで、
2層分離させた1,2-ジクロルエタン(下側)を分取
し、無水硫酸ナトリウムを少量加えて脱水した。さら
に、これを濾過して得られた濾液を紫外線吸光分析用試
料とした。
(Preparation of Cobalt Ammonia Thiocyanate Aqueous Solution) Ammonium thiocyanate [NH 4 SCN] 6.
2 g and cobalt nitrate [Co (NO 3 ) 2 ] 2.8 g were dissolved in pure water to prepare 100 ml of an aqueous solution of cobalt thiocyanate. (Preparation of Sample for Ultraviolet Absorption Analysis) 50 ml of the measurement sample prepared above and aqueous solution of ammonia cobalt thiocyanate 1
5 ml and 20 g of sodium chloride (NaCl) were placed in a separatory funnel, shaken and stirred until NaCl was completely dissolved, and then left standing for 15 minutes. Next, exactly 30 ml of 1,2-dichloroethane was added to each of the separating funnels, and the mixture was shaken and stirred for 1 minute and allowed to stand still to separate two layers. Then
The 1,2-dichloroethane (lower side) separated into two layers was separated and dehydrated by adding a small amount of anhydrous sodium sulfate. Further, the filtrate obtained by filtering this was used as a sample for ultraviolet absorption analysis.

【0013】(紫外線吸光分析)得られた2種の紫外線
吸光分析用試料を、日本分光社製の測定機[Ubest-50 U
V/VIS Spectrophotometer]によってその吸光度(吸収
度)を測定した。なお、測定条件としては、波長200
〜400nm、スキャンスピード100nm/分、スペ
クトルバンド幅2.0nmとした。実施例品からの試料
の測定結果を図1に、比較例品からの試料の測定結果を
図2に示す。図1より、実施例品では、320nm付近
においてピークが見られなかった。一方、図2より、比
較例品では、320nm付近(300nm〜320n
m)で小さなピークPが見られた。
(Ultraviolet absorption analysis) Two kinds of the obtained samples for ultraviolet absorption analysis were measured by a measuring instrument manufactured by JASCO Corporation [Ubest-50 U
V / VIS Spectrophotometer] to measure its absorbance. The measurement condition is a wavelength of 200
˜400 nm, scan speed 100 nm / min, and spectral bandwidth 2.0 nm. The measurement result of the sample from the example product is shown in FIG. 1, and the measurement result of the sample from the comparative example product is shown in FIG. From FIG. 1, in the example product, no peak was observed near 320 nm. On the other hand, from FIG. 2, in the comparative example product, the vicinity of 320 nm (300 nm to 320 n
A small peak P was seen in m).

【0014】[tanδの測定]次に、実施例品および
比較例品のtanδを以下のようにしてそれぞれ測定し
た。まず、先に作製した各コンパウンド100重量部に
対し、DCP(ジクミルパーオキサイド)2重量部、チ
オビスフェノール系の酸化防止剤0.2重量部を添加
し、混練した後、これらをシートに成形するとともに加
熱し架橋して架橋ポリエチレンシートとした。
[Measurement of tan δ] Next, tan δ of each of the example product and the comparative example product was measured as follows. First, to 100 parts by weight of each compound prepared above, 2 parts by weight of DCP (dicumyl peroxide) and 0.2 parts by weight of a thiobisphenol-based antioxidant were added and kneaded, and then formed into a sheet. Then, it was heated and crosslinked to obtain a crosslinked polyethylene sheet.

【0015】得られた2種のシートを図3に示す試料1
とし、この試料1の両面にステンレス電極2a、2bを
当接させ、電極2b側で試料1をアースするとともに、
電極2bに測定器3を接続し、この状態で電極2aに高
電圧を印加してtanδ(誘電正接)を測定した。(た
だし、図3中において試料1の有効部厚さをtで示す。
また測定条件として、測定温度雰囲気を90℃とし、印
加ストレスを20kV/mmとした。)実施例品のta
nδは0.022%であり、一方比較例品のtanδは
0.041%であった。したがって、320nm付近に
吸収が見られず、ポリエーテル系化合物を含まない実施
例品は、比較例品に比べtanδが小さく、よってこの
ポリエチレンを用いた絶縁組成物は誘電損失が小さくな
ることが確認された。
The two types of sheets thus obtained are shown in FIG.
The stainless electrodes 2a and 2b are brought into contact with both surfaces of the sample 1, and the sample 1 is grounded on the side of the electrode 2b.
The measuring device 3 was connected to the electrode 2b, and a high voltage was applied to the electrode 2a in this state to measure tan δ (dielectric loss tangent). (However, in FIG. 3, the effective portion thickness of Sample 1 is indicated by t.
As measurement conditions, the measurement temperature atmosphere was 90 ° C., and the applied stress was 20 kV / mm. ) Example product ta
nδ was 0.022%, while the tan δ of the comparative product was 0.041%. Therefore, no absorption was observed around 320 nm, and the tan δ of the example product containing no polyether compound was smaller than that of the comparative product, and thus it was confirmed that the insulating composition using this polyethylene had a small dielectric loss. Was done.

【0016】また、実施例品の低密度ポリエチレンコン
パウンドに、有機過酸化物(DCP)、酸化防止材、充
填材、着色材等を適宜添加し、本発明の絶縁組成物を得
た。そして、このような絶縁組成物を所望する形状、す
なわち電力ケーブルやこれの付属品の製造に際し、これ
に一体的に組み込まれる各種絶縁体として所望形状に成
形した後、架橋塔で加熱することにより、絶縁体である
架橋ポリエチレン(XLPE)とした。このような絶縁
体を用いてなる電力ケーブルにあっては、絶縁体のta
nδ(誘電正接)が小さいことから、ケーブル自体の誘
電損失が小さいものとなった。
Further, an organic peroxide (DCP), an antioxidant, a filler, a coloring material and the like were appropriately added to the low density polyethylene compound of the example product to obtain an insulating composition of the present invention. Then, by forming such an insulating composition into a desired shape, that is, in the case of manufacturing a power cable or an accessory thereof, after molding into a desired shape as various insulators integrally incorporated therein, by heating in a crosslinking tower, , And cross-linked polyethylene (XLPE) which is an insulator. In a power cable using such an insulator, ta of the insulator
Since nδ (dielectric loss tangent) was small, the dielectric loss of the cable itself was small.

【0017】[0017]

【発明の効果】以上説明したように本発明における請求
項1記載の絶縁組成物は、潤滑油として炭化水素系潤滑
油を用いた昇圧圧縮機により、エチレンガスを高圧に圧
縮する高圧法によって製造されたポリエチレンをベース
ポリマーとしたものであるから、ポリエチレンがポリエ
ーテル系の化合物を不純物として含まず、したがって該
ポリエーテル系化合物に起因してtanδ(誘電正接)
が大きくなるのを抑さえることができ、これにより誘電
損失の小さい絶縁体を製造し得るものとなる。請求項2
記載の電力ケーブルは、前記絶縁組成物から得られる、
誘電損失の小さい絶縁体を用いたものであるから、電力
ケーブルとしてそのエネルギーロスが少ないものとな
る。また、このようにエネルギーロスが少ないことか
ら、本発明の電力ケーブルは、超高電圧が印加される超
高圧CVケーブル等に好適に用いられるものとなる。
As described above, the insulating composition according to claim 1 of the present invention is produced by a high pressure method in which ethylene gas is compressed to a high pressure by a booster compressor using a hydrocarbon lubricating oil as a lubricating oil. Since polyethylene is used as a base polymer, polyethylene does not contain a polyether compound as an impurity, and therefore tan δ (dielectric loss tangent) is caused by the polyether compound.
Can be suppressed, which makes it possible to manufacture an insulator with low dielectric loss. Claim 2
The described power cable is obtained from the insulating composition,
Since the insulator using the small dielectric loss is used, the energy loss of the power cable is small. Further, since the energy loss is small as described above, the power cable of the present invention is suitable for use in an ultrahigh voltage CV cable to which an ultrahigh voltage is applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例品の紫外線吸光分析結果を示す図。FIG. 1 is a view showing a result of ultraviolet absorption analysis of an example product.

【図2】 比較例品の紫外線吸光分析結果を示す図。FIG. 2 is a view showing a result of ultraviolet absorption analysis of a comparative example product.

【図3】 誘電正接の測定法を説明するための図。FIG. 3 is a diagram for explaining a method of measuring dielectric loss tangent.

【符号の説明】[Explanation of symbols]

1…試料、2a、2b…ステンレス電極、3…測定器。 1 ... Sample, 2a, 2b ... Stainless electrode, 3 ... Measuring instrument.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中司 徹 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 松井 研二 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 中山 四郎 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 高橋 享 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 谷田 光隆 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 丹羽 利夫 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Nakaji 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Kenji Matsui 1-1-5 Kiba, Koto-ku, Tokyo Shares Company Fujikura (72) Inventor Shiro Nakayama 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Takashi Takahashi 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Mitsutaka Yata 1-5-1, Kiba, Koto-ku, Tokyo, Fujikura Ltd. (72) Inventor Toshio Niwa 1-5-1, Kiba, Koto-ku, Tokyo, Fujikura Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ベースポリマーをポリエチレンとする絶
縁組成物において、前記ポリエチレンが、昇圧圧縮機に
よりエチレンガスを高圧に圧縮する高圧法によって製造
されてなり、前記昇圧圧縮機には潤滑油として炭化水素
系潤滑油が用いられていることを特徴とする絶縁組成
物。
1. An insulating composition comprising polyethylene as a base polymer, wherein the polyethylene is produced by a high pressure method in which ethylene gas is compressed to a high pressure by a pressure-up compressor, and the pressure-up compressor contains hydrocarbon as a lubricating oil. An insulating composition comprising a system lubricating oil.
【請求項2】 請求項1記載の絶縁組成物から得られる
絶縁体を用いた電力ケーブル。
2. A power cable using an insulator obtained from the insulating composition according to claim 1.
JP5039093A 1993-02-26 1993-02-26 Insulation composition and power cable Pending JPH06251624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039093A JPH06251624A (en) 1993-02-26 1993-02-26 Insulation composition and power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039093A JPH06251624A (en) 1993-02-26 1993-02-26 Insulation composition and power cable

Publications (1)

Publication Number Publication Date
JPH06251624A true JPH06251624A (en) 1994-09-09

Family

ID=12543471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039093A Pending JPH06251624A (en) 1993-02-26 1993-02-26 Insulation composition and power cable

Country Status (1)

Country Link
JP (1) JPH06251624A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510914A (en) * 2009-11-11 2013-03-28 ボレアリス エージー POLYMER COMPOSITION CONTAINING POLYOLEFIN PRODUCED IN HIGH PRESSURE METHOD, HIGH PRESSURE METHOD AND ARTICLE
JP2013510915A (en) * 2009-11-11 2013-03-28 ボレアリス エージー Polymer composition and power cable comprising the same
JP2014502005A (en) * 2010-11-03 2014-01-23 ボレアリス エージー Polymer composition and power cable comprising the same
US9365708B2 (en) 2009-11-11 2016-06-14 Borealis Ag Cable and production process thereof
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170178763A1 (en) * 2009-11-11 2017-06-22 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US11756700B2 (en) 2009-11-11 2023-09-12 Borealis Ag Polymer composition and a power cable comprising the polymer composition
JP2013510914A (en) * 2009-11-11 2013-03-28 ボレアリス エージー POLYMER COMPOSITION CONTAINING POLYOLEFIN PRODUCED IN HIGH PRESSURE METHOD, HIGH PRESSURE METHOD AND ARTICLE
EP2499175B1 (en) 2009-11-11 2015-03-11 Borealis AG A polymer composition and a power cable comprising the polymer composition
EP2865690A1 (en) 2009-11-11 2015-04-29 Borealis AG A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
JP2015227456A (en) * 2009-11-11 2015-12-17 ボレアリス エージー Polymer composition comprising polyolefin produced in high pressure process, high pressure process and article
JP2016020505A (en) * 2009-11-11 2016-02-04 ボレアリス エージー Polymer composition and power cable comprising the polymer composition
US9365708B2 (en) 2009-11-11 2016-06-14 Borealis Ag Cable and production process thereof
KR20180034704A (en) * 2009-11-11 2018-04-04 보레알리스 아게 A polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
EP2499197B1 (en) 2009-11-11 2017-03-01 Borealis AG A cable and production process thereof
US9587043B2 (en) 2009-11-11 2017-03-07 Borealis Ag Polymer composition and a power cable comprising the polymer composition
EP2499175B2 (en) 2009-11-11 2022-08-17 Borealis AG A polymer composition and a power cable comprising the polymer composition
EP2499176B2 (en) 2009-11-11 2022-08-10 Borealis AG Power cable comprising a polymer composition comprising a polyolefin produced in a high pressure process
JP2013510915A (en) * 2009-11-11 2013-03-28 ボレアリス エージー Polymer composition and power cable comprising the same
US11390699B2 (en) 2009-11-11 2022-07-19 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
US10246527B2 (en) 2009-11-11 2019-04-02 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
EP3190152B1 (en) 2009-11-11 2019-10-09 Borealis AG A cable and production process thereof
US10453585B2 (en) 2009-11-11 2019-10-22 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10875939B2 (en) 2009-11-11 2020-12-29 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US10586634B2 (en) 2010-11-03 2020-03-10 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10032543B2 (en) 2010-11-03 2018-07-24 Borealis Ag Polymer composition and a power cable comprising the polymer composition
EP2450910B1 (en) 2010-11-03 2019-09-25 Borealis AG A polymer composition and a power cable comprising the polymer composition
US10950366B2 (en) 2010-11-03 2021-03-16 Borealis Ag Polymer composition and a power cable comprising the polymer composition
JP2014502005A (en) * 2010-11-03 2014-01-23 ボレアリス エージー Polymer composition and power cable comprising the same
US9595374B2 (en) 2010-11-03 2017-03-14 Borealis Ag Polymer composition and a power cable comprising the polymer composition
JP2016186941A (en) * 2010-11-03 2016-10-27 ボレアリス エージー Polymer composition and power cable including the same

Similar Documents

Publication Publication Date Title
EP1894715B1 (en) Biaxially oriented, electrically insulating film
Cotter et al. Laser desorption time-of-flight mass spectrometry of low-molecular-weight polymers
JPH06251624A (en) Insulation composition and power cable
CN103694709A (en) Creepage-resistant tracking agent for addition-type liquid silicon rubber and preparation method and application thereof
Vasile et al. The chemistry of radiofrequency discharges: Acetylene and mixtures of acetylene with helium, argon and xenon
JPH06251625A (en) Insulation composition and power cable
KR100375357B1 (en) Dielectric composition having an improved gas absorption
KR100295105B1 (en) Polyethylene composition used for insulators and connections of ultra high voltage lines and super high voltage lines and connections using this polyethylene composition
Bambagiotti A et al. Structural identification of fatty acid methyl esters by collision spectra of their [M H]− species
Pabst et al. A high pressure mass spectrometric study of ion-molecule reactions in the fluoromethanes
Bamji et al. Properties of water treed and non-treed XLPE cable insulation
JPH0562529A (en) Power cable
CA1272833A (en) Process for the preparation of conductive polymers or prepolymers from a polymer containing ethylenic unsaturations and from a silane compound, and conductive polymers or prepolymers
Nunes et al. Tracking degradation and pyrolysis of EPDM insulators
JP3349747B2 (en) Insulation composition and power cable
EP0029945B1 (en) Process for the manufacture of electrically conductive polyenes and their use in electrical engineering and in rendering plastics antistatic
JP3349748B2 (en) Insulation composition and power cable
EP0340330B1 (en) Process for producing an electrical insulating oil composition
DE2953028C1 (en) 1,1,2,2-tetramethyl-1,2-disilacyclobutane and process for its preparation
JPH06248119A (en) Insulating composition and power cable
Campbell et al. Preparation and 13C NMR spectroscopy of uniform oligopropylene glycols
JPH06251628A (en) Insulation composition and power cable
Mochida et al. Effect of ammonia addition to the mobile phase on atmospheric pressure chemical ionization mass spectrometry of methyl hydroperoxyoleates
AT397509B (en) ADDITIVE FOR MINERAL OILS AND MINERAL OIL PRODUCTS, SPECIFICALLY ELECTRIC ISOLATING OILS
JP3349746B2 (en) Insulation composition and power cable