JPH0625110B2 - Heat resistant charge transfer complex - Google Patents

Heat resistant charge transfer complex

Info

Publication number
JPH0625110B2
JPH0625110B2 JP10418488A JP10418488A JPH0625110B2 JP H0625110 B2 JPH0625110 B2 JP H0625110B2 JP 10418488 A JP10418488 A JP 10418488A JP 10418488 A JP10418488 A JP 10418488A JP H0625110 B2 JPH0625110 B2 JP H0625110B2
Authority
JP
Japan
Prior art keywords
charge transfer
complex
transfer complex
capacitor
alkylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10418488A
Other languages
Japanese (ja)
Other versions
JPH01275560A (en
Inventor
修光 進藤
強 青山
誠 海老沢
功 伊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP10418488A priority Critical patent/JPH0625110B2/en
Publication of JPH01275560A publication Critical patent/JPH01275560A/en
Publication of JPH0625110B2 publication Critical patent/JPH0625110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電性及び耐熱性の優れた電荷移動錯体に関
する。また本発明は上記電荷移動錯体を使用した固体電
解コンデンサに関するものである。
TECHNICAL FIELD The present invention relates to a charge transfer complex having excellent conductivity and heat resistance. The present invention also relates to a solid electrolytic capacitor using the above charge transfer complex.

(従来の技術) 近年、ディジタル機器の発展に伴なって高周波数領域に
おいてインピーダンスが低くかつ高周波数特性の優れた
大容量のコンデンサの要求が高まっている。
(Prior Art) In recent years, with the development of digital equipment, there is an increasing demand for a large-capacity capacitor having a low impedance in a high frequency region and an excellent high frequency characteristic.

従来、高周波数特性の優れたコンデンサとしては、フィ
ルム、マイカ、セラミックコンデンサが用いられている
が、大容量化にすると形状が大きくなり価格も高くな
る。
Conventionally, films, mica, and ceramic capacitors have been used as capacitors having excellent high frequency characteristics, but when the capacity is increased, the shape becomes larger and the cost becomes higher.

また大容量のコンデンサとしての電解コンデンサには電
解液式と二酸化マンガンを用いる固体電解質式がある。
前者は経時的コンデンサ特性が悪く、電解質がイオン伝
導性であるために高周波数特性も悪い。後者は硝酸マン
ガンの熱分解時に酸化皮膜が損傷しやすいなどの理由に
より高周波数領域でのインピーダンスあるいは損失が高
い。
Further, electrolytic capacitors as large-capacity capacitors include electrolytic solution type and solid electrolyte type using manganese dioxide.
The former has poor capacitor characteristics over time, and also has high frequency characteristics because the electrolyte is ionic conductive. The latter has a high impedance or loss in the high frequency region because the oxide film is easily damaged during the thermal decomposition of manganese nitrate.

上記の従来のコンデンサの欠点を解決する目的で、7,7,
8,8−テトラシアノキノジメタン(以下TCNQと略
す)をアクセプターとし、各種ドナーとの組み合わせか
らなる電荷移動錯体を固体電解質とする電解コンデンサ
が提案されている。提案されたTCNQ電荷移動錯体の
ドナーはN−n−ヘキシルキノリン、N−エチルイソキ
ノリン、またはN−n−ブチルイソキノリン(特開昭5
8−19144)、N−n−アミルイソキノリン、また
はN−イソアミルイソキノリン(特開昭62−1165
52)などがある。
In order to solve the above drawbacks of conventional capacitors, 7,7,
An electrolytic capacitor has been proposed which uses 8,8-tetracyanoquinodimethane (hereinafter abbreviated as TCNQ) as an acceptor and a charge transfer complex composed of a combination with various donors as a solid electrolyte. The donor of the proposed TCNQ charge transfer complex is Nn-hexylquinoline, N-ethylisoquinoline, or Nn-butylisoquinoline (Japanese Patent Laid-Open Publication No. 5 (1999) -58242).
8--19144), N-n-amylisoquinoline, or N-isoamylisoquinoline (JP-A-62-1165).
52) and so on.

他方、電子機器の小型化、形薄化、さらには省資源化な
どから電子部品のチップ化が必然的となってきている。
このチップ部品は回路パターンであるランドとチップ部
品の端子とをリフローソルダ法またはディップソルダ法
等によりはんだ付けされる。このためTCNQ電荷移動
錯体も230℃以上の耐熱性が要求されている。
On the other hand, miniaturization and thinning of electronic devices, and further resource saving have made it necessary to make electronic components into chips.
In this chip component, a land which is a circuit pattern and a terminal of the chip component are soldered by a reflow soldering method or a dip soldering method. Therefore, the TCNQ charge transfer complex is also required to have heat resistance of 230 ° C. or higher.

(発明が解決しようとする問題点) しかし、現在まで提案されているTCNQ電荷移動錯体
は230℃よりも低い温度で熱溶融し、この状態である
時間以上放置すると酸化分解を起こす。このため、特に
はんだ付けの時にコンデンサ特性の損失が大きくなり、
導電性も低下し、高周波数特性が悪くなる。
(Problems to be Solved by the Invention) However, the TCNQ charge transfer complex proposed up to now is thermally melted at a temperature lower than 230 ° C., and if left in this state for a period of time or longer, oxidative decomposition occurs. Therefore, the loss of the capacitor characteristics becomes large especially when soldering,
The conductivity is also lowered and the high frequency characteristics are deteriorated.

本発明の目的は上記問題点を解決するもので、第一に耐
熱性及び導電性の優れた電荷移動錯体を提供することに
あり、第二に該電荷移動錯体をコンデンサの電解質にす
ることにより、はんだ付けにも耐え得る特性の優れた電
解コンデンサを提供することにある。
An object of the present invention is to solve the above problems, and firstly to provide a charge transfer complex having excellent heat resistance and conductivity, and secondly to use the charge transfer complex as an electrolyte of a capacitor. Another object of the present invention is to provide an electrolytic capacitor having excellent characteristics that can withstand soldering.

(問題点を解決するための手段) 本発明者等は上記目的のために鋭意研究した結果、下記
一般式Iで表わされる 2個の3,5−ルチジンのアルキレン架橋体(但し、Rは
炭素数1〜12のアルキレンを表わす)をドナーとし、
7,7,8,8−テトラシアノキノジメタンをアクセプターと
する耐熱性電荷移動錯体が上記問題を解決し、またこれ
らの錯体を電解質としたコンデンサが特に耐熱性の優れ
た固体電解コンデンサである事を見出し、本発明を完成
するに至った。
(Means for Solving the Problems) As a result of intensive studies conducted by the present inventors for the above purpose, they are represented by the following general formula I. Two 3,5-lutidine alkylene bridges (wherein R represents alkylene having 1 to 12 carbon atoms) are used as a donor,
A heat-resistant charge-transfer complex using 7,7,8,8-tetracyanoquinodimethane as an acceptor solves the above problems, and a capacitor using these complexes as an electrolyte is a solid electrolytic capacitor with excellent heat resistance. After finding out the above, the present invention has been completed.

次に本発明の錯体の合成法について説明する。3,5−ル
チジンとアルキレンジアイオダイドをアルコール性溶媒
あるいはアセトニトリル溶媒中にて反応させ、N位同士
をアルキレンで架橋したドナーが得られ、前記ドナーと
TCNQとをアセトニトリル中にて反応させると、本発
明の耐熱性電荷移動錯体が得られる。
Next, a method for synthesizing the complex of the present invention will be described. When 3,5-lutidine and alkylene diiodide are reacted in an alcoholic solvent or an acetonitrile solvent to obtain a donor in which N-positions are crosslinked with alkylene, and the donor and TCNQ are reacted in acetonitrile, The heat resistant charge transfer complex of the present invention is obtained.

対応するアルキレンは炭素原子1〜12個の直鎖状もし
くは分枝鎖状アルキレンであるが、好ましくは炭素原子
5〜8個のアルキレンである。また一般に電荷移動錯体
はアクセプターとドナーのモル比が1または2のものが
知られているが、本発明の錯体のモル比は3ないし5、
好ましくは3.5ないし4.5とする。
The corresponding alkylene is straight-chain or branched alkylene having 1 to 12 carbon atoms, but is preferably alkylene having 5 to 8 carbon atoms. Further, it is generally known that the charge transfer complex has a molar ratio of acceptor to donor of 1 or 2, but the molar ratio of the complex of the present invention is 3 to 5,
It is preferably 3.5 to 4.5.

このようにして得られた該電荷移動錯体を熱溶融させ、
陽極体及び陰極体からなる素子の両極間に含浸させ、そ
の後冷却して錯体を付着させてコンデンサ素子とし、こ
れを組み込んで固体電解コンデンサとする。
Heat-melting the charge transfer complex thus obtained,
It is impregnated between both electrodes of an element composed of an anode body and a cathode body and then cooled to attach a complex to form a capacitor element, which is incorporated into a solid electrolytic capacitor.

以下、実施例により本発明をさらに詳しく説明する。Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1 1,5−ジヨウド−n−ペンタン3.24g、3,5−ルチジン
2.14gおよびアセトニトリル5mlを還流冷却器および
攪拌器のついたフラスコに入れ還流下で1時間反応させ
た。反応終了後減圧下でアセトニトリルを蒸発留去し、
固形分残渣をエチルエーテル30mlで2回洗浄し、黄白
色結晶のN,N′−ペンタメチレン−ジ−3,5−ルチジニウ
ム−ジアイオダイド5.29gを得た。次いでアセトニト
リル120mlとTCNQ4.25gを還流冷却器および攪
拌器のついた四口フラスコに入れ加熱し、これにN,N′
−ペンタメチレン−ジ−3,5−ルチジニウム−ジアイオ
ダイド4.2gを溶解させたアセトニトリル溶液40mlを
滴下し、20分間還流反応させた。反応液を冷却後、析
出した結晶をろ別し、メチルアルコール50mlで2回洗
浄し、N,N′−ペンタメチレン−ジ−3,5−ルチジニウム
・TCNQ錯体5.33gを得た。
Example 1 3.24 g of 1,5-diiodo-n-pentane, 2.14 g of 3,5-lutidine and 5 ml of acetonitrile were placed in a flask equipped with a reflux condenser and a stirrer and reacted under reflux for 1 hour. After the reaction was completed, acetonitrile was distilled off under reduced pressure,
The solid residue was washed twice with 30 ml of ethyl ether to obtain N, N'-pentamethylene-di-3,5-lutidinium-diaiodide (5.29 g) as yellowish white crystals. Next, 120 ml of acetonitrile and 4.25 g of TCNQ were placed in a four-necked flask equipped with a reflux condenser and a stirrer and heated, and N, N '
40 ml of an acetonitrile solution in which 4.2 g of -pentamethylene-di-3,5-lutidinium-diaiodide was dissolved was added dropwise, and the mixture was refluxed for 20 minutes. After cooling the reaction solution, the precipitated crystals were separated by filtration and washed twice with 50 ml of methyl alcohol to obtain 5.33 g of N, N'-pentamethylene-di-3,5-rutidinium.TCNQ complex.

該錯体の元素分析の結果を次に示す。The results of elemental analysis of the complex are shown below.

元素分析値C674418 計算値:C%:73.08,H%:4.03,N%:22.89 実測値:C%:73.14,H%:4.01,N%:22.85 また熱分析装置を用いた示差熱分析の結果(第1図)、
該錯体の融点は247℃、発熱分解点は263℃であっ
た。また該錯体の赤外吸収スペクトルを第6図に示し
た。
Elemental analysis value C 67 H 44 N 18 Calculated value: C%: 73.08, H%: 4.03, N%: 22.89 Actual value: C%: 73.14, H%: 4.01, N%: 22.85 Further, a thermal analyzer was used. Results of differential thermal analysis (Fig. 1),
The melting point of the complex was 247 ° C, and the exothermic decomposition point was 263 ° C. The infrared absorption spectrum of this complex is shown in FIG.

実施例2〜4 1モルの3,5−ルチジンと1/2モルの2,4−ジヨウド−
n−ペンタン、1,6−ジヨウド−n−ヘキサン、1,8−ジ
ヨウド−n−オクタンとをそれぞれ実施例1に準じてア
セトニトリル中にて反応させ、それぞれ相当するジアイ
オダイドを得る。以下実施例1に準じてTCNQ電荷移
動錯体を合成し、熱分析装置を用いた示差熱分析の結果
から融点と発熱分解点を測定し第1表に示した。対応す
る錯体の示差熱分析データおよび赤外吸収スペクトル
を、N,N′−1,3−ジメチルトリメチレン−ジ−3,5−ル
チジニウム・TCNQ錯体は第2図及び第7図、N,N′
−ヘキサメチレン−ジ−3,5−ルチジニウム・TCNQ
錯体は第3図及び第8図、N,N′−オクタメチレン−ジ
−3,5−ルチジニウム・TCNQ錯体は第4図及第9図
にそれぞれ示した。
Examples 2-4 1 mol of 3,5-lutidine and 1/2 mol of 2,4-diiodine
n-Pentane, 1,6-diiodo-n-hexane and 1,8-diiodo-n-octane are each reacted in acetonitrile according to Example 1 to obtain the corresponding diiodide. The TCNQ charge transfer complex was synthesized in accordance with Example 1 below, and the melting point and exothermic decomposition point were measured from the results of differential thermal analysis using a thermal analyzer, and the results are shown in Table 1. The differential thermal analysis data and infrared absorption spectrum of the corresponding complex are shown in Fig. 2 and Fig. 7, N, N for N, N'-1,3-dimethyltrimethylene-di-3,5-rutidinium-TCNQ complex. ′
-Hexamethylene-di-3,5-lutidinium / TCNQ
The complex is shown in FIGS. 3 and 8, and the N, N'-octamethylene-di-3,5-rutidinium.TCNQ complex is shown in FIGS. 4 and 9, respectively.

比較例1 n−ブチルアイオダイド1.84gとキノリン1.29gと
を実施例1に準じてアセトニトリル中にて反応させ、以
下実施例1に準じてN−n−ブチルキノリニウムTCN
Q錯体を合成し、熱分析装置を用いた示差熱分析データ
(第5図)から融点と発熱分解点を測定し結果を第1表
に示した。またこの赤外吸収スペクトルを第10図に示
した。
Comparative Example 1 1.84 g of n-butyl iodide and 1.29 g of quinoline were reacted in acetonitrile according to Example 1 and then Nn-butylquinolinium TCN was obtained according to Example 1.
The Q complex was synthesized, and the melting point and exothermic decomposition point were measured from the differential thermal analysis data (FIG. 5) using a thermal analyzer, and the results are shown in Table 1. The infrared absorption spectrum is shown in FIG.

第1表から、2個の3,5−ルチジンのN位同士をアルキ
レンで架橋したものをドナーとする錯体は一様に融点が
230℃以上と高く、かつ、比較例に挙げたN−n−ブ
チルキノリニウム錯体あるいは従来知られている錯体よ
りも発熱分解点が高いので、熱安定性がきわめて優れて
いることがわかった。
From Table 1, it can be seen that the complexes having two 3,5-lutidines having N-positions cross-linked with alkylene as a donor have a uniformly high melting point of 230 ° C. or higher, and the N-n Since the exothermic decomposition point is higher than that of the -butylquinolinium complex or the conventionally known complex, it was found that the thermal stability is extremely excellent.

実施例5〜8 実施例1〜4において得られたそれぞれの錯体60mgを
直径6.3mmのアルミケースに充填し、加熱溶解させ巻
回型アルミ電解コンデンサユニットを浸漬させ、直ちに
冷却しコンデンサを得た。コンデンサユニットはアルミ
ニウム表面を化成処理して酸化皮膜を形成させたものを
用い、浸漬前に予め加熱しておいた。得られたコンデン
サの特性を第2表の耐熱試験前の欄に示した。次にこの
コンデンサを230℃の半田浴中にケースごと30秒間
入れ室温に放置後、再びコンデンサ特性を測定した。こ
の値を第2表の耐熱試験後の欄に示した。
Examples 5 to 8 60 mg of each of the complexes obtained in Examples 1 to 4 was filled in an aluminum case having a diameter of 6.3 mm, dissolved by heating to immerse a wound aluminum electrolytic capacitor unit, and immediately cooled to obtain a capacitor. It was As the capacitor unit, an aluminum surface was subjected to chemical conversion treatment to form an oxide film, and the capacitor unit was preheated before immersion. The characteristics of the obtained capacitor are shown in the column before the heat resistance test in Table 2. Next, this capacitor was put together with the case in a solder bath at 230 ° C. for 30 seconds and left at room temperature, and the capacitor characteristics were measured again. This value is shown in the column after the heat resistance test in Table 2.

比較例2 比較例1にて得られた錯体を実施例5〜8に従ってコン
デンサを作成し、耐熱性試験前後のコンデンサ特性を測
定した。得られた結果を第2表に示した。
Comparative Example 2 A capacitor was prepared from the complex obtained in Comparative Example 1 according to Examples 5 to 8 and the capacitor characteristics before and after the heat resistance test were measured. The results obtained are shown in Table 2.

第2表中のCapは20℃、120Hzにおける静電容量
(μF)、tanδは20℃、120Hzにおける誘電正
接(%)、ESRは20℃、100KHzにおける等価直
列抵抗(mΩ)である。△C/Cは20℃に対する85
℃の静電容量の変化率(%)である。
In Table 2, Cap is capacitance (μF) at 20 ° C. and 120 Hz, tan δ is dielectric loss tangent (%) at 20 ° C. and 120 Hz, and ESR is equivalent series resistance (mΩ) at 20 ° C. and 100 KHz. △ C / C is 85 for 20 ° C
This is the change rate (%) of the electrostatic capacity at ° C.

第2表から、実施例に示す錯体で作ったコンデンサをは
んだ浴に入れた後の特性は初期特性と比べ変化が少な
く、優れたコンデンサ特性を示すことが判明した。
From Table 2, it was found that the characteristics of the capacitors made of the complexes shown in the examples after being placed in the solder bath did not change much compared to the initial characteristics, and showed excellent capacitor characteristics.

(発明の効果) 本発明の2個の3,5−ルチジンのN位同士をアルキレン
で架橋したドナーとTCNQをアクセプターとする電荷
移動錯体は230℃以上の融点を持ち、熱安定性が著し
く改良された。また本発明の錯体を電解質とした固体電
解コンデンサは、はんだ付けにも耐え得る耐熱性を示す
ため、損失が少なく、導電率も低下せず、高周波特性の
優れたコンデンサである。
(Effect of the invention) The charge transfer complex of the present invention, which has TCNQ as an acceptor and a donor in which two N-positions of two 3,5-lutidines are bridged with alkylene, has a melting point of 230 ° C or higher, and the thermal stability is remarkably improved. Was done. In addition, the solid electrolytic capacitor using the complex of the present invention as an electrolyte exhibits heat resistance that can withstand soldering, and therefore has a small loss, a low conductivity, and a high frequency characteristic.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図及び第6図〜第9図は本発明の実施例1
〜4の錯体の示差熱分析データ及び赤外吸収スペクトル
であり、第5図及び第10図は比較例1により得られた
錯体の示差熱分析データ及び赤外吸収スペクトルであ
る。
1 to 4 and 6 to 9 show a first embodiment of the present invention.
4 is the differential thermal analysis data and infrared absorption spectrum of the complexes, and FIGS. 5 and 10 are the differential thermal analysis data and infrared absorption spectrum of the complex obtained in Comparative Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式I (但し、Rは炭素数1〜12のアルキレンを表わす)で
表わされる2個の3,5−ルチジンのアルキレン架橋体を
ドナーとし、7,7,8,8−テトラシアノキノジメタンをア
クセプターとする耐熱性電荷移動錯体。
1. A general formula I (However, R represents an alkylene having 1 to 12 carbon atoms), an alkylene crosslinked product of two 3,5-lutidines is used as a donor, and 7,7,8,8-tetracyanoquinodimethane is used as an acceptor. Heat resistant charge transfer complex.
【請求項2】請求項1記載の耐熱性電荷移動錯体を電解
質とする耐熱性固体電解コンデンサ。
2. A heat-resistant solid electrolytic capacitor using the heat-resistant charge transfer complex according to claim 1 as an electrolyte.
JP10418488A 1988-04-28 1988-04-28 Heat resistant charge transfer complex Expired - Lifetime JPH0625110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10418488A JPH0625110B2 (en) 1988-04-28 1988-04-28 Heat resistant charge transfer complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10418488A JPH0625110B2 (en) 1988-04-28 1988-04-28 Heat resistant charge transfer complex

Publications (2)

Publication Number Publication Date
JPH01275560A JPH01275560A (en) 1989-11-06
JPH0625110B2 true JPH0625110B2 (en) 1994-04-06

Family

ID=14373911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10418488A Expired - Lifetime JPH0625110B2 (en) 1988-04-28 1988-04-28 Heat resistant charge transfer complex

Country Status (1)

Country Link
JP (1) JPH0625110B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367147B1 (en) * 1988-10-31 1995-01-04 The Japan Carlit Co., Ltd. Charge transfer complex and solid electrolytic capacitor employing the same
JPH0750663B2 (en) * 1990-06-29 1995-05-31 三洋電機株式会社 Method for manufacturing organic semiconductor solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH01275560A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
JPH0625110B2 (en) Heat resistant charge transfer complex
JP2673436B2 (en) Heat-resistant charge transfer complex and heat-resistant solid electrolytic capacitor
JP2649240B2 (en) Heat-resistant charge transfer complex and heat-resistant solid electrolytic capacitor
JP2649238B2 (en) Heat-resistant charge transfer complex and heat-resistant solid electrolytic capacitor
JP2640663B2 (en) Thermostable charge transfer complex
JP2649239B2 (en) Heat-resistant charge transfer complex and heat-resistant solid electrolytic capacitor
JP2586917B2 (en) Heat resistant solid electrolytic capacitors
EP0367147B1 (en) Charge transfer complex and solid electrolytic capacitor employing the same
JPH01165575A (en) Heat-resistant charge transfer complex
EP0224207B1 (en) Charge transfer complex
JPH0770247B2 (en) Heat resistant charge transfer complex
JPH05217808A (en) Solid electrolytic capacitor and its manufacture
JPH02121323A (en) Chip type solid electrolytic capacitor
JPH02241014A (en) Solid electrolytic capacitor
JPS63215034A (en) Solid electrolytic capacitor
JPH02294009A (en) Solid electrolytic capacitor
JPS63299306A (en) Solid electrolytic capacitor
JPH02239609A (en) Solid electrolytic capacitor
JPS63132417A (en) Solid electrolytic capacitor
JPS63198313A (en) Solid electrolytic capacitor
JPH01255209A (en) Solid electrolytic capacitor
JPH03237707A (en) Solid electrolytic capacitor
JPH02294010A (en) Solid electrolytic capacitor
JPH02260409A (en) Solid electrolytic capacitor
JPH01255208A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 15