JPH06250080A - Inverted telescope type photographic lens - Google Patents

Inverted telescope type photographic lens

Info

Publication number
JPH06250080A
JPH06250080A JP5037216A JP3721693A JPH06250080A JP H06250080 A JPH06250080 A JP H06250080A JP 5037216 A JP5037216 A JP 5037216A JP 3721693 A JP3721693 A JP 3721693A JP H06250080 A JPH06250080 A JP H06250080A
Authority
JP
Japan
Prior art keywords
lens
negative
object side
lens group
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5037216A
Other languages
Japanese (ja)
Inventor
Toshiro Ishiyama
敏朗 石山
Yoshiyuki Shimizu
義之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5037216A priority Critical patent/JPH06250080A/en
Priority to US08/200,459 priority patent/US5477388A/en
Publication of JPH06250080A publication Critical patent/JPH06250080A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable

Abstract

PURPOSE:To simply compose a lens and to make the lens high performance inspite of the small size of the lens and the small aperture of an attachment such as a filter mounted on the object side. CONSTITUTION:The concave surface in contact with air on the image side(diaphragm side) of a negative lens located closest to the object side is made aspherical surface whose curvature monotonously decreases with the increase of a distance from an optical axis among negative lenses included in a lens group G1 on the object side and having a negative power. Concretely, the reference curved surface of a vertex is fallen within the range of a conical constant kapparepresented by-1<kappa<0.8, by designating the focal length of a whole system as (f), the focal length of a negative lens having an aspherical surface as-f1, the effective diameter on the tangent plane at the vertex of the surface closet to the object side as phi and an half viewing angle as theta, the condition: 0.7f<f1<2 fphi<3.3.f.tan<2>theta is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全系の焦点距離よりも
大きなバックフォーカスを有する逆望遠型の超広角レン
ズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverse telephoto type super wide-angle lens having a back focus larger than the focal length of the entire system.

【0002】[0002]

【従来の技術】逆望遠型の広角レンズにおいて、物体側
(前方)の負レンズは焦点距離よりも大きなバックフォ
ーカスを得るために必要であるが、同時に像側(後方)
の正レンズ群に対する画角を減少させて像面の湾曲の補
正やペッツバール和を負の方向に向かわせる作用があ
る。但し、バックフォーカスの焦点距離に対する割合が
あまり大きくないレンズ系においては これら負レンズ
の作用はレンズ系全体の収差補正により結像性能を向上
させる要素となりうる。
2. Description of the Related Art In a reverse telephoto wide-angle lens, a negative lens on the object side (front) is necessary to obtain a back focus larger than the focal length, but at the same time, on the image side (rear).
Has the effect of reducing the angle of view with respect to the positive lens group and correcting the curvature of the image surface and directing the Petzval sum in the negative direction. However, in a lens system in which the ratio of the back focus to the focal length is not so large, the action of these negative lenses can be a factor for improving the imaging performance by correcting the aberration of the entire lens system.

【0003】しかし、相対的に長いバックフォ−カスを
必要とする画角が80°や100°のレンズ、あるいは
それ以上のバックフォーカスが必要なレンズ系に於いて
は、負の歪曲収差の発生、ペッツバール和が負となりす
ぎること、またコマ収差の乱れ等悪影響が顕著に現れる
ことはよく知られている。負メニスカスレンズから発生
する負の歪曲を最小限にとどめる為にも、また像面を良
好に保ちかつ瞳の球面収差を小さく抑える観点からも、
主光線がこれら負レンズを最小偏角付近で通過するよう
に、物体側に凸面を向けたメニスカス形状とすることが
望ましい。しかしこの時負レンズの凹面が原因で負のコ
マ収差が発生する。特に主光線の外側の光に対して大き
な負のコマ収差が発生し、その補正はレンズ設計上大き
な負担となる。
However, in a lens having an angle of view of 80 ° or 100 ° which requires a relatively long back focus, or a lens system which requires a back focus of more than that, negative distortion is generated. It is well known that the Petzval sum becomes too negative and that adverse effects such as disturbance of coma aberration are prominent. In order to minimize the negative distortion generated from the negative meniscus lens, and also from the viewpoint of keeping the image surface good and suppressing the spherical aberration of the pupil,
It is desirable to have a meniscus shape with a convex surface facing the object side so that the chief ray passes through these negative lenses in the vicinity of the minimum deviation angle. However, at this time, negative comatic aberration occurs due to the concave surface of the negative lens. In particular, a large negative coma aberration occurs with respect to the light outside the principal ray, and the correction thereof is a heavy burden on the lens design.

【0004】これらの多くはレンズ系 特に前方のレン
ズ系を大きくすることで歪曲以外の収差的な困難は軽減
されうる。これはレンズを比例拡大することで、その部
分のペッツバール和の絶対値を小さくすると共に、相対
的に主光線のより近傍の光のみを使ってコマ収差の発生
を小さくするものである。しかし、この方法は原理的に
は歪曲収差を補正することは出来ない。なぜなら歪曲は
割合で示される量であり、画角が同じならばレンズ系を
比例的に拡大しても主光線の相対的な光路が変わらない
ければ歪曲の量は変わらないからである。コマ収差や像
面の正方向の湾曲の補正には有効であっても歪曲の補正
には効果はない。これは広角コンヴァ−ジョン系を想像
すれば理解は容易である。コンバージョン系を拡大して
も倍率も歪曲も変化しないが球面収差やコマ収差は良好
となるからである。
In many of these cases, aberrational problems other than distortion can be reduced by enlarging the lens system, especially the front lens system. This is to enlarge the lens proportionally to reduce the absolute value of the Petzval sum in that portion and to reduce the occurrence of coma aberration by using only the light nearer to the principal ray. However, this method cannot correct distortion in principle. This is because the distortion is an amount indicated by a ratio, and if the angle of view is the same, the amount of distortion does not change if the relative optical path of the principal ray does not change even if the lens system is expanded proportionally. Even if it is effective for correction of coma aberration and positive curvature of the image plane, it is not effective for correction of distortion. This is easy to understand if one imagines a wide-angle conversion system. This is because the magnification and the distortion do not change even if the conversion system is enlarged, but the spherical aberration and the coma are improved.

【0005】つぎに、最も物体側のレンズの形状とアタ
ッチメントサイズについて述べる。レンズ系の物体側に
装着されるフィルターなどのアッタチメントの大きさ
(口径サイズ)は、レンズ各面の有効径とは別に、実用
的なレンズの大きさを決めるものであるから設計上重要
な量である。先に述べた様に負レンズのベンディングは
主光線が最小偏角で通過するように行われることが望ま
しいから、画角の増大と共にベンディングの程度も大き
くなる。つまり先頭の面は物体に対して凸となり、面の
「深さ」が大きくなる。大きな歪曲の発生を防ぐ意味で
負レンズのパワーを小さくすればこの傾向は一層助長さ
れる。アッタチメントサイズは先頭のレンズ面の頂点の
接平面の有効径より小さくはないから、面の「深さ」が
大きくなればレンズの有効径とアッタチメントサイズと
の大きさの差は大きくなる。とくに先頭レンズが負レン
ズの場合には、強いベンディングのために有効径に対し
て曲率半径が小さくなるので、レンズの有効径に比して
アタッチメントサイズがかなり大きくなる欠点も発生す
る。この傾向は画角の増大と共に急速に増大し、ある程
度は原理的な欠点である。
Next, the shape and attachment size of the lens closest to the object will be described. The size of the attachment (aperture size) such as a filter attached to the object side of the lens system determines the practical size of the lens in addition to the effective diameter of each surface of the lens. Is. As described above, it is desirable that the bending of the negative lens is performed so that the chief ray passes with the minimum deviation angle, so that the degree of bending increases as the angle of view increases. In other words, the top surface becomes convex with respect to the object, and the "depth" of the surface increases. This tendency is further promoted by reducing the power of the negative lens in order to prevent the occurrence of large distortion. Since the attachment size is not smaller than the effective diameter of the tangent plane of the apex of the leading lens surface, the larger the "depth" of the surface, the larger the difference between the effective diameter of the lens and the attachment size. In particular, when the leading lens is a negative lens, the radius of curvature becomes smaller than the effective diameter due to strong bending, so that the attachment size becomes considerably larger than the effective diameter of the lens. This tendency increases rapidly with an increase in the angle of view, and is a theoretical drawback to some extent.

【0006】[0006]

【発明が解決しようとする課題】この欠点を避けるため
には先頭の負レンズのパワ−を大きくして、先頭の面の
曲率半径を大きくすればよいが、その結果は先に述べた
ようなコマの乱れ等の不都合が発生する。また負レンズ
近くに正レンズを置き歪曲を補正する例も多いが、その
ためにレンズ系の容積は更に増大する傾向をもつ。また
歪曲の補正を目的として、前方の負メニスカスレンズの
凸面を非球面とした系も知られている。これは有効な手
段であるが球面のみで構成された系の補助的な意味しか
もっていないのが実状であり、レンズの有効径に比して
アッタチメントサイズがかなり大きくなる欠点もそのま
ま残る。しかし、この様な手段を採っても、画角が10
0°あるいはそれ以上のレンズ系の設計は容易ではなく
構成は複雑となる上、レンズ系の容積は光軸方向にもま
た口径方向にも大きくなりがちであった。
To avoid this drawback, the power of the leading negative lens may be increased to increase the radius of curvature of the leading surface. The result is as described above. Inconvenience such as frame distortion occurs. In addition, there are many cases in which a positive lens is placed near the negative lens to correct distortion, but this tends to further increase the volume of the lens system. A system in which the convex surface of the front negative meniscus lens is an aspherical surface is also known for the purpose of correcting distortion. This is an effective means, but the fact is that it has only an auxiliary meaning of a system composed only of spherical surfaces, and the drawback that the attachment size is considerably larger than the effective diameter of the lens remains. However, even if such a method is adopted, the angle of view is 10
Designing a lens system at 0 ° or more is not easy and the configuration is complicated, and the volume of the lens system tends to be large both in the optical axis direction and in the aperture direction.

【0007】本発明の目的は、これらの諸問題を解決
し、物体側に装着されるフィルターなどのアタッチメン
トの口径が小さく、小型で高性能の超広角大口径比写真
レンズを提供することにある。
An object of the present invention is to solve these problems and to provide a compact and high performance super wide-angle large-aperture-ratio photographic lens in which an attachment such as a filter mounted on the object side has a small aperture. .

【0008】[0008]

【課題を解決するための手段】上に述べた様な現象は球
面の曲率が一定であることに原因する。従って負レンズ
の凹面をその曲率を光軸から離れるに従って単調に減少
する曲面とすれば、このような歪曲やコマの発生は軽減
されることとなる。本発明においては、焦点距離よりも
大きなバックフォーカスを得るために前方に配置された
負のパワ−をもつレンズ群に含まれる負レンズのうち、
最も物体側の負レンズの像側(絞側)の空気に接する凹
面を、光軸からの距離の増加とともに曲率が単調に減少
する非球面とすることでこれらの問題を解決するもので
ある。
The phenomenon as described above is caused by the fact that the curvature of the spherical surface is constant. Therefore, if the concave surface of the negative lens is a curved surface whose curvature monotonously decreases as it moves away from the optical axis, the occurrence of such distortion and coma will be reduced. In the present invention, among the negative lenses included in the lens group having the negative power arranged in front to obtain a back focus larger than the focal length,
These problems are solved by making the concave surface in contact with the air on the image side (diaphragm side) of the negative lens closest to the object side an aspherical surface whose curvature monotonously decreases as the distance from the optical axis increases.

【0009】具体的には、絞りより物体側に配置された
負屈折力の第1レンズ群G1 と、該第1レンズ群G1
前記絞りとの間に配置された正屈折力の第2レンズ群G
2 と、前記絞りの像側に配置された正屈折力の第3レン
ズ群G3 とを有し、全系の焦点距離よりも大きなバック
フォ−カスをもつ逆望遠型広角レンズにおいて、前記第
1レンズ群G1 は物体側に凸面を向けた負レンズを有
し、該負レンズの像側の空気に接する凹面は光軸に対し
て回転対称な非球面であり xを曲面の頂点からの光軸
方向の距離、yを光軸からの距離、Cは曲線の頂点での
曲率とし、C 4 、C6 ・・・を定数とするとき、前記負
レンズの凹面のメリジオナル断面での非球面形状が、 x=Cy2/{1+(1−κC221/2}+C44+C
66+・・・且つ、 −1 < κ < 0.8 で表される範囲にあり、光軸から離れるに従って曲率が
単調に減少する形状としたものである。
Specifically, it is arranged on the object side of the diaphragm.
First lens unit G having negative refractive power1And the first lens group G1When
The second lens group G having a positive refractive power and arranged between the diaphragm and the diaphragm.
2And a third lens of positive refracting power arranged on the image side of the diaphragm.
Group G3And has a back distance larger than the focal length of the entire system.
In the reverse telephoto wide-angle lens having a focus,
1 lens group G1Has a negative lens with a convex surface facing the object side.
However, the concave surface of the negative lens in contact with the air on the image side is
Is a rotationally symmetric aspherical surface, and x is the optical axis from the vertex of the curved surface.
Direction distance, y is the distance from the optical axis, C is the apex of the curve
Curvature, C Four, C6... is a constant, the negative
The aspherical shape in the meridional section of the concave surface of the lens is x = Cy2/ {1+ (1-κC2y2)1/2} + CFouryFour+ C
6y6+ ... And in the range represented by -1 <κ <0.8, the curvature becomes farther away from the optical axis.
The shape is monotonically decreasing.

【0010】[0010]

【作用】上記の如き本発明の構成のうち、まず負屈折力
の第1レンズ群G1 中の最も物体側の負レンズの像側凹
面の曲面形状について述べる。レンズは光軸に対して回
転対称であるから、メリジオナル断面の曲線に就いて述
べれば良い。一般に二次曲線は二つの焦点をもち、これ
らが一致したものが円である。二つの焦点が、曲線の同
じ側に在るものが楕円であり、一方が無限遠に在るもの
が放物線であり、互いに曲線の反対側に在るものが双曲
線である。
In the construction of the present invention as described above, the curved surface shape of the concave surface on the image side of the negative lens closest to the object in the first lens group G 1 having negative refractive power will be described first. Since the lens is rotationally symmetric with respect to the optical axis, the curve of the meridional section may be described. In general, a quadratic curve has two focal points, and the coincidence of these is a circle. The two focal points are ellipses on the same side of the curve, one is a parabola at infinity, and one is a hyperbola on the opposite side of the curve.

【0011】これらの中、光軸からの距離に応じて曲率
が単調に減少するものは円を除いた三つであるが、楕円
の場合には長軸が光軸と一致していなければならない。
また双曲線は、直線の漸近線をもち光軸から充分離れた
所では曲率の変化が少ない。極端に言えば凹の円錐型で
あるから異なった傾きをもった主光線に対する偏角がお
よそ同じになってしまうため、収差補正上は好ましい現
象ではない。このため、大きな画角を持つ広角レンズの
絞りから遠く離れた面すなわち最も物体側の面に導入す
る非球面として、双曲面はあまり適してはいない。但し
漸近線に余り近くない領域ならばこの限りではない。
Of these, the ones whose curvature decreases monotonously with the distance from the optical axis are three except for the circle, but in the case of an ellipse, the major axis must coincide with the optical axis. .
Further, the hyperbola has a straight line asymptote and has little change in curvature at a place sufficiently distant from the optical axis. Speaking extremely, since it is a concave conical shape, the deviation angles with respect to principal rays having different inclinations are approximately the same, which is not a preferable phenomenon for aberration correction. For this reason, the hyperboloid is not suitable as an aspherical surface to be introduced into the surface far from the diaphragm of the wide-angle lens having a large angle of view, that is, the surface closest to the object side. However, this does not apply if the region is not very close to the asymptote.

【0012】従って、広角レンズの最も物体側の負レン
ズの像側(絞側)凹面に適した曲面は、長軸が光軸と一
致した楕円や放物線であり、更には双曲線の軸に比較的
近い限られた領域となる。非球面の形状を表現する式と
して光学設計において一般に採用されているのは、メリ
ジオナル面内で、 x=Cy2/{1+(1−κC221/2}+C44+C
66+・・・との表現式である。
Therefore, a curved surface suitable for the image-side (diaphragm-side) concave surface of the negative lens closest to the object side of the wide-angle lens is an ellipse or a parabola whose major axis coincides with the optical axis, and is relatively curved along the hyperbolic axis. It will be a near limited area. In the meridional plane, x = Cy 2 / {1+ (1-κC 2 y 2 ) 1/2 } + C 4 y 4 + C is generally adopted in optical design as an expression expressing the shape of an aspherical surface.
The expression is 6 y 6 +.

【0013】ここで、xは光軸方向の距離、yは光軸か
らの距離、Cは曲線の頂点での曲率、また右辺第一項は
二次曲線を表すものでκはその形状を決める量である。
κが負ならば双曲線、零ならば放物線、零と1とのあい
だならば楕円、κ=1では円である。また右辺に自乗の
項が追加されていることもあるが、これは第一項と重複
しているから省略しても完全に曲線を表すことができる
から上の式とする。
Here, x is the distance in the optical axis direction, y is the distance from the optical axis, C is the curvature at the apex of the curve, the first term on the right side represents a quadratic curve, and κ determines its shape. Is the amount.
It is a hyperbola if κ is negative, a parabola if zero, an ellipse between zero and 1, and a circle if κ = 1. In some cases, a squared term is added to the right side, but since it overlaps with the first term and a curve can be completely represented even if omitted, the above equation is used.

【0014】このような非球面の表現式において、κ
は、 −∞ < κ < 1 の領域の可能性をもつ。しかし、κが1に近いと円に近
くなり、歪曲収差補正のための非球面としての効果が少
ない。又、−∞近傍では円錐に近い形状となってしまう
からレンズとしては不適当である。したがって本発明
は、κが −1 < κ < 0.8 (1) の範囲であることが歪曲収差の補正を行いつつレンズの
口径を小型にするために有効であることを見出したもの
である。
In such an aspherical expression, κ
Has the possibility of the region −∞ <κ <1. However, when κ is close to 1, it becomes close to a circle, and the effect as an aspherical surface for correcting distortion is small. In addition, since it becomes a shape close to a cone in the vicinity of −∞, it is not suitable as a lens. Therefore, the present invention has found that κ in the range of −1 <κ <0.8 (1) is effective for reducing the aperture of the lens while correcting distortion. .

【0015】この範囲の下限を外れると、レンズの有効
径内で双曲線の直線部分と見なせる部分が多くなるた
め、レンズ面は円錐に近い形状となりレンズとしては中
心部と周辺部との曲率の差が大き過ぎ、かつ中間部と周
辺部との差も少なくその結果像面の湾曲や歪曲収差の曲
がりが大きくなり、その補正は困難となる。また、上限
を超えて1に近い場合には、上述のごとくレンズ面が円
に近くなり収差補正上の効果が薄い。そして、この非球
面形状においては、負レンズを物体側に凸面を向けたメ
ニスカス形状とするのが実用的である。
When the value goes below the lower limit of this range, there are many portions that can be regarded as the hyperbolic straight line portion within the effective diameter of the lens, so that the lens surface has a shape close to a cone, and as a lens, the difference in curvature between the central portion and the peripheral portion. Is too large, and the difference between the middle part and the peripheral part is small, and as a result, the curvature of the image plane and the bending of the distortion aberration become large, and the correction thereof becomes difficult. If the upper limit is exceeded and the value is close to 1, the lens surface is close to a circle as described above, and the effect on aberration correction is small. In this aspherical shape, it is practical that the negative lens has a meniscus shape with its convex surface facing the object side.

【0016】尚、第二項以降の項がはいると、曲面の形
状は変化し二次曲面では無くなるが、上のκの値から決
まる二つの曲線の間に含まれ、曲率が光軸からの距離に
対して単調に増加する条件の下で高次の項を加え、必要
に応じて曲線を修正しても良い。またこの非球面を持つ
レンズの物体側の面に高次の項を加えてもよいことは無
論である。
When the terms after the second term are present, the shape of the curved surface changes and disappears as a quadric surface, but it is included between the two curves determined by the value of κ above, and the curvature is from the optical axis. It is also possible to add a higher-order term under the condition of monotonically increasing with respect to the distance and to modify the curve as necessary. Of course, higher order terms may be added to the object side surface of the lens having this aspherical surface.

【0017】画角が75°を越えるような従来の逆望遠
広角レンズ系においては、負屈折力の第1レンズ群G1
での負の歪曲収差を補正するため、このレンズ近くに主
として歪曲収差の補正を目的とした正レンズの存在を必
要とするものが殆どであった。つまり、第1レンズ群G
1 中に正負のレンズを組合せて配置することよって歪曲
収差が補正され、しかも負のパワ−を持つレンズ群を構
成している。しかし、これは必要な負のパワ−を正のパ
ワ−で打ち消すことであるから本質的に不経済でありそ
の結果より大きな口径のレンズが必要となっていた。
In the conventional reverse telephoto wide-angle lens system whose angle of view exceeds 75 °, the first lens group G 1 having negative refractive power is used.
In order to correct the negative distortion aberration in (2), most of them need to have a positive lens near the lens mainly for the purpose of correcting the distortion aberration. That is, the first lens group G
Distortion aberrations are corrected by arranging positive and negative lenses in combination in 1 to compose a lens group having negative power. However, this is essentially uneconomical because the necessary negative power is canceled by the positive power, and as a result, a lens having a larger aperture is required.

【0018】上述した本願発明の如き非球面形状の凹面
を持った負レンズにおいては、負の歪曲収差の発生を軽
減するため、負レンズのもつパワ−を正レンズで打ち消
す必要がより少ない。つまり、従来の球面系を中心とす
る広角レンズにおける正負のレンズの組合せが持つ作用
を、一個の負レンズで担うことが可能となる。また、前
方(物体側)の負レンズからの負のコマ収差の発生が球
面系に比して非常に少ないため、収差に決定的な悪影響
を及ぼすことなくそのパワ−の絶対値をより大きくする
ことが可能であり、レンズ系の口径を小さく抑えつつ、
大きなバックフォ−カスを得ることができる。このこと
はまた、負メニスカスレンズの凸面の曲率半径を大きく
することを可能とし、その結果物体側に装着されるフィ
ルターなどのアッタチメントのサイズをより小さくする
ことができる。
In the above-described negative lens having an aspherical concave surface according to the present invention, the power of the negative lens does not need to be canceled by the positive lens in order to reduce the occurrence of negative distortion. That is, it is possible for a single negative lens to bear the action of a combination of positive and negative lenses in a conventional wide-angle lens centering on a spherical system. In addition, since negative coma aberration from the front (object side) negative lens is much smaller than that of the spherical system, the absolute value of the power is made larger without detrimentally affecting the aberration. It is possible to keep the aperture of the lens system small,
A large back focus can be obtained. This also makes it possible to increase the radius of curvature of the convex surface of the negative meniscus lens, so that the size of the attachment such as a filter mounted on the object side can be made smaller.

【0019】但し、その反面ペッツヴァ−ル和をより負
とする欠点も生じるため、本発明においては、負メニス
カスレンズの焦点距離−f1 を、全系の焦点距離−fに
対して、 0・7 < f1 /f < 2 (2) とすることが望ましい。
However, on the other hand, there is a drawback that the Petzval sum becomes more negative. Therefore, in the present invention, the focal length -f 1 of the negative meniscus lens is 0. It is desirable that 7 <f 1 / f <2 (2).

【0020】上限を越えると、収差補正はより有利とな
るが第1レンズ群G1 としての負屈折力が弱くなるため
必要な有効径が大きくなり、従って大きなアッタチメン
トサイズが必要となる。また、下限を外れると第1レン
ズ群G1 の負屈折力が強くなり過ぎるためペッツバール
和が負に大きくなりすぎてその補正が困難となり、像面
湾曲及び非点収差の良好な補正が難しくなる。そして、
上記条件(1) の上限を1.28とすることとすれば、より広
画角のレンズにおいても第1レンズ群G1 の口径を一層
小型に維持するために有利となる。
If the upper limit is exceeded, aberration correction will be more advantageous, but the negative refracting power of the first lens group G 1 will be weakened, and the required effective diameter will be large, and therefore a large attachment size will be required. When the value goes below the lower limit, the negative refractive power of the first lens group G 1 becomes too strong, and the Petzval sum becomes too large to be negatively corrected, which makes it difficult to satisfactorily correct field curvature and astigmatism. . And
If the upper limit of the condition (1) is set to 1.28, it is advantageous to maintain the aperture of the first lens group G 1 in a smaller size even in a lens having a wider angle of view.

【0021】そして、有効直径の小型なレンズとするた
めには、最も物体側の面の頂点の接平面での有効直径を
φ,半画角をθとするとき φ < 3.3・f・tan2θ (3) の条件を満たす構成とすることが望ましい。次に絞りを
含む後方レンズ群について述べる。後方レンズ群は前述
のとおり、絞りを挟んで正屈折力の第2レンズ群G2
同じく正屈折力の第3レンズ群G3とを有している。絞
りより物体側の第2レンズ群G2 は、正屈折力を有し、
軸上色補正については補正不足の傾向を持つ。これは最
も物体側に位置する負屈折力の第1レンズ群G1 で発生
しがちな倍率色収差の補正を行ううえで有利である。ま
た球面のみで構成された従来の広角レンズでは、物体側
の負屈折力レンズ群は正の像面湾曲を発生する傾向にあ
り、これは主光線の外側に入射する光線のコマ収差が負
となることにも原因がある。したがって、このコマ収差
を正の方向に修正すると共に像面を負の方向に補正する
等の大きな作用をもつのがこの第2レンズ群G2 であ
る。従来のレンズ系では前方の負レンズを大きな形状と
する、正レンズのパワ−を大きくする、また物体側に強
く凸面を向けてベンディングした形状にするなどの方策
が採られている。
In order to obtain a small lens having an effective diameter, when the effective diameter at the tangent plane of the apex of the surface closest to the object is φ and the half angle of view is θ, φ <3.3 · f · tan 2 It is desirable to have a configuration that satisfies the condition of θ (3). Next, the rear lens group including the diaphragm will be described. As described above, the rear lens group has the second lens group G 2 having a positive refracting power and the third lens group G 3 having a positive refracting power with the diaphragm interposed therebetween. The second lens group G 2 on the object side of the aperture has a positive refractive power,
On-axis color correction tends to be insufficient. This is advantageous in correcting the lateral chromatic aberration that tends to occur in the first lens group G 1 having the negative refractive power located closest to the object side. Moreover, in a conventional wide-angle lens composed of only spherical surfaces, the negative refracting power lens group on the object side tends to generate a positive field curvature, which means that the coma of the light ray incident on the outside of the principal ray is negative. There is also a cause for becoming. Therefore, it is the second lens group G 2 that has a great effect of correcting this coma aberration in the positive direction and correcting the image surface in the negative direction. In a conventional lens system, measures are taken such that the front negative lens is made large, the power of the positive lens is made large, and the convex surface is strongly bent toward the object side.

【0022】本発明による上記の如き凹面の非球面を用
いることにより、負屈折力の第1レンズ群G1 での負の
コマ収差の発生は少なくなり、逆に正のコマ収差を発生
する場合も多くなる。従って、絞りの前方の第2レンズ
群G2 は負のコマ収差を発生させて、第1レンズ群G1
での正のコマ収差を補正する構造とせなばならぬ場合が
多くなる。これは後述する本願発明の実施例に見るよう
に、負の屈折力を持つ貼り合わせ面、その他従来知られ
ている当業者が容易に適用できる技術の範囲で実現可能
である。またこの手法は例えば負の屈折力を持つ貼り合
わせ面の様にペッツバール和が正の方向に向かうように
作用し、負の屈折力をもつ前群のペッツバール和を負に
向かわせる作用を打ち消して、全体の収差を良好に保つ
作用を同時に持つことが多い。また球面系のみからなる
場合に較べて負となりがちな球面収差の補正にも有効で
ある。
By using the above concave aspherical surface according to the present invention, the occurrence of negative coma in the first lens group G 1 having a negative refractive power is reduced, and conversely, positive coma is generated. Also increases. Therefore, the second lens group G 2 in front of the diaphragm produces negative coma, and the first lens group G 1
In many cases, it will be necessary to adopt a structure for correcting the positive coma aberration in. This can be realized within a range of techniques that can be easily applied by a conventionally known person skilled in the art, such as a bonding surface having a negative refractive power, as will be seen in Examples of the present invention described later. In addition, this method acts so that the Petzval sum moves toward the positive direction like a bonded surface with negative refracting power, and cancels the action of moving the Petzval sum of the front group having negative refracting power toward negative. , Often has the effect of keeping good overall aberrations at the same time. It is also effective in correcting spherical aberration, which tends to be negative compared to the case of using only a spherical system.

【0023】次に絞りの後ろ側に位置する第3レンズ群
3 について述べる。絞りの後方に位置するレンズ群
は、球面収差、色収差、また主光線の内側に入射する光
のコマ収差を補正するために、正負の各一個以上、少な
くとも2個のレンズを含む必要がある。レンズの全系が
より明るくなればこの群はより多くのレンズを必要とす
ることは無論である。また主光線の内側に入射する光線
が内方コマ収差となりがちな性質を補正し像面を平坦に
するために、空気に接した像側に凹の面が在ることが望
ましく、またこの面とそれに続く面によって作られる空
気レンズは両凸形状であることが望ましい。
Next, the third lens group G 3 located behind the diaphragm will be described. The lens group located behind the diaphragm needs to include at least two lenses, one for each of positive and negative, and at least two, in order to correct spherical aberration, chromatic aberration, and coma of light incident on the inside of the principal ray. Of course, the brighter the whole system of lenses is, the more lenses this group needs. In addition, it is desirable that a concave surface be present on the image side in contact with air in order to correct the property that the ray incident on the inside of the chief ray tends to be inward coma and to make the image plane flat. It is desirable that the air lens formed by the surface and the surface following it be biconvex.

【0024】そして、上記の如き本発明の構成におい
て、Fナンバー2.0 以下という明るさを維持するために
は、絞りより像側の第3レンズ群G3 中に非球面を設け
ることが好ましい。開口に依存する球面収差を補正する
ためには、第3レンズ群G3 の最も物体側、すなわち絞
りに近い位置ほど有効である。また、軸外収差の補正作
用も兼ねる場合には、絞りよりやや像側に非球面を設け
ることが有効である。この場合の非球面は頂点での基準
曲面は球面が有効である。
In the structure of the present invention as described above, in order to maintain the brightness of F number of 2.0 or less, it is preferable to provide an aspherical surface in the third lens group G 3 on the image side of the diaphragm. In order to correct the spherical aberration that depends on the aperture, it is effective to move the third lens group G 3 to the most object side, that is, the position closer to the diaphragm. In addition, when it also serves to correct off-axis aberrations, it is effective to provide an aspherical surface slightly on the image side of the diaphragm. In this case, the aspherical surface is effective as a reference curved surface at the apex.

【0025】[0025]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。以下の実施例はいずれも焦点距離
よりも大きなバックフォーカスを有するものである。以
下の数値実施例においては、物体側からi面(i=1.
2.3,・・・)の曲率半径をri 、第i面と第(i+
1)面との光軸上の面間隔をdi 、第i面と第(i+
1)面との間の媒質のd線に対する屈折率をndi、第i
面と第(i+1)面との間の媒質のアッベ数をνdi(た
だし、空気の屈折率及びアッベ数は空欄)として表す。
この場合、最後の面の面間隔di がバックフォーカスで
あり、第1面のレンズの有効直径が全系の最大有効直径
である。
Embodiments of the present invention will now be described in detail with reference to the drawings. The following examples all have a back focus larger than the focal length. In the following numerical examples, the i-plane (i = 1.
2.3, ...) is the radius of curvature r i , the i-th surface and the (i +
1) the surface distance on the optical axis from the surface is d i , and the i-th surface and the (i +
1) The refractive index of the medium between the surface and the d-line is n di , i-th
The Abbe number of the medium between the surface and the (i + 1) th surface is represented as ν di (however, the refractive index of air and the Abbe number are blank).
In this case, the surface distance d i of the last surface is the back focus, and the effective diameter of the lens on the first surface is the maximum effective diameter of the entire system.

【0026】本発明による第1実施例は第1図のレンズ
構成図に示すとおり、物体側から順に負屈折力の第1レ
ンズ群G1 、正屈折力の第2レンズ群G2 、絞りS、正
屈折力の第3レンズ群G3 から構成されている。第1レ
ンズ群G1 は物体側に凸面を向けた負メニスカスレンズ
1 から構成され、正屈折力の第2レンズ群G2 は物体
側に凸面を向けた負メニスカスレンズと正レンズとの貼
合せから成る貼合せ正レンズL2 と貼合せからなる弱い
屈折力のL3 から構成されている。また、正屈折力の第
3レンズ群G3 は物体側に凸面を向けた負メニスカスレ
ンズL4 と像側に凸面を向けた正メニスカスレンズと負
メニスカスレンズとの貼合せから成る正レンズL5 、像
側に凸面を向けた正メニスカスレンズL6 及び像側によ
り強い曲率の面を向けた正レンズL7 とから構成されて
いる。
In the first embodiment according to the present invention, as shown in the lens configuration diagram of FIG. 1, the first lens group G 1 having negative refracting power, the second lens group G 2 having positive refracting power, and the diaphragm S are sequentially arranged from the object side. , And a third lens group G 3 having a positive refractive power. The first lens group G 1 is composed of a negative meniscus lens L 1 having a convex surface facing the object side, and the second lens group G 2 having a positive refractive power is a combination of a negative meniscus lens having a convex surface facing the object side and a positive lens. It is composed of a cemented positive lens L 2 and a weak refractive power L 3 . The third lens group G 3 having a positive refractive power has a negative meniscus lens L 4 having a convex surface directed toward the object side and a positive lens L 5 having a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens cemented together. , A positive meniscus lens L 6 having a convex surface facing the image side, and a positive lens L 7 having a surface having a stronger curvature facing the image side.

【0027】第1実施例のレンズ諸元及び非球面に関す
る値は以下のとおりである。
The values relating to the lens specifications and the aspherical surface of the first embodiment are as follows.

【0028】[0028]

【表1】 (第1実施例) 焦点距離f=100.000 Fナンバー 1.8 画角 2θ= 84.0 ° i ri i di νdi 1 166.398 10.000 1.6968 55.6 2 50.119 35.000 3 226.840 12.500 1.62041 60.1 4 75.799 70.833 1.74950 35.2 5 −798.914 3.000 6 607.693 7.500 1.74950 35.2 7 77.846 25.000 1.71300 53.9 8 − 1430.331 29.167 9 317.550 8.333 1.75692 31.6 10 164.697 10.417 11 − 1178.677 25.833 1.64006 60.0 12 − 64.710 7.500 1.75520 27.6 13 −129.205 0.833 14 −392.316 12.500 1.74810 52.3 15 −158.645 0.833 16 48325.827 12.500 1.69680 55.6 17 −370.156 158.342 (非球面に関する値) 第2面 κ= 0.527 C4 = 0.47689×10-78 =0 C6 =0 C10=0 第13面 κ= 1.000 C4 = 0.21013×10-78 =0 C6 =-0.26774×10-11 10=0 f1 /f=−1.067 φ= 172.5=2.13f・tan2θ 上記第1実施例の諸収差図を第2図に示す。この収差図
から、画角84°でFナンバー1.8 という明るさを有し
つつ、最も物体側レンズL1 の口径が小さい構成である
にもかかわらず、極めて優れた結像性能を有しているこ
とが明らかである。
(Table 1) (first embodiment) Focal length f = 100.000 F-number 1.8 Angle of view 2θ = 84.0 ° ir i d i n di ν di 1 166.398 10.000 1.6968 55.6 2 50.119 35.000 3 226.840 12.500 1.62041 60.1 4 75.799 70.833 1.74950 35.2 5 −798.914 3.000 6 607.693 7.500 1.74950 35.2 7 77.846 25.000 1.71300 53.9 8 − 1430.331 29.167 9 317.550 8.333 1.75692 31.6 10 164.697 10.417 11 − 1178.677 25.833 1.64006 60.0 12 − 64.710 7.500 1.75520 27.6 13 −129.205 0.833 14.10.392.316 12. −158.645 0.833 16 48325.827 12.500 1.69680 55.6 17 −370.156 158.342 (Value relating to aspherical surface) 2nd surface κ = 0.527 C 4 = 0.47689 × 10 -7 C 8 = 0 C 6 = 0 C 10 = 0 13th surface κ = 1.000 C 4 = 0.21013 × 10 −7 C 8 = 0 C 6 = −0.26774 × 10 −11 C 10 = 0 f 1 /f=−1.067 φ = 172.5 = 2.13f · tan 2 θ Various aberrations of the first embodiment The figure is shown in FIG. From this aberration diagram, it has a brightness of F number 1.8 at an angle of view of 84 °, and has an extremely excellent imaging performance in spite of the configuration in which the object side lens L 1 has the smallest aperture. It is clear.

【0029】本発明による第2実施例も、第3図のレン
ズ構成図に示すとおり、物体側から順に負屈折力の第1
レンズ群G1 、正屈折力の第2レンズ群G2 、絞りS、
正屈折力の第3レンズ群G3 から構成されている。第1
レンズ群G1 は物体側に凸面を向けた負メニスカスレン
ズL1 から構成され、正屈折力の第2レンズ群G2 は物
体側に凸面を向けた負メニスカスレンズと両凸正レンズ
と像側に凸面を向けた負メニスカスレンズとの3枚の貼
合せから成る貼合せ正レンズL2 と物体側により強い曲
率の面を向けた正レンズL3 から構成されている。ま
た、正屈折力の第3レンズ群G3 は両凸正レンズと両凹
負レンズとの貼合せ正レンズL4 、像側に凸面を向けた
正メニスカスレンズL5 、像側により強い曲率の面を向
けた正レンズL6 及び両凸正レンズL7 とから構成され
ている。
In the second embodiment of the present invention, as shown in the lens construction diagram of FIG.
A lens group G 1 , a second lens group G 2 having a positive refractive power, a diaphragm S,
It is composed of a third lens group G 3 having a positive refractive power. First
The lens group G 1 includes a negative meniscus lens L 1 having a convex surface directed toward the object side, and the second lens group G 2 having a positive refractive power has a negative meniscus lens having a convex surface directed toward the object side, a biconvex positive lens, and an image side. It is composed of a cemented positive lens L 2 which is formed by laminating three negative meniscus lenses having a convex surface facing to and a positive lens L 3 whose surface has a stronger curvature. The third lens group G 3 having a positive refractive power is a positive lens L 4 which is a cemented double positive lens and a negative double lens, a positive meniscus lens L 5 having a convex surface facing the image side, and a lens having a stronger curvature on the image side. It is composed of a positive lens L 6 with its surface facing and a biconvex positive lens L 7 .

【0030】第2実施例のレンズ諸元及び非球面に関す
る値は以下のとおりである。
The values relating to the lens specifications and the aspherical surface of the second embodiment are as follows.

【0031】[0031]

【表2】 (第2実施例) 焦点距離f=100.000 Fナンバー 2.0 画角 2θ= 84.0 ° i ri i di νdi 1 214.393 6.161 1.63246 63.8 2 49.452 31.626 3 324.095 9.858 1.80411 46.5 4 65.635 62.020 1.66755 42.0 5 −102.654 8.215 1.58913 61.1 6 −774.419 0.411 7 131.479 36.555 1.56883 56.0 8 − 5039.657 15.813 9 253.995 32.037 1.67003 47.1 10 −176.610 10.268 1.78470 26.1 11 133.906 10.884 12 −361.549 12.322 1.60311 60.6 13 − 96.530 0.821 14 4517.619 11.090 1.58913 61.1 15 −227.130 0.411 16 636.648 8.625 1.56384 60.7 17 −817.920 158.852 (非球面に関する値) 第2面 κ= 0.430 C4 = 0.99719×10-78 =0 C6 =0 C10=0 f1 /f=−1.016 φ= 180 =2.22f・tan2θ 上記第2実施例の諸収差図を第4図に示す。この収差図
から、画角84°でFナンバー2.0 という明るさを有し
つつ、最も物体側レンズL1 の口径が小さい構成である
にもかかわらず、極めて優れた結像性能を有しているこ
とが明らかである。
[Table 2] (Second Embodiment) Focal length f = 100.000 F number 2.0 Angle of view 2θ = 84.0 ° ir i d i n di ν di 1 214.393 6.161 1.63246 63.8 2 49.452 31.626 3 324.095 9.858 1.80411 46.5 4 65.635 62.020 1.66755 42.0 5 −10 2.654 8.215 1.58913 61.1 6 −774.419 0.411 7 131.479 36.555 1.56883 56.0 8 − 5039.657 15.813 9 253.995 32.037 1.67003 47.1 10 −176.610 10.268 1.78470 26.1 11 133.906 10.884 12 −361.549 12.322 1.60311 60.6 13 − 96.530 0.821 148913 6319 11.15 -227.130 0.411 16 636.648 8.625 1.56384 60.7 17 -817.920 158.852 (value related to the aspherical surfaces) the second surface κ = 0.430 C 4 = 0.99719 × 10 -7 C 8 = 0 C 6 = 0 C 10 = 0 f 1 / f = - 1.016 φ = 180 = 2.22f · tan 2 θ FIG. 4 shows various aberration diagrams of the second example. From this aberration diagram, it has a brightness of F number 2.0 at an angle of view of 84 ° and has an extremely excellent imaging performance in spite of the configuration in which the aperture of the object side lens L 1 is the smallest. It is clear.

【0032】本発明による第3実施例も、第3図のレン
ズ構成図に示すとおり、物体側から順に負屈折力の第1
レンズ群G1 、正屈折力の第2レンズ群G2 、絞りS、
正屈折力の第3レンズ群G3 から構成されているが、画
角は 100°に達する超広角レンズである。第1レンズ群
1 は物体側に凸面を向けた負メニスカスレンズL1
ら構成され、正屈折力の第2レンズ群G2 は物体側に凸
面を向けた負メニスカスレンズと両凸正レンズとの貼合
せから成る貼合せ正レンズL2 と物体側により強い曲率
の面を向けた正レンズL3 から構成されている。また、
正屈折力の第3レンズ群G3 は像側に凸面を向けた正メ
ニスカスレンズと同じく像側に凸面を向けた負メニスカ
スレンズとの貼合せ正レンズL4 、両凸レンズと両凹レ
ンズとの貼合せレンズL5 、像側により強い曲率の面を
向けた正レンズL6 及び両凸正レンズL7 とから構成さ
れている。
Also in the third embodiment according to the present invention, as shown in the lens construction diagram of FIG.
A lens group G 1 , a second lens group G 2 having a positive refractive power, a diaphragm S,
Although it is composed of the third lens group G 3 having a positive refractive power, it is an ultra wide-angle lens whose field angle reaches 100 °. The first lens group G 1 is composed of a negative meniscus lens L 1 having a convex surface facing the object side, and the second lens group G 2 having a positive refractive power is a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens. and a positive lens L 3 toward the surface with a stronger curvature by cemented positive lens L 2 and the object side cemented consisting together of. Also,
The third lens group G 3 having a positive refractive power cemented with a negative meniscus lens having a convex surface directed toward the same image side and a positive meniscus lens having a convex surface directed toward the image side mating positive lens L 4, pasting of a biconvex lens and a biconcave lens It is composed of a compound lens L 5 , a positive lens L 6 with a surface having a stronger curvature facing the image side, and a biconvex positive lens L 7 .

【0033】第3実施例のレンズ諸元及び非球面に関す
る値は以下のとおりである。
The values of the lens specifications and the aspherical surface of the third embodiment are as follows.

【0034】[0034]

【表3】 (第3実施例) 焦点距離f=100.000 Fナンバー 2.8 画角 2θ=100.0 ° i ri i di νdi 1 453.027 9.783 1.63246 63.8 2 59.783 46.196 3 351.331 54.348 1.80411 46.5 4 68.542 43.478 1.59507 35.5 5 − 1142.440 0.543 6 137.125 65.217 1.60717 40.3 7 ∞ 11.960 8 −434.445 21.739 1.58913 61.1 9 − 55.435 8.152 1.80218 44.7 10 −107.065 13.315 11 763.587 22.283 1.54739 53.5 12 −114.098 6.522 1.80384 33.9 13 258.109 9.783 14 −282.179 16.304 1.62041 60.1 15 −100.419 0.543 16 2717.390 15.217 1.62041 60.1 17 −203.516 205.125 (非球面に関する値) 第2面 κ= 0.000 C4 = 0.15574×10-68 =0 C6 =0 C10=0 f1 /f=−1.089 φ= 245 =1.73f・tan2θ 上記第3実施例の諸収差図を第6図に示す。この収差図
から、画角 110°という超広画角でFナンバー3.5 の明
るさを有しつつ、最も物体側レンズL1 の口径が小さい
構成であるにもかかわらず、極めて優れた結像性能を有
していることが明らかである。
[Table 3] (Third Example) Focal length f = 100.000 F number 2.8 Angle of view 2θ = 100.0 ° i r i d i n di ν di 1 453.027 9.783 1.63246 63.8 2 59.783 46.196 3 351.331 54.348 1.80411 46.5 4 68.542 43.478 1.59507 35.5 5 − 1142.440 0.543 6 137.125 65.217 1.60717 40.3 7 ∞ 11.960 8 −434.445 21.739 1.58913 61.1 9 − 55.435 8.152 1.80218 44.7 10 −107.065 13.315 11 763.587 22.283 1.54739 53.5 12 −114.098 6.522 1.80384 33.9 13 258.109 9.783 16 1.6282 204179. −100.419 0.543 16 2717.390 15.217 1.62041 60.1 17 −203.516 205.125 (Value related to aspherical surface) 2nd surface κ = 0.000 C 4 = 0.15574 × 10 -6 C 8 = 0 C 6 = 0 C 10 = 0 f 1 / f =- 1.089 φ = 245 = 1.73f · tan 2 θ FIG. 6 shows various aberration diagrams of the third example. From this aberration diagram, it is possible to obtain an extremely excellent imaging performance despite the fact that the object-side lens L 1 has the smallest aperture while having an F-number of 3.5 with a super-wide angle of view of 110 °. It is clear that

【0035】第4実施例も、第6図のレンズ構成図に示
すとおり、物体側から順に負屈折力の第1レンズ群
1 、正屈折力の第2レンズ群G2 、絞りS、正屈折力
の第3レンズ群G3 から構成されているが、画角は 100
°に達する超広角レンズである。第1レンズ群G1 は物
体側に凸面を向けた負メニスカスレンズL1 から構成さ
れ、正屈折力の第2レンズ群G2 は物体側に凸面を向け
た負メニスカスレンズと両凸正レンズと負レンズとの3
枚の貼合せから成る貼合せ正レンズL2 と両凸正レンズ
3 から構成されている。また、正屈折力の第3レンズ
群G3 は正レンズと像側に凸面を向けた負メニスカスレ
ンズとの貼合せ正レンズL4 、正レンズと負レンズとの
貼合せレンズL5 、像側により強い曲率の面を向けた正
レンズL6 及び両凸正レンズL7 とから構成されてい
る。
Also in the fourth embodiment, as shown in the lens configuration diagram of FIG. 6, the first lens group G 1 having a negative refractive power, the second lens group G 2 having a positive refractive power, the diaphragm S, and the positive lens element are arranged in this order from the object side. It is composed of the third lens group G 3 having a refractive power, but the angle of view is 100
It is an ultra-wide-angle lens that reaches °. The first lens group G 1 is composed of a negative meniscus lens L 1 having a convex surface facing the object side, and the second lens group G 2 having a positive refractive power is a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens. 3 with negative lens
It is composed of a cemented positive lens L 2 formed by laminating two sheets and a biconvex positive lens L 3 . Further, the third lens group G 3 having a positive refractive power cemented positive lens L 4 of a negative meniscus lens having a convex surface directed toward the positive lens and the image side, laminating lens L 5 between the positive lens and the negative lens, the image side Is composed of a positive lens L 6 and a biconvex positive lens L 7 with a surface having a stronger curvature.

【0036】第4実施例のレンズ諸元及び非球面に関す
る値は以下のとおりである。
The values relating to the lens specifications and the aspherical surface of the fourth embodiment are as follows.

【0037】[0037]

【表4】 (第4実施例) 焦点距離f=100.000 Fナンバー 3.5 画角 2θ=110.0 ° i ri i di νdi 1 320.261 9.804 1.77279 49.5 2 73.529 63.331 3 281.045 25.393 1.80411 46.5 4 84.479 103.555 1.60342 38.0 5 − 92.924 13.072 1.69680 55.6 6 − 2241.584 0.654 7 220.832 36.601 1.60342 38.0 8 −466.738 13.072 9 1289.284 27.451 1.60342 38.0 10 − 67.218 15.686 1.77279 49.5 11 −280.933 13.072 12 − 1293.096 19.551 1.57501 41.4 13 − 71.895 9.804 1.80518 25.3 14 494.693 9.150 15 −236.968 20.915 1.58913 61.1 16 − 90.196 0.654 17 1669.346 23.529 1.56384 60.7 18 −162.792 248.439 (非球面に関する値) 第2面 κ= 0.312 C4 = 0.34757×10-88 =0 C6 =0 C10=0 f1 /f=−1.257 φ= 295 =1.45f・tan2θ 上記第4実施例の諸収差図を第8図に示す。この収差図
から、画角 110°という超広画角でFナンバー3.5 とい
う明るさを有しつつ、最も物体側レンズL1 の口径が小
さい構成であるにもかかわらず、極めて優れた結像性能
を有していることが明らかである。
(Table 4) (Fourth Example) Focal length f = 100.000 F number 3.5 Angle of view 2θ = 110.0 ° ir i d i n di ν di 1 320.261 9.804 1.77279 49.5 2 73.529 63.331 3 281.045 25.393 1.80411 46.5 4 84.479 103.555 1.60342 38.0 5 − 92.924 13.072 1.69680 55.6 6 − 2241.584 0.654 7 220.832 36.601 1.60342 38.0 8 − 466.738 13.072 9 1289.284 27.451 1.60342 38.0 10 − 67.218 15.686 1.77279 49.5 11 −280.933 13.072 12 − 1293.096 19.551 1.57501 41.4 13 − 71.895 14.804 1.93 15 -236.968 20.915 1.58913 61.1 16 - 90.196 0.654 17 1669.346 23.529 1.56384 60.7 18 -162.792 248.439 (value related to the aspherical surfaces) the second surface κ = 0.312 C 4 = 0.34757 × 10 -8 C 8 = 0 C 6 = 0 C 10 = 0 f 1 /f=−1.257 φ = 295 = 1.45 f · tan 2 θ FIG. 8 shows various aberration diagrams of the fourth embodiment. From this aberration diagram, it is possible to obtain an extremely excellent imaging performance, despite having a configuration in which the aperture of the object-side lens L 1 is the smallest while having an F-number of 3.5 and a super wide angle of view of 110 °. It is clear that

【0038】[0038]

【発明による効果】以上述べたように本発明によれば、
実施例に見るごとく、画角84°〜110°という超広
画角でFナンバー1.8 に達する明るさを有し、小型でし
かも収差の良好に補正された広角写真レンズを得ること
ができる。そして、物体側の負レンズ群中に従来主とし
て歪曲収差の補正を目的とした配置されていた正レンズ
を必要とすることなく簡単なレンズ構成が可能となり、
前玉口径の小型化と相まってレンズの容積をより小さく
し、レンズの軽量化にも寄与するものである。しかも本
発明による非球面においては、コマ収差が良好に補正可
能であるため、広角レンズでしばしば不足する画面周辺
部での光量も充分に確保することができるという効果も
有している。
As described above, according to the present invention,
As seen in the examples, it is possible to obtain a wide-angle photographic lens having a brightness reaching an F number of 1.8 at an ultra-wide angle of view of 84 ° to 110 °, a small size, and good correction of aberrations. Then, a simple lens configuration is possible without the need for a positive lens that has been arranged mainly for the purpose of correcting distortion in the negative lens group on the object side,
Together with the downsizing of the front lens aperture, the volume of the lens is further reduced, which contributes to the weight reduction of the lens. Moreover, in the aspherical surface according to the present invention, the coma aberration can be corrected well, so that there is also an effect that it is possible to sufficiently secure the light quantity in the peripheral portion of the screen, which is often insufficient in the wide-angle lens.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment of the present invention.

【図2】本発明の第1実施例の諸収差図。FIG. 2 is a diagram of various types of aberration of the first embodiment of the present invention.

【図3】本発明の第2実施例のレンズ構成図。FIG. 3 is a lens configuration diagram of a second embodiment of the present invention.

【図4】本発明の第2実施例の諸収差図。FIG. 4 is a diagram of various types of aberration of the second embodiment of the present invention.

【図5】本発明の第3実施例のレンズ構成図。FIG. 5 is a lens configuration diagram of a third embodiment of the present invention.

【図6】本発明の第3実施例の諸収差図。FIG. 6 is a diagram of various types of aberration of the third embodiment of the present invention.

【図7】本発明の第4実施例のレンズ構成図。FIG. 7 is a lens configuration diagram of a fourth embodiment of the present invention.

【図8】本発明の第4実施例の諸収差図。FIG. 8 is a diagram of various types of aberration of the fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ・・・負屈折力の第1レンズ群 G2 ・・・正屈折力の第2レンズ群 G3 ・・・正屈折力の第3レンズ群 S・・・・絞りG 1 ... First lens group having negative refracting power G 2 ... Second lens group having positive refracting power G 3 ... Third lens group having positive refracting power S ...

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絞りより物体側に配置された負屈折力の第
1レンズ群G1 と、該第1レンズ群G1 と前記絞りとの
間に配置された正屈折力の第2レンズ群G2と、前記絞
りの像側に配置された正屈折力の第3レンズ群G3 とを
有し、全系の焦点距離よりも大きなバックフォ−カスを
もつ逆望遠型広角レンズにおいて、前記第1レンズ群G
1 は物体側に凸面を向けた負レンズを有し、該負レンズ
の像側の空気に接する凹面は曲率が光軸から離れるに従
って単調に減少しかつ光軸に対して回転対称な非球面で
あり、xを曲面の頂点からの光軸方向の距離、yを光軸
からの距離、Cは曲線の頂点での曲率とし、C4 、C6
・・・を定数とするとき、前記負レンズの凹面のメリジ
オナル断面での非球面形状が、 x=Cy2/{1+(1−κC221/2}+C44+C
66+・・・且つ、 −1 < κ < 0.8 で表される範囲にあることを特徴とする逆望遠型広角レ
ンズ。
1. A first lens group G 1 having a negative refractive power arranged closer to the object side than a stop, and a second lens group having a positive refractive power arranged between the first lens group G 1 and the diaphragm. In the reverse telephoto wide-angle lens having G 2 and a third lens unit G 3 having a positive refractive power arranged on the image side of the diaphragm and having a back focus larger than the focal length of the entire system, 1 lens group G
1 has a negative lens with a convex surface facing the object side, and the concave surface of the negative lens in contact with air on the image side is an aspherical surface whose curvature decreases monotonically as it moves away from the optical axis and which is rotationally symmetric with respect to the optical axis. Yes, x is the distance from the vertex of the curved surface in the optical axis direction, y is the distance from the optical axis, C is the curvature at the vertex of the curve, and C 4 , C 6
Is a constant, the aspherical shape of the concave surface of the negative lens in the meridional section is: x = Cy 2 / {1+ (1-κC 2 y 2 ) 1/2 } + C 4 y 4 + C
An inverse telephoto wide-angle lens characterized by having a range of 6 y 6 + ... And −1 <κ <0.8.
【請求項2】前記逆望遠レンズの全系の焦点距離をf、
前記非球面を有する負レンズの焦点距離を−f1 とする
とき 0・7f < f1 < 2f φ < 3.3・f・tan2θ の条件を満たすことを特徴とする請求項1記載の逆望遠
型広角レンズ。
2. The focal length of the entire system of the reverse telephoto lens is f,
The negative lens having the aspherical surface has a focal length of −f 1, which satisfies the condition of 0.7f <f 1 <2f φ <3.3 · f · tan 2 θ. Reverse telephoto wide-angle lens.
【請求項3】前記非球面を有する負レンズの最も物体側
面の頂点での接平面での有効直径をφ,半画角をθとす
るとき、 0・7f < f1 < 2f φ < 3.3・f・tan2θ の条件を満たすことを特徴とする請求項2記載の逆望遠
型広角レンズ。
Wherein an effective diameter of at tangent plane at the apex of the most object side surface of the negative lens having the aspherical phi, when the half field angle θ, 0 · 7f <f 1 <2f φ <3. The inverse telephoto wide-angle lens according to claim 2, wherein the condition of 3 · f · tan 2 θ is satisfied.
JP5037216A 1991-08-20 1993-02-26 Inverted telescope type photographic lens Pending JPH06250080A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5037216A JPH06250080A (en) 1993-02-26 1993-02-26 Inverted telescope type photographic lens
US08/200,459 US5477388A (en) 1991-08-20 1994-02-23 Inverse telescopic wide angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5037216A JPH06250080A (en) 1993-02-26 1993-02-26 Inverted telescope type photographic lens

Publications (1)

Publication Number Publication Date
JPH06250080A true JPH06250080A (en) 1994-09-09

Family

ID=12491397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5037216A Pending JPH06250080A (en) 1991-08-20 1993-02-26 Inverted telescope type photographic lens

Country Status (1)

Country Link
JP (1) JPH06250080A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134244A (en) * 1993-11-09 1995-05-23 Nikon Corp Projection lens
JPH08122634A (en) * 1994-10-25 1996-05-17 Asahi Optical Co Ltd Objective for endoscope
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens
JP2009276536A (en) * 2008-05-14 2009-11-26 Nikon Corp Wide-angle lens and imaging device
US10156696B2 (en) 2016-09-29 2018-12-18 Fujifilm Corporation Imaging lens and imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134244A (en) * 1993-11-09 1995-05-23 Nikon Corp Projection lens
JPH08122634A (en) * 1994-10-25 1996-05-17 Asahi Optical Co Ltd Objective for endoscope
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens
JP2009276536A (en) * 2008-05-14 2009-11-26 Nikon Corp Wide-angle lens and imaging device
US10156696B2 (en) 2016-09-29 2018-12-18 Fujifilm Corporation Imaging lens and imaging apparatus

Similar Documents

Publication Publication Date Title
JPH04267212A (en) Ultra wide angle lens
JPH05273459A (en) Fisheye lens equipped with short-distance correcting function
JPH1152228A (en) Wide angle lens
JP3074026B2 (en) Super wide-angle zoom lens
JPH05249374A (en) Zoom lens with wide field angle
JPH05142473A (en) Rear conversion lens
JPH0784180A (en) Fish-eye lens in water
US8289631B2 (en) Wide-angle optical system
JP2992547B2 (en) Super wide angle lens
JP2000028919A (en) Middle telephotographic lens
JP2975696B2 (en) Ultra-compact ultra-wide-angle lens
JP2599311B2 (en) Super wide angle lens
JPH0545581A (en) Wide-angle lens
JPH05119254A (en) Reverse telephoto type wide-angle lens
JPH0713704B2 (en) Wide-angle lens
JPH05127082A (en) Small-sized zoom lens
JPH1031153A (en) Small-sized wide-angle photographic lens
JPH11271610A (en) Medium telephoto lens
JP4210876B2 (en) Zoom lens
JPH06250080A (en) Inverted telescope type photographic lens
JPH06258574A (en) Photographic lens
JP3744042B2 (en) Zoom lens
JPH023968B2 (en)
JP3118030B2 (en) Ultra wide-angle lens with compact rear focus
JPH0574806B2 (en)